首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by a chromosome translocation that generates the Bcr-Abl oncogene encoding a constitutive kinase activity. Despite remarkable success in controlling CML at chronic phase by Bcr-Abl tyrosine kinase inhibitors (TKIs), a significant proportion of CML patients treated with TKIs develop drug resistance due to the inability of TKIs to kill leukemia stem cells (LSCs) that are responsible for initiation, drug resistance, and relapse of CML. Therefore, there is an urgent need for more potent and safer therapies against leukemia stem cells for curing CML. A number of LSCassociated targets and corresponding signaling pathways, including CaMKII-γ, a critical molecular switch for co-activating multiple LSC-associated signaling pathways, have been identified over the past decades and various small inhibitors targeting LSC are also under development. Increasing evidence shows that leukemia stem cells are the root of CML and targeting LSC may offer a curable treatment option for CML patients. This review summarizes the molecular biology of LSC and itsassociated targets, and the potential clinical application in chronic myeloid leukemia.  相似文献   

2.
We previously showed that incubation of chronic myeloid leukemia (CML) cells in very low oxygen selects a cell subset where the oncogenetic BCR/Abl protein is suppressed and which is thereby refractory to tyrosine kinase inhibitors used for CML therapy. In this study, salarin C, an anticancer macrolide extracted from the Fascaplysinopsis sponge, was tested as for its activity on CML cells, especially after their incubation in atmosphere at 0.1% oxygen. Salarin C induced mitotic cycle arrest, apoptosis and DNA damage. Salarin C also concentration-dependently inhibited the maintenance of stem cell potential in cultures in low oxygen of either CML cell lines or primary cells. Surprisingly, the drug also concentration-dependently enforced the maintenance of BCR/Abl signaling in low oxygen, an effect which was paralleled by the rescue of sensitivity of stem cell potential to IM. These results suggest a potential use of salarin C for the suppression of CML cells refractory to tyrosine kinase inhibitors  相似文献   

3.
《Autophagy》2013,9(7):1050-1051
Patients who develop chronic myeloid leukemia (CML) are currently treated with tyrosine kinase inhibitors (TKIs), which inhibit the function of the oncogene BCR/Abl. Most CML cells undergo apoptosis when BCR/Abl tyrosine kinase activity is suppressed by TKIs. Cells surviving drug treatment are either stem cells (CML in early phase) or cells with BCR/Abl-dependent or -independent mechanisms of drug resistance (CML in advanced phase). Since survival of these cells is thought to be responsible for disease recurrence, it is critical to find ways to fully eradicate CML stem cells. We have recently shown that when CML cells, including stem cells, are exposed to TKI they activate an autophagic program, which relies on intracellular calcium and is not inhibited by Bcl-2. Pharmacological or RNAi-mediated inhibition of autophagy potentiates the effect of TKI in inducing death of CML cells, including the stem cells. These data strongly suggest that inhibition of autophagy may improve the therapeutic effects of TKIs in the treatment of CML. In addition, they give credence to the idea that in cancer cells autophagy is part of a stereotypic response to stress and specifically to abrogation of their main oncogenic signal(s).  相似文献   

4.
Chronic Myeloid Leukemia (CML) is a hematopoietic stem cell malignancy that is driven by the oncogenic BCR-ABL fusion protein, and for which treatment with ABL tyrosine kinase inhibitors (TKI) has yielded great success. While this is the case, BCR-ABL leukemic stem cells can persist despite TKI therapy, and efforts have intensified towards determining the molecular pathways that are critical for the maintenance of such cells. Recent studies indicate that aberrant Hedgehog (Hh) signaling plays a crucial role in the survival of the leukemic stem cell population. The Hh pathway displays crucial roles during embryonic development, tissue regeneration and repair in adults. Several mechanisms that lead to the aberrant activation of the Hh pathway have been identified in various cancers. Here we review in detail the discovery that Hh signaling governs the maintenance of the critical leukemia initiating cells or leukemic stem cells (LSCs) in BCR-ABL-induced CML as well as discuss investigations on the role of Hh signaling in normal hematopoeisis. As inhibitors that directly target the positive Hh signal transducer Smoothened (SMO) have entered clinical trials, these findings offer a unique opportunity to potentially target the LSC population that is not eliminated with ABL tyrosine kinase inhibition therapy in CML.  相似文献   

