首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Objective:

Obesity is a prominent component of metabolic syndrome and a major risk factor for renal disease. The aim of this study was to explore the effect of cross‐talk between peroxisome proliferator‐activated receptor (PPAR)δ and p38 mitogen‐activated protein kinase (p38 MAPK) on obesity‐related glomerulopathy.

Design and Methods:

Male Wistar rats were randomly assigned to standard laboratory chow or a high‐fat diet for 32 weeks. Glomerular mesangial cells HBZY‐1 and mature differentiation 3T3‐L1 cells were cocultured and were transfected with PPARδ‐expressing vectors or treated with agonist or inhibitor of PPARδ or p38 MAPK.

Results:

Rats on a high‐fat diet showed typical characteristics of metabolic syndrome including obesity, dyslipidemia, insulin resistance, and hypertension. Rats on a high‐fat diet also had significant glomerular hypertrophy and extracellular matrix accumulation, which were accompanied by increased p38 MAPK phosphorylation and decreased PPARδ expression in the kidney tissue. The roles of p38 MAPK and PPARδ in a coculture system of mesangial cells and mature differentiation 3T3‐L1 cells were further explored. PPARδ suppression promoted laminin and type IV collagen secretion through p38 MAPK phosphorylation in mesangial cells, whereas PPARδ overexpression or PPARδ agonist attenuated phosphorylation of p38 MAPK and laminin and type IV collagen secretion.

Conclusions:

The characteristics of obesity‐related glomerulopathy, which might be partly caused by PPARδ suppression‐induced p38 MAPK activation and laminin and type IV collagen secretion was demonstrated.  相似文献   

3.

Objective:

A spontaneous deletion in the nicotinamide nucleotide transhydrogenase (Nnt) gene eliminating exons 7‐11 in C57BL/6J (B6J) mice is associated with reduced glucose‐stimulated insulin secretion in vitro, impaired glucose tolerance, higher epigonadal fat mass, and altered susceptibility to diet induced obesity of male B6J mice was proposed. A potential implication for NNT in human adipose tissue distribution has not been investigated so far.

Design and Methods:

Therefore, NNT mRNA expression in paired human samples of visceral (vis) and subcutaneous (sc) adipose tissue from 221 subjects with a wide range of body mass index (BMI), insulin sensitivity, and glucose tolerance was analyzed.

Results:

NNT mRNA expression is significantly higher in visceral fat of obese patients and correlates with body weight, BMI, % body fat, visceral and sc fat area, waist and hip circumference, and fasting plasma insulin (FPI). Multivariate linear regression analysis revealed visceral NNT expression as age and gender independent predictor of BMI, waist circumference, visceral fat area, and % body fat, but not FPI and 2 h OGTT glucose.

Conclusion:

In conclusion, a functional relevance of NNT in the development of human obesity and visceral fat distribution was suggested here.  相似文献   

4.
5.
A number of clinical and biochemical studies demonstrate that obesity and insulin resistance are associated with increases in oxidative stress and inflammation. Paradoxically, insulin sensitivity can be enhanced by oxidative inactivation of cysteine residues of phosphatases, and inflammation can be reduced by S‐glutathionylation with formation of protein‐glutathione mixed disulfides (PSSG). Although oxidation of protein‐bound thiols (PSH) is increased in multiple diseases, it is not known whether there are changes in PSH oxidation species in obesity.

Objective:

In this work, the hypothesis that obesity is associated with decreased levels of proteins containing oxidized protein thiols was tested.

Design and Methods:

The tissue levels of protein sulfenic acids (PSOH) and PSSG in liver, visceral adipose tissue, and skeletal muscle derived from glucose intolerant, obese‐prone Sprague‐Dawley rats were examined.

Results:

The data in this study indicate that decreases in PSSG content occurred in liver (44%) and adipose (26%) but not skeletal muscle in obese rats that were fed a 45% fat‐calorie diet versus lean rats that were fed a 10% fat‐calorie diet. PSOH content did not change in the tissue between the two groups. The activity of the enzyme glutaredoxin (GLRX) responsible for reversal of PSSG formation did not change in muscle and liver between the two groups. However, levels of GLRX1 were elevated 70% in the adipose tissue of the obese, 45% fat calorie‐fed rats.

