首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The essential trace element selenium (Se) is controversially discussed concerning its role in health and disease. Its various physiological functions are largely mediated by Se incorporation in the catalytic center of selenoproteins. In order to gain insights into the impact of Se deficiency and of supplementation with different Se compounds (selenite, selenate, selenomethionine) at defined concentrations (recommended, 150 μg/kg diet; excessive, 750 μg/kg diet) in murine colon tissues, a 20‐week feeding experiment was performed followed by analysis of the protein expression pattern of colon tissue specimens by 2D‐DIGE and MALDI‐TOF MS. Using this approach, 24 protein spots were identified to be significantly regulated by the different Se compounds. These included the antioxidant enzyme peroxiredoxin‐5 (PRDX5), proteins with binding capabilities, such as cofilin‐1 (COF1), calmodulin, and annexin A2 (ANXA2), and proteins involved in catalytic processes, such as 6‐phosphogluconate dehydrogenase (6PGD). Furthermore, the Se compounds demonstrated a differential impact on the expression of the identified proteins. Selected target structures were validated by qPCR and Western blot which mainly confirmed the proteomic profiling data. Thus, novel Se‐regulated proteins in colon tissues have been identified, which expand our understanding of the physiologic role of Se in colon tissue.  相似文献   

2.
Erythrocytes have an environment of continuous pro-oxidant generation due to the presence of hemoglobin (Hb), which represents an additional and quantitatively significant source of superoxide (O2) generation in biological systems. To counteract oxidative stress, erythrocytes have a self-sustaining antioxidant defense system. Thus, red blood cells uniquely function to protect Hb via a selective barrier allowing gaseous and other ligand transport as well as providing antioxidant protection not only to themselves but also to other tissues and organs in the body. Sickle hemoglobin molecules suffer repeated polymerization/depolymerization generating greater amounts of reactive oxygen species, which can lead to a cyclic cascade characterized by blood cell adhesion, hemolysis, vaso-occlusion, and ischemia–reperfusion injury. In other words, sickle cell disease is intimately linked to a pathophysiologic condition of multiple sources of pro-oxidant processes with consequent chronic and systemic oxidative stress. For this reason, newer therapeutic agents that can target oxidative stress may constitute a valuable means for preventing or delaying the development of organ complications.  相似文献   

3.
Clinical usage of lidocaine, a pro‐oxidant has been linked with severe, mostly neurological complications. The mechanism(s) causing these complications is independent of the blockade of voltage‐gated sodium channels. The budding yeast Saccharomyces cerevisiae lacks voltage‐gated sodium channels, thus provides an ideal system to investigate lidocaine‐induced protein and pathway alterations. Whole‐proteome alterations leading to these complications have not been identified. To address this, S. cerevisiae was grown to stationary phase and exposed to an LC50 dose of lidocaine. The differential proteomes of lidocaine treatment and control were resolved 6 h post exposure using 2D DIGE. Amine reactive dyes and carbonyl reactive dyes were used to assess protein abundance and protein oxidation, respectively. Quantitative analysis of these dyes (? 1.5‐fold alteration, p ? 0.05) revealed a total of 33 proteoforms identified by MS differing in abundance and/or oxidation upon lidocaine exposure. Network analysis showed enrichment of apoptotic proteins and cell wall maintenance proteins, while the abundance of proteins central to carbohydrate metabolism, such as triosephosphate isomerase and glyceraldehyde‐3‐phosphate dehydrogenase, and redox proteins superoxide dismutase and peroxiredoxin were significantly decreased. Enzymes of carbohydrate metabolism, such as phosphoglycerate kinase and enolase, the TCA cycle enzyme aconitase, and multiple ATP synthase subunits were found to be oxidatively modified. Also, the activity of aconitase was found to be decreased. Overall, these data suggest that toxic doses of lidocaine induce significant disruption of glycolytic pathways, energy production, and redox balance, potentially leading to cell malfunction and death.  相似文献   

4.
The storage of packed red blood cells (RBCs) is associated with the development of morphological and biochemical changes leading to a reduced posttransfusion functionality and viability of the cells. Within this study, 2D DIGE and high‐resolution/high‐accuracy Orbitrap MS were used to analyze the storage‐induced changes of the cytosolic RBC proteome and identify characteristic protein patterns and potential marker proteins for the assessment of RBC storage lesions. Leukodepleted RBC concentrates were stored according to standard blood bank conditions for 0, 7, 14, 28, and 42 days and analyzed by using a characterized and validated protocol. Following statistical evaluation, a total of 14 protein spots were found to be significantly altered after 42 days of ex vivo storage. Protein identification was accomplished by tryptic digestion and LC‐MS/MS and three proteins potentially useful as biomarkers for RBC aging comprising transglutaminase 2, beta actin, and copper chaperone for superoxide dismutase were selected and validated by western blot analysis. These can serve as a basis for the development of a screening assay to detect RBC storage lesions and autologous blood doping in sports.  相似文献   