5.
Chronic myeloid leukemia disease (CML) found effective therapy by treating patients with tyrosine kinase inhibitors (TKI), which suppress the BCR-ABL1 oncogene activity. However, the majority of patients achieving remission with TKI still have molecular evidences of disease persistence. Various mechanisms have been proposed to explain the disease persistence and recurrence. One of the hypotheses is that the primitive leukemic stem cells (LSCs) can survive in the presence of TKI. Understanding the mechanisms leading to TKI resistance of the LSCs in CML is a critical issue but is limited by availability of cells from patients. We generated induced pluripotent stem cells (iPSCs) derived from CD34+ blood cells isolated from CML patients (CML-iPSCs) as a model for studying LSCs survival in the presence of TKI and the mechanisms supporting TKI resistance. Interestingly, CML-iPSCs resisted to TKI treatment and their survival did not depend on BCR-ABL1, as for primitive LSCs. Induction of hematopoietic differentiation of CML-iPSC clones was reduced compared to normal clones. Hematopoietic progenitors obtained from iPSCs partially recovered TKI sensitivity. Notably, different CML-iPSCs obtained from the same CML patients were heterogeneous, in terms of BCR-ABL1 level and proliferation. Thus, several clones of CML-iPSCs are a powerful model to decipher all the mechanisms leading to LSC survival following TKI therapy and are a promising tool for testing new therapeutic agents.  相似文献   

6.
The constitutively active Bcr‐Abl tyrosine kinase plays a crucial role in chronic myelogenous leukemia (CML) pathogenesis. The Bcr‐Abl protein induces the upregulation of proto‐oncogene c‐Jun, which is involved in Bcr‐Abl transforming activity in Bcr‐Abl positive cells. Recent studies reported that c‐Jun inhibited hemoglobin synthesis in human CML cell line K562. However, c‐Jun also plays a critical role in cell proliferation and apoptosis. In this study, we investigated the physiological roles of c‐Jun in cell proliferation, apoptosis and erythroid differentiation of K562 cells. Firstly, we generated K562 cell lines stably overexpressing c‐Jun. These clones have the same proliferation rate as the parental cell line in general culture medium. Endogenous c‐Jun expression was analyzed to determine the effective concentration of STI571 for inhibiting Bcr‐Abl signaling. Western blots show that STI571 inhibited c‐Jun expression in a dose‐dependent manner, reaching a maximum inhibition at 1 µM. STI571 could inhibit c‐Jun expression in K562 cells, but not in c‐Jun‐overexpression cells. c‐Jun did not alter growth inhibition and apoptotic induction by STI571 treatment, but inhibited STI571‐induced erythroid differentiation. Moreover, c‐Jun did not alter growth inhibition and apoptotic induction by histone deacetylase (HDAC) inhibitors (apicidin, sodium butyrate, and MS275) treatment, but inhibited HDAC inhibitors‐induced erythroid differentiation. These results suggest that c‐Jun may modulate anticancer drugs‐induced cell differentiation but not growth inhibition and apoptosis in CML cells. J. Cell. Physiol. 218: 568–574, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
Chronic myeloid leukemia (CML) is a myeloproliferative disease characterized by the overproduction of granulocytes, which leads to high white blood cell counts and splenomegaly in patients. Based on clinical symptoms and laboratory findings, CML is classified into three clinical phases, often starting with a chronic phase, progressing to an accelerated phase and ultimately ending in a terminal phase called blast crisis. Blast crisis phase of CML is clinically similar to an acute leukemia; in particular, B-cell acute lymphoblastic leukemia (B-ALL) is a severe form of acute leukemia in blast crisis, and there is no effective therapy for it yet. CML is induced by the BCR-ABL oncogene, whose gene product is a BCR-ABL tyrosine kinase. Currently, inhibition of BCR-ABL kinase activity by its kinase inhibitor such as imatinib mesylate (Gleevec) is a major therapeutic strategy for CML. However, the inability of BCR-ABL kinase inhibitors to completely kill leukemia stem cells (LSCs) indicates that these kinase inhibitors are unlikely to cure CML. In addition, drug resistance due to the development of BCR-ABL mutations occurs before and during treatment of CML with kinase inhibitors. A critical issue to resolve this problem is to fully understand the biology of LSCs, and to identify key genes that play significant roles in survival and self-renewal of LSCs. In this review, we will focus on LSCs in CML by summarizing and discussing available experimental results, including the original studies from our own laboratory.  相似文献   