Conclusion:

These are the first data to link changes in S‐glutathionylation and GLRX1 to adipose tissue in the obese and demonstrate that redox changes in thiol status occur in adipose tissue as a result of obesity.  相似文献   

6.
7.
ABSTRACT

Dietary capsaicin exhibits anti-steatosis activity in obese mice. High-fat diet (HFD)-induced mice is a highly studied approach to develop non-alcoholic fatty liver disease (NAFLD). In this study, we determined whether the topical application of capsaicin can improve lesions of NAFLD. The HFD-induced mice were treated with daily topical application of capsaicin for 8 weeks. Topical application of capsaicin reduced liver fat in HFD-fed mice. Capsaicin stimulated carnitine palmitoyl transferase (CPT)-1 and CD36 expression, which are associated with β-oxidation and fatty acids influx of liver while it decreased the expression of key enzymes involved in the synthesis of fatty acids, such as acetyl Co-A carboxylase (ACC) and fatty acid synthase (FAS). Immunohistochemical analysis revealed the elevated level of adiponectin in liver tissue of the capsaicin-treated mice. These results suggest that the topical application of capsaicin suppresses liver fat accumulation through the upregulation of β-oxidation and de novo lipogenesis in HFD-induced NAFLD mice.  相似文献   

8.

Objective:

Galectins (Gal) exert many activities, including regulation of inflammation and adipogenesis. We evaluated modulation of Gal‐1, ‐3, ‐9 and ‐12 in visceral (VAT) and subcutaneous (SAT) adipose tissue in mice.

Design and Methods:

We used two mouse models of obesity, high‐fat diet induced obesity (DIO) and ob/ob mice. We also evaluated the response of Gal‐1 KO mice to DIO.

Results:

Both age and diet modulated expression of galectins, with DIO mice having higher serum Gal‐1 and Gal‐3 versus lean mice after 13‐17 weeks of high‐fat diet. In DIO mice there was a progressive increase in expression of Gal‐1 and Gal‐9 in SAT, whereas Gal‐3 increased in both VAT and SAT. Expression of Gal‐12 declined over time in VAT of DIO mice, similar to adiponectin. Obesity lead to increased production of Gal‐1 in adipocytes, whereas the increased Gal‐3 and Gal‐9 of obesity mostly derived from the stromovascular fraction. Expression of Gal‐12 was restricted to adipocytes. There was increased production of Gal‐3 and Gal‐9, but not Gal‐1, in CD11c? and CD11c+ macrophages from VAT of DIO versus lean mice. Expression of Gal‐1, ‐3 and ‐12 in VAT and SAT of ob/ob mice followed a trend comparable to DIO mice. Rosiglitazone reduced serum Gal‐1, but not Gal‐3 and modulated expression of Gal‐3 in VAT and Gal‐9 and Gal‐12 in SAT of DIO mice. High‐fat feeding lead to increased adiposity in Gal‐1 KO versus WT mice, with loss of correlation between leptin and adiposity and no alterations in glucose and insulin levels.

Conclusions:

Obesity leads to differential modulation of Gal‐1, 3, 9 and 12 in VAT and SAT, with Gal‐1 acting as a modulator of adiposity.
  相似文献   