5.
Proper removal of oxidized proteins is an important determinant of success when evaluating the ability of cells to handle oxidative stress. The ubiquitin/proteasome system has been considered the main responsible mechanism for the removal of oxidized proteins, as it can discriminate between normal and altered proteins, and selectively target the latter ones for degradation. A possible role for lysosomes, the other major intracellular proteolytic system, in the removal of oxidized proteins has been often refused, mostly on the basis of the lack of selectivity of this system. Although most of the degradation of intracellular components in lysosomes (autophagy) takes place through “in bulk” sequestration of complete cytosolic regions, selective targeting of proteins to lysosomes for their degradation is also possible via what is known as chaperone-mediated autophagy (CMA). In this work, we review recent evidence supporting the participation of CMA in the clearance of oxidized proteins in the forefront of the cellular response to oxidative stress. The consequences of an impairment in CMA activity, observed during aging and in some age-related disorders, are also discussed.  相似文献   

6.
The overproduction of reactive oxygen species (ROS) causes oxidative stress, such as Hydrogen peroxide (H2O2). Acute oxidative stress is one of the main reasons for cell death. In this study, the antioxidant properties of vanillic acid- a polyphenolic compound was evaluated. Therefore, this study aims to check the effectiveness of vanillic acid in H2O2-induced oxidative stress in D. Mel-2 cell line. The efficacy was determined by biochemical tests to check the ROS production. The cytotoxicity of H2O2 and vanillic acid was checked by MTT assay. The DNA fragmentation was visualized by gel electrophoresis. Protein biomarkers of oxidative stress were analyzed by western blotting. The results depict a promising antioxidant effect of vanillic acid. The IC50 value of vanillic acid and H2O2 was found 250 μg/ml and 125 μg/ml, respectively. The catalase activity, SOF, GPx, and PC was seen less in H2O2 treated group compared with the control and vanillic acid treated group. However, the TBRAS activity was hight in H2O2 treated group. The effect of H2O2 on DNA fragmentation was high as compared with vanillic acid-treated cells. The protein expression of Hsp70, IL-6 and iNOS was seen significant in a vanillic acid-treated group as compared with H2O2 treated group. These results reinforce that at low concentration, vanillic acid could be used as an antioxidant agent in the food and pharmaceutical industries.  相似文献   

7.
Alvarez S  Galant A  Jez JM  Hicks LM 《Proteomics》2011,11(7):1346-1350
ROS, including hydrogen peroxide (H(2)O(2)), can serve as cellular signaling molecules following oxidative stress. Analysis of the redox state of proteins in Brassica juncea roots by 2-DE proteomics following treatment with either exogenous H(2)O(2) or buthionine sulfoximine, which depletes glutathione to cause accumulation of endogenous H(2)O(2), led to the identification of different sets of proteins. These data suggest that exogenous and endogenous oxidative stresses trigger specialized responses.  相似文献   

8.
Sickle cell disease (SCD) is characterized by reperfusion injury and chronic oxidative stress. Oxidative stress and hemolysis in SCD result in inactivation of nitric oxide (NO) and depleted arginine levels. We hypothesized that augmenting NO production by arginine supplementation will reduce oxidative stress in SCD. To this end, we measured the effect of arginine (5% in mouse chow) on NO metabolites (NOx), lipid peroxidation (LPO), and selected antioxidants in transgenic sickle mouse models. Untreated transgenic sickle (NY1DD) mice (expressing  75% βS-globin of all β-globins; mild pathology) and knockout sickle (BERK) mice (expressing exclusively hemoglobin S; severe pathology) showed reduced NOx levels and significant increases in the liver LPO compared with C57BL mice, with BERK mice showing maximal LPO increase in accordance with the disease severity. This was accompanied by reduced activity of antioxidants (glutathione, total superoxide dismutase, catalase, and glutathione peroxidase). However, GSH levels in BERK were higher than in NY1DD mice, indicating a protective response to greater oxidative stress. Importantly, dietary arginine significantly increased NOx levels, reduced LPO, and increased antioxidants in both sickle mouse models. In contrast, nitro-L-arginine methylester, a potent nonselective NOS inhibitor, worsened the oxidative stress in NY1DD mice. Thus, the attenuating effect of arginine on oxidative stress in SCD mice suggests its potential application in the management of this disease.  相似文献   

9.
Antibody producing B‐cells are an essential component of the immune system. In contrast to human and mice where B‐cells develop in the bone marrow, chicken B‐cells develop in defined stages in the bursa of Fabricius, a gut associated lymphoid tissue. In order to gain a better understanding of critical biological processes like immigration of B‐cell precursors into the bursa anlage, their differentiation and final emigration from the bursa we analyzed the proteome dynamics of this organ during embryonic and posthatch development. Samples were taken from four representative developmental stages (embryonic day (ED) 10, ED18, day 2, and day 28) and compared in an extensive 2D DIGE approach comprising six biological replicates per time point. Cluster analysis and PCA demonstrated high reliability and reproducibility of the obtained data set and revealed distinctive proteome profiles for the selected time points, which precisely reflect the differentiation processes. One hundred fifty three protein spots with significantly different intensities were identified by MS. We detected alterations in the abundance of several proteins assigned to retinoic acid metabolism (e.g. retinal‐binding protein 5) and the actin‐cytoskeleton (e.g. vinculin and gelsolin). By immunohistochemistry, desmin was identified as stromal cell protein associated with the maturation of B‐cell follicles. Strongest protein expression difference (10.8‐fold) was observed for chloride intracellular channel 2. This protein was thus far not associated with B‐cell biology but our data suggest an important function in bursa B‐cell development.  相似文献   