8.
Chronic myelogenous leukemia (CML) is a disease of the blood stem cells that features the oncoprotein Bcr‐Abl. Tyrosine kinase inhibitors (TKIs) are used to treat CML patients, but these have limited efficacy due to the emergence of resistance via genetic mutation. Kamebakaurin is an ent‐kaurane diterpenoid that has been isolated from Rabdosia excisa (Maxim .) H.Hara . Herein, we investigate the potential of kamebakaurin as a chemotherapy reagent for the treatment of CML. We conducted in vitro and in vivo biological experiments and found that kamebakaurin potently inhibits cell proliferation, mainly by enhancing cell apoptosis and down‐regulating Bcr‐Abl protein levels. In addition, kamebakaurin was found to inhibit tumor growth and has no side effects on five internal organs for in vivo experiment. These results suggest that kamebakaurin is a potential anticancer agent and is a key compound for further investigations.  相似文献   

9.
Deregulated activation of protein tyrosine kinases, such as the epidermal growth factor receptor (EGFR) and Abl, is associated with human cancers including non-small cell lung cancer (NSCLC) and chronic myeloid leukemia (CML). Although inhibitors of such activated kinases have proved to be of therapeutic benefit in individuals with NSCLC or CML, some patients manifest intrinsic or acquired resistance to these drugs. We now show that, whereas blockade of either the extracellular signal-regulated kinase (ERK) pathway or the phosphatidylinositol 3-kinase (PI3K)-Akt pathway alone induced only a low level of cell death, it markedly sensitized NSCLC or CML cells to the induction of apoptosis by histone deacetylase (HDAC) inhibitors. Such enhanced cell death induced by the respective drug combinations was apparent even in NSCLC or CML cells exhibiting resistance to EGFR or Abl tyrosine kinase inhibitors, respectively. Co-administration of a cytostatic signaling pathway inhibitor may contribute to the development of safer anticancer strategies by lowering the required dose of cytotoxic HDAC inhibitors for a variety of cancers.  相似文献   

10.
Studies on chronic myeloid leukemia (CML) have served as a paradigm for cancer research and therapy. These studies involve the identifi cation of the fi rst cancer-associated chromosomal abnormality and the subsequent development of tyrosine kinase inhibitors (TKIs) that inhibit BCR-ABL kinase activity in CML. It becomes clear that leukemia stem cells (LSCs) in CML which are resistant to TKIs, and eradication of LSCs appears to be extremely diffi cult. Therefore, one of the major issues in current CML biology is to understand the biology of LSCs and to investigate why LSCs are insensitive to TKI monotherapy for developing curative therapeutic strategies. Studies from our group and others have revealed that CML LSCs form a hierarchy similar to that seen in normal hematopoiesis, in which a rare stem cell population with limitless selfrenewal potential gives rise to progenies that lack such potential. LSCs also possess biological features that are different from those of normal hematopoietic stem cells (HSCs) and are critical for their malignant characteristics. In this review, we summarize the latest progress in CML field, and attempt to understand the molecular mechanisms of survival regulation of LSCs.  相似文献   

11.
Expansion of limbal epithelial stem cells (LSCs) is crucial for the success of limbal transplantation. Previous studies showed that pigment epithelium‐derived peptide (PEDF) short peptide 44‐mer could effectively expand LSCs and maintain them in a stem‐cell state, but the mechanism remained unclear. In the current study, we found that pharmacological inhibition of Sonic Hedgehog (SHh) activity reduced the LSC holoclone number and suppressed LSC proliferation in response to 44‐mer. In mice subjected to focal limbal injury, 44‐mer facilitated the restoration of the LSC population in damaged limbus, and such effect was impeded by the SHh or ATGL (a PEDF receptor) inhibitor. Furthermore, we showed that 44‐mer increased nuclear translocation of Gli1 and Gli3 in LSCs. Knockdown of Gli1 or Gli3 suppressed the ability of 44‐mer to induce cyclin D1 expression and LSC proliferation. In addition, ATGL inhibitor suppressed the 44‐mer‐induced phosphorylation of STAT3 at Tyr705 in LSC. Both inhibitors for ATGL and STAT3 attenuated 44‐mer‐induced SHh activation and LSC proliferation. In conclusion, our data demonstrate that SHh‐Gli pathway driven by ATGL/STAT3 signalling accounts for the 44‐mer‐mediated LSC proliferation.  相似文献   