9.
Objective: A high intake of fat in the diet plays a crucial role in promoting obesity and obesity‐related pathologies, and especially visceral obesity is closely associated with obesity‐related complications. Because adipose tissue is anatomically associated with lymph nodes, the secondary lymphoid organ, we hypothesized that fat tissue‐derived factors may influence the cellularity of lymphoid tissue embedded in fat. Methods and Procedures: Mesenteric and inguinal lymph nodes were isolated from obese mice fed a high‐fat diet and control mice fed a regular diet. T‐cell population, activation state, and the extent of apoptosis were determined by flow cytometric analysis or terminal deoxynucleotidyl transferase biotin‐dUTP nick end labeling (TUNEL) assay. Results: The weight of mesenteric lymph nodes and the total number of lymphoid cells in the obese mice significantly decreased compared with those in the control mice; however, no change was observed in the weight of inguinal lymph nodes. The numbers of CD4+ and CD8+ T cells in the mesenteric lymph nodes of obese mice significantly decreased compared with those of the control. Enhanced T‐cell activation and apoptosis were observed in the mesenteric lymph node cells of the obese mice. The treatment of lymph node cells with free fatty acids, oxidative stress, and chylomicrons, which are obesity‐related factors, resulted in lymph node T‐cell activation and apoptosis. Discussion: These results suggest that visceral fat accumulation with a high‐fat diet can cause the atrophy of mesenteric lymph nodes by enhancing activation‐induced lymphoid cell apoptosis. Dietary fat‐induced visceral obesity may be crucial for obesity‐related immune dysfunction.  相似文献   

10.
Leung FW 《Life sciences》2008,83(1-2):1-5
This report summarizes clinical and experimental data in support of the hypothesis that capsaicin-sensitive intestinal mucosal afferent mechanism plays a role in regulating body fat distribution. Epidemiological data have revealed that the consumption of foods containing capsaicin is associated with a lower prevalence of obesity. Rural Thai people consume diets containing 0.014% capsaicin. Rodents fed a diet containing 0.014% capsaicin showed no change in caloric intake but a significant 24% and 29% reduction in the visceral (peri-renal) fat weight. Increase in intestinal blood flow facilitates nutrient energy absorption and decrease in adipose tissue blood flow facilitates storage of nutrient energy in adipose tissue. Stimulation of intestinal mucosal afferent nerves increases intestinal blood flow, but decreases visceral (mesenteric) adipost tissue blood flow. In in vitro cell studies capsaicin has a direct effect on adipocytes. Intravenous capsaicin produces measurable plasma level and subcutaneous capsaicin retards accumulation of adipose tissue. The data on a direct effect of oral capsaicin on adipose tissue at remote sites, however, are conflicting. Capsaicin absorbed from the gut lumen is almost completely metabolized before reaching the general circulation. Oral capsaicin significantly increases transient receptor potential vanilloid type-1 (TRPV1) channel expression as well as TRPV1 messenger ribonucleic acid (mRNA) in visceral adipose tissue. In TRPV1 knockout mice on a high fat diet the body weight was not significantly different in the absence or presence of oral capsaicin. In rodent experiments, daily intragastric administration of capsaicin for two weeks led to defunctionalization of intestinal mucosal afferent nerves, manifested by loss of acute mucosal capsaicin-induced effects; but not the corneal afferent nerves, with preservation of the paw wiping reflex of the eye exposed briefly to dilute capsaicin. The latter indicated the absence of an oral capsaicin effect at one remote site. There was an accompanying decrease and an increase in the proportion of body fat in visceral and subcutaenous compartments, respectively. Taken together, if oral capsaicin could regulate adipose tissue distribution, the process might involve the effect of intestinal mucosal afferent nerves in modulating intestinal and visceral adipose tissue blood flow. The hypothesis that the intestinal mucosal afferent mechanism is a plausible therapeutic target for abating visceral obesity deserves to be further evaluated.  相似文献   

11.

Objective:

Serum cortisol concentrations fluctuate in a circadian fashion, and glucocorticoids exert strong effects on adipose tissue and induce obesity through the glucocorticoid receptor.

Design and Methods:

To examine the impact of physiologic levels of circulating cortisol on subcutaneous adipose tissue, 25 overweight and obese subjects were employed, and their serum levels of morning (AM) and evening (PM) cortisol, AM/PM cortisol ratios, and 24‐h urinary‐free cortisol (UFC) were compared with their clinical parameters, serum cytokine levels, and mRNA expression of 93 receptor action‐regulating and 93 glucocorticoid‐responsive genes in abdominal subcutaneous fat.

Results and Conclusions:

AM cortisol levels did not correlate with mRNA expression of the all genes examined, whereas PM cortisol levels, AM/PM cortisol ratios, and 24‐h UFC were associated with distinct sets of these genes. Body mass index did not significantly correlate with the four cortisol parameters employed. These results suggest that physiologic levels of AM serum cortisol do not solely represent biological effects of circulating cortisol on the expression of glucocorticoid‐related genes in subcutaneous adipose tissue, whereas PM levels, amplitude, and net amounts of the diurnally fluctuating serum cortisol have distinct effects. Through the genes identified in this study, glucocorticoids appear to influence intermediary metabolism, energy balance, inflammation, and local circadian rythmicity in subcutaneous fat. Our results may also explain in part the development of metabolic abnormality and obesity in subjects under stress or patients with melancholic/atypical depression who demonstrate elevated levels of PM serum cortisol.  相似文献   

12.

Objective:

Improved understanding of how depot‐specific adipose tissue mass predisposes to obesity‐related comorbidities could yield new insights into the pathogenesis and treatment of obesity as well as metabolic benefits of weight loss. We hypothesized that three‐dimensional (3D) contiguous “fat‐water” MR imaging (FWMRI) covering the majority of a whole‐body field of view (FOV) acquired at 3 Tesla (3T) and coupled with automated segmentation and quantification of amount, type, and distribution of adipose and lean soft tissue would show great promise in body composition methodology.

Design and Methods:

Precision of adipose and lean soft tissue measurements in body and trunk regions were assessed for 3T FWMRI and compared to dual‐energy X‐ray absorptiometry (DXA). Anthropometric, FWMRI, and DXA measurements were obtained in 12 women with BMI 30‐39.9 kg/m2.

Results:

Test–retest results found coefficients of variation (CV) for FWMRI that were all under 3%: gross body adipose tissue (GBAT) 0.80%, total trunk adipose tissue (TTAT) 2.08%, visceral adipose tissue (VAT) 2.62%, subcutaneous adipose tissue (SAT) 2.11%, gross body lean soft tissue (GBLST) 0.60%, and total trunk lean soft tissue (TTLST) 2.43%. Concordance correlation coefficients between FWMRI and DXA were 0.978, 0.802, 0.629, and 0.400 for GBAT, TTAT, GBLST, and TTLST, respectively.

Conclusions:

While Bland–Altman plots demonstrated agreement between FWMRI and DXA for GBAT and TTAT, a negative bias existed for GBLST and TTLST measurements. Differences may be explained by the FWMRI FOV length and potential for DXA to overestimate lean soft tissue. While more development is necessary, the described 3T FWMRI method combined with fully‐automated segmentation is fast (<30‐min total scan and post‐processing time), noninvasive, repeatable, and cost‐effective.  相似文献   

13.
Objectives: To evaluate the effects of administration of Bifidobacterium pseudocatenulatum CECT 7765 on metabolic and immune alterations in obese mice. Design and Methods: Adult male wild‐type C57BL‐6 mice were fed a standard diet or high‐fat diet (HFD), supplemented or not with B. pseudocatenulatum CECT 7765 for 7 weeks. The assessments included biochemical and immunological parameters, insulin resistance, glucose tolerance, histology of liver, white‐adipose and intestinal tissues, immunocompetent cell functions, and microbiota‐related features. Results: B. pseudocatenulatum CECT 7765 reduced serum cholesterol, triglyceride, and glucose levels and decreased insulin resistance and improved glucose tolerance in obese mice. This strain reduced serum levels of leptin, interleukin (IL)‐6 and monocyte chemotactic protein‐1, while increased those of IL‐4 in HFD‐fed mice. B. pseudocatenulatum CECT7765 reduced liver steatosis and the number of larger adipocytes and number of fat micelles in enterocytes of obese mice. The strain also improved the function of macrophages and dendritic cells in relation to phagocytosis, cytokine production, and induction of T‐lymphocyte proliferation. The strain administration increased bifidobacteria and reduced enterobacteria and the inflammatory properties of the gut content in HFD‐fed mice. Conclusion: B. pseudocatenulatum CECT 7765 was shown to ameliorate both metabolic and immunological dysfunctions related to obesity in HFD‐fed mice.  相似文献   