12.
Tyrosine kinase inhibitors (TKI) have become a first‐line treatment for chronic myeloid leuakemia (CML). TKIs efficiently target bulk CML cells; however, they are unable to eliminate the leukaemic stem cell (LSC) population that causes resistance and relapse in CML patients. In this study, we assessed the effects of parthenolide (PTL) and dimethyl amino parthenolide (DMAPT), two potent inhibitors of LSCs in acute myeloid leukaemia (AML), on CML bulk and CML primitive (CD34+lin?) cells. We found that both agents induced cell death in CML, while having little effect on the equivalent normal hematopoietic cells. PTL and DMAPT caused an increase in reactive oxygen species (ROS) levels and inhibited NF‐κB activation. PTL and DMAPT inhibited cell proliferation and induced cell cycle arrest in G0 and G2 phases. Furthermore, we found cell cycle inhibition to correlate with down‐regulation of cyclin D1 and cyclin A. In summary, our study shows that PTL and DMAPT have a strong inhibitory effect on CML cells. Given that cell cycle arrest was not dependent on ROS induction, we speculate that this effect could be a direct consequence of NF‐κB inhibition and if this mechanism was to be evaded, PTL and DMAPT induced cell death would be potentiated.  相似文献   

13.
Zhang H  Li H  Ho N  Li D  Li S 《Molecular and cellular biology》2012,32(10):1776-1787
Chronic myeloid leukemia (CML) is derived from a stem cell, and it is widely accepted that the existence of leukemia stem cells (LSCs) is one of the major reasons for the relapse of CML treated with kinase inhibitors. Key to eradicating LSCs is to identify genes that play a critical role in survival regulation of these stem cells. Using BCR-ABL-induced CML mouse model, here we show that expression of the stearoyl-CoA desaturase 1 (Scd1) gene is downregulated in LSCs and that Scd1 plays a tumor-suppressive role in LSCs with no effect on the function of normal hematopoietic stem cells. Deletion of Scd1 causes acceleration of CML development and conversely overexpression of Scd1 delays CML development. In addition, using genetic approaches, we show that Pten, p53, and Bcl2 are regulated by Scd1 in LSCs. Furthermore, we find that induction of Scd1 expression by a PPARγ agonist suppresses LSCs and delays CML development. Our results demonstrate a critical role for Scd1 in functional regulation of LSCs, providing a new anti-LSC strategy through enhancing Scd1 activity.  相似文献   

14.
Bcr‐Abl is an oncogenic fusion protein which expression enhances tumorigenesis, and has been highly associated with chronic myeloid leukemia (CML). Acquired drug resistance in mutant Bcr‐Abl has enhanced pathogenesis with the use of single therapy agents such as nilotinib. Moreover, allosteric targeting has been identified to consequentially inhibit Bcr‐Abl activity, which led to the recent development of ABL‐001 (asciminib) that selectively binds the myristoyl pocket. Experimental studies have revealed that the combination of nilotinib and ABL‐001 induced a ‘bent’ conformation in the C‐terminal helix of Bcr‐Abl; a benchmark of inhibition, thereby exhibiting a greater potency in the treatment of CML, surmounting the setbacks of drug resistance, disease regression and relapse. Therefore, we report the first account of the dynamics and conformational analysis of oncogenic T334I Bcr‐Abl by dual targeting. Our findings revealed that unlike in the Bcr‐Abl‐Nilotinib complex, dual targeting by both inhibitors induced the bent conformation in the C‐terminal helix that varied with time. This was coupled with significant alteration in Bcr‐Abl stability, flexibility, and compactness and an overall structural re‐orientation inwards towards the hydrophobic core, which reduced the solvent‐exposed residues indicative of protein folding. This study will facilitate allosteric targeting and the design of more potent allosteric inhibitors for resistive target proteins in cancer.  相似文献   

15.
Yu S  Jing X  Colgan JD  Zhao DM  Xue HH 《Cell Stem Cell》2012,11(2):207-219
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) are both capable of self-renewal, with HSCs sustaining multiple blood lineage differentiation and LSCs indefinitely propagating leukemia. The GABP complex, consisting of DNA binding GABPα subunit and transactivation GABPβ subunit, critically regulates HSC multipotency and self-renewal via controlling an essential gene regulatory module. Two GABPβ isoforms, GABPβ1L and GABPβ2, contribute to assembly of GABPα(2)β(2) tetramer. We demonstrate that GABPβ1L/β2 deficiency specifically impairs HSC quiescence and survival, with little impact on cell cycle or apoptosis in differentiated blood cells. The HSC-specific effect is mechanistically ascribed to perturbed integrity of the GABP-controlled gene regulatory module in HSCs. Targeting GABPβ1L/β2 also impairs LSC self-renewal in p210(BCR-ABL)-induced chronic myelogenous leukemia (CML) and exhibits synergistic effects with tyrosine kinase inhibitor imatinib therapy in inhibiting CML propagation. These findings identify the tetramer-forming GABPβ isoforms as specific HSC regulators and potential therapeutic targets in treating LSC-based hematological malignancy.  相似文献   