14.
The aim of present study is to evaluate the effects of Garcinia cambogia on the mRNA levels of the various genes involved in adipogenesis, as well as on body weight gain, visceral fat accumulation, and other biochemical markers of obesity in obesity-prone C57BL/6J mice. Consumption of the Garcinia cambogia extract effectively lowered the body weight gain, visceral fat accumulation, blood and hepatic lipid concentrations, and plasma insulin and leptin levels in a high-fat diet (HFD)-induced obesity mouse model. The Garcinia cambogia extract reversed the HFD-induced changes in the expression pattern of such epididymal adipose tissue genes as adipocyte protein aP2 (aP2), sterol regulatory element-binding factor 1c (SREBP1c), peroxisome proliferator-activated receptor γ2 (PPARγ2), and CCAT/enhancer-binding protein α (C/EBPα). These findings suggest that the Garcinia cambogia extract ameliorated HFD-induced obesity, probably by modulating multiple genes associated with adipogenesis, such as aP2, SREBP1c, PPARγ2, and C/EBPα in the visceral fat tissue of mice.  相似文献   

15.

Objective:

High dietary calcium (Ca) in the context of a dairy food matrix has been shown to reduce obesity development and associated inflammation in diet‐induced obese (DIO) rodents. The influence of Ca and dairy on these phenotypes in the context of preexisting obesity is not known. Furthermore, interpretations have been confounded historically by differences in body weight gain among DIO animals fed dairy‐based protein or high Ca.

Design and Methods:

Adiposity along with associated metabolic and inflammatory outcomes were measured in DIO mice previously fattened for 12 week on a soy protein‐based obesogenic high fat diet (45% energy, 0.5% adequate Ca), then fed one of three high fat diets (n = 29‐30/group) for an additional 8 week: control (same as lead‐in diet), high‐Ca (1.5% Ca), or high‐Ca + nonfat dry milk (NFDM).

Results and Conclusion:

Mice fed high‐Ca + NFDM had modestly, but significantly, attenuated weight gain compared to mice fed high‐Ca or versus controls (P < 0.001), whereas mice fed high‐Ca alone had increased weight gain compared to controls (P < 0.001). Total measured adipose depot weights between groups were similar, as were white adipose tissue inflammation and macrophage infiltration markers (e.g. TNFα, IL‐6, CD68 mRNAs). Mice fed high‐Ca + NFDM had significantly improved glucose tolerance following a glucose tolerance test, and markedly lower liver triglycerides compared to high‐Ca and control groups. Improved metabolic phenotypes in prefattened DIO mice following provision of a diet enriched with dairy‐based protein and carbohydrates appeared to be driven by non‐Ca components of dairy and were observed despite minimal differences in body weight or adiposity.  相似文献   

16.
17.
Objective: Obese transgenic UCP‐DTA mice have largely ablated brown adipose tissue and develop obesity and diabetes, which are highly susceptible to a high‐fat diet. We investigated macronutrient self‐selection and its effect on development of obesity, diabetes, and energy homeostasis in UCP‐DTA mice. Research Methods and Procedures: UCP‐DTA and wild‐type littermates were fed a semisynthetic macronutrient choice diet (CD) ad libitum from weaning until 17 weeks. Energy homeostasis was assessed by measurement of food intake, food digestibility, body composition, and energy expenditure. Diabetes was assessed by blood glucose measurements and insulin tolerance test. Results: Wild‐type and UCP‐DTA mice showed a high fat preference and increased energy digestion on CD compared with a low‐fat standard diet. On CD, wild‐type mice accumulated less body fat (16.9%) than UCP‐DTA (32.6%) mice, although they had a higher overall energy intake. Compared with wild‐type mice, resting metabolic rate was reduced in UCP‐DTA mice irrespective of diet. UCP‐DTA mice progressively decreased their carbohydrate intake, resulting in an almost complete avoidance of carbohydrate. UCP‐DTA mice developed severe insulin resistance but showed decreased fed and fasted blood glucose on CD. Discussion: In contrast to wild‐type mice, UCP‐DTA mice were not able to reduce their weight gain efficiency on CD. This suggests that, because of the high fat preference of the background strain and the increased metabolic efficiency, brown adipose tissue‐deficient mice still develop obesity and insulin resistance on a macronutrient CD even when decreasing overall energy intake. Through the avoidance of carbohydrates, however, they are able to maintain normoglycemia.  相似文献   

18.
19.

Objective:

Dietary supplement may potentially help to fight obesity and other metabolic disorders such as insulin‐resistance and low‐grade inflammation. The present study aimed to test whether supplementation with Agaricus blazei murill (ABM) extract could have an effect on diet‐induced obesity in rats.

Design and Methods:

Wistar rats were fed with control diet (CD) or high‐fat diet (HF) and either with or without supplemented ABM for 20 weeks.

Results:

HF diet‐induced body weight gain and increased fat mass compared to CD. In addition HF‐fed rats developed hyperleptinemia and insulinemia as well as insulin resistance and glucose intolerance. In HF‐fed rats, visceral adipose tissue also expressed biomarkers of inflammation. ABM supplementation in HF rats had a protective effect against body weight gain and all study related disorders. This was not due to decreased food intake which remained significantly higher in HF rats whether supplemented with ABM or not compared to control. There was also no change in gut microbiota composition in HF supplemented with ABM. Interestingly, ABM supplementation induced an increase in both energy expenditure and locomotor activity which could partially explain its protective effect against diet‐induced obesity. In addition a decrease in pancreatic lipase activity is also observed in jejunum of ABM‐treated rats suggesting a decrease in lipid absorption.

Conclusions:

Taken together these data highlight a role for ABM to prevent body weight gain and related disorders in peripheral targets independently of effect in food intake in central nervous system.  相似文献   

20.
Objective: This study was designed to determine when peroxisome proliferator‐activated receptor γ (PPARγ) is expressed in developing fetal adipose tissue and stromal‐vascular adipose precursor cells derived from adipose tissue. In addition we examined developing tissue for CCAAT/enhancer‐binding protein β (C/EBPβ) expression to see if it was correlated with PPARγ expression. Pituitary function and hormones involved with differentiation (dexamethasone and retinoic acid) were also tested for their effects on PPARγ expression to determine if hormones known to affect differentiation also effect PPARγ expression in vivo and in cell culture. Research Methods and Procedures: Developing subcutaneous adipose tissues from the dorsal region of the fetal pig were collected at different gestation times and assayed using Western blot analysis to determine levels of PPARγ and C/EBPβ. Hypophysectomy was performed on 75‐day pig fetuses and tissue samples were then taken at 105 days for Western blot analysis. Adipose tissue was also taken from postnatal pigs to isolate stromal‐vascular (S‐V) cells. These adipose precursor cells were grown in culture and samples were taken for Western blot analysis to determine expression levels of PPARγ. Results: Our results indicate that PPARγ is expressed as early as 50 days of fetal development in adipose tissue and continues through 105 days. Expression of PPARγ was found to be significantly enhanced in adipose tissue from hypophysectomized fetuses at 105 days of fetal development (p < 0.05). C/EBPβ was not found in 50‐ or 75‐day fetal tissues and was found only at low levels in 105‐day tissues. C/EBPβ was not found in hypophysectomized (hypoxed) 105‐day tissue where PPARγ was elevated. S‐V cells freshly isolated from adipose tissue of 5‐ to 7‐day postnatal pigs showed the expression of PPARγ1. When S‐V cells were cultured, both PPARγ1 and 2 were expressed after the first day and continued as cells differentiated. High concentrations of retinoic acid decreased PPARγ expression in early S‐V cultures (p < 0.05). Discussion: Our data indicate that PPARγ is expressed in fetal adipose tissue very early before distinct fat cells are observed and can be expressed without the expression of C/EBPβ. The increase in PPARγ expression after hypophysectomy may explain the increase in fat cell size under these conditions. Adipose precursor cells (S‐V cells) from 5‐ to 7‐day postnatal pigs also express PPARγ in the tissue before being induced to differentiate in culture. Thus S‐V cells from newborn pig adipose tissue are probably more advanced in development than the 3T3‐L1 cell model. S‐V cells may be in a state where PPARγ and C/EBPα are expressed but new signals or vascularization are needed before cells are fully committed and lipid filling begins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号