16.
The fusion protein Bcr–Abl, which is the molecular cause of chronic myelogenous leukemia (CML) interacts in multiple points with signaling pathways regulating the cellular adhesivity and cytoskeleton architecture and dynamics. We explored the effects of imatinib mesylate, an inhibitor of Bcr–Abl protein used in front‐line CML therapy, on the adhesivity of JURL‐MK1 cells to fibronectin and searched for underlying changes in the cell proteome. As imatinib induces apoptosis of JURL‐MK1 cells, we used three different caspase inhibitors to discriminate between direct consequences of Bcr–Abl inhibition and secondary changes related to the apoptosis. Imatinib treatment caused a transient increase in JURL‐MK1 cell adhesivity to fibronectin, possibly due to the switch off of Bcr–Abl activity. Subsequently, we observed a number of changes including a decrease in cell adhesivity, F‐actin decomposition, reduction of integrin β1, CD44, and paxillin expression levels and a marked increase in cofilin phophorylation at Ser3. These events were generally related to the proceeding apoptosis but they differed in their sensitivity to the individual caspase inhibitors. J. Cell. Biochem. 111: 1413–1425, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
18.
Chronic Myeloid Leukemia (CML) is sustained by a small population of cells with stem cell characteristics known as Leukemic Stem Cells that are positive to BCR-ABL fusion protein, involved with several abnormalities in cell proliferation, expansion, apoptosis and cell cycle regulation. Current treatment options for CML involve the use of Tirosine Kinase Inhibitor (Imatinib, Nilotinib and Dasatinib), that efficiently reduce proliferation proliferative cells but do not kill non proliferating CML primitive cells that remain and contributes to the persistence of the disease.

In order to understand the role of Cyclin Dependent Kinase Inhibitors in CML LSC permanence after TKI treatment, in this study we analyzed cell cycle status, the levels of several CDKIs and the subcellular localization of such molecules in different CML cell lines, as well as primary CD34+CD38?lin? LSC and HSC.

Our results demonstrate that cellular location of p18INK4c and p57Kip2 seems to be implicated in the antiproliferative activity of Imatinib and Dasatinib in CML cells and also suggest that the permanence of quiescent stem cells after TKI treatment could be associated with a decrease in p18INK4c and p57Kip2 nuclear location. The differences in p18INK4cand p57Kip2activities in CML and normal stem cells suggest a different cell cycle regulation and provide a platform that could be considered in the development of new therapeutic options to eliminate LSC.  相似文献   

19.
The most relevant therapeutic approaches to treat CML rely on the administration of tyrosine kinase inhibitors (TKIs) like Imatinib, which are able to counteract the activity of Bcr-Abl protein increasing patient’s life expectancy and survival. Unfortunately, there are some issues TKIs are not able to address; first of all TKIs are not so effective in increasing survival of patients in blast crisis, second they are not able to eradicate leukemic stem cells (LSC) which represent the major cause of disease relapse, and third patients often develop resistance to TKIs due to mutations in the drug binding site. For all these reasons it’s of primary interest to find alternative strategies to treat CML. Literature shows that Hedgehog signaling pathway is involved in LSC maintenance, and pharmacological inhibition of Smoothened (SMO), one of the key molecules of the pathway, has been demonstrated to reduce Bcr-Abl positive bone marrow cells and LSC. Consequently, targeting SMO could be a promising way to develop a new treatment strategy for CML overcoming the limitations of current therapies. In our work we have tested some compounds able to inhibit SMO, and among them MRT92 appears to be a very potent SMO antagonist. We found that almost all our compounds were able to reduce Gli1 protein levels in K-562 and in KU-812 CML cell lines. Furthermore, they were also able to increase Gli1 and SMO RNA levels, and to reduce cell proliferation and induce apoptosis/autophagy in both the tested cell lines. Finally, we demonstrated that our compounds were able to modulate the expression of some miRNAs related to Hedgehog pathway such as miR-324-5p and miR-326. Being Hedgehog pathway deeply implicated in the mechanisms of CML we may conclude that it could be a good therapeutic target for CML and our compounds seem to be promising antagonists of such pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号