10.
The normal deformability of erythrocytes plays an important role in ensuring blood mobility, erythrocyte longevity, and microcirculation, which is the ability of erythrocytes to change shapes in response to external forces. However, the effects of curcumin extracts on the deformability of erythrocytes have not yet been evaluated. Accordingly, in this study, we explored the effects of pre-treatment with curcumin extract on erythrocyte deformation and erythrocyte band 3 (SLC4A1; EB3) expression. We also evaluated the associations between EB3 expression and erythrocyte deformability induced by hydrogen peroxide. Blood samples were divided into the control group, pre-treatment group (treated with curcumin extract or vitamin C), and negative control group, and oxidant stress parameters, antioxidant status, erythrocyte deformability and elasticity, and EB3 modifications were evaluated using immunoblotting and immunofluorescence staining. Hydrogen peroxide significantly increased oxidative stress parameters, modulus elasticity values and clustered EB3 levels and induced conjugation of membrane proteins to form high-molecular-weight complexes (p < 0.05). Erythrocyte deformability and elasticity were significantly decreased in the treated groups compared with those in the control group. Overall, our findings suggested that pre-treatment with curcumin extracts increased antioxidant status, reduced EB3 cross-linking, and improved erythrocyte deformability, to an even better extent than vitamin C. These results provide important insights into the effects of treatment with curcumin extracts on erythrocyte damage and suggest that curcumin may have applications in antioxidant therapy.  相似文献   

11.
Quantitative changes in the red blood cell membrane proteome in sickle cell disease were analyzed using the two-dimensional fluorescence difference gel electrophoresis 2D-DIGE technique. From over 500 analyzed two-dimensional gel spots, we found 49 protein gel spots whose content in sickle cell membranes were changed by at least 2.5-fold as compared to control cells. In 38 cases we observed an increase and in 11 cases a decrease in content in the sickle cell membranes. The proteins of interest were identified by in-gel tryptic digestion followed by liquid chromatography in line with tandem mass spectrometry. From 38 analyzed gel spots, we identified 44 protein forms representing different modifications of 22 original protein sequences. The majority of the identified proteins fall into small groups of related proteins of the following five categories: actin accessory proteins--four proteins, components of lipid rafts--two proteins, scavengers of oxygen radicals--two proteins, protein repair participants--six proteins, and protein turnover components--three proteins. The number of proteins whose content in sickle RBC membrane is decreased is noticeably smaller, and most are either components of lipid rafts or actin accessory proteins. Elevated content of protein repair participants as well as oxygen radical scavengers may reflect the increased oxidative stress observed in sickle cells.  相似文献   

12.
Francisella tularensis is a facultative intracellular pathogen. Its capacity to induce disease depends on the ability to invade and multiply within a wide range of eukaryotic cells, such as professional phagocytes. The comparative disinterest in tularemia in the past relative to other human bacterial pathogens is reflected in the paucity of information concerning the mechanisms of pathogenesis. Only a few genes and gene products associated with Francisella virulence are known to date. The aim of this study was to find and identify proteins of F. tularensis live vaccine strain induced in the presence of hydrogen peroxide, and to investigate the role of the IglC protein in the regulation of genes expressed upon peroxide stress. The [(35)S]-radiolabelled protein patterns were examined for both the wild live vaccine strain and its DeltaiglC1+2 mutant defective in synthesis of the IglC protein that was found to be strongly up-regulated during intracellular growth in murine macrophages in vitro and upon exposure to hydrogen peroxide. Globally, we found 21 protein spots whose levels were significantly altered in the presence of hydrogen peroxide in both the wild-type and mutant strains.  相似文献   

13.
14.
内皮祖细胞对于维持血管内皮完整性和血管稳态具有重要作用.增强EPC的数量和功能可使心血管疾病患者获益.炎症、氧化应激对内皮祖细胞动员及其功能发挥具有重要影响,本文着重综述炎症和氧化应激对内皮祖细胞动员的调控,并探讨增进内皮祖细胞数量和功能的相关治疗策略.  相似文献   

15.
Background: Administration of intravenous iron preparations in haemodialysis patients may lead to the appearance of non-transferrin bound iron which can catalyse oxidative damage. We investigated this hypothesis by monitoring the oxidative stress of haemodialysis patients and the impact of iron and diabetes mellitus herein. Materials and methods: Baseline values of serum iron and related proteins, transferrin glycation, non-transferrin bound iron, antioxidant capacity and lipid peroxidation (malondialdehyde) of 11 haemodialysis patients (six non-diabetic and five type 2 diabetes) were compared to those of non-haemodialysis control subjects (non-diabetic and type 2 diabetes). Changes in these parameters were monitored during haemodialysis before and after iron administration. Results: Baseline values of malondialdehyde correlated with ferritin concentration (r = 0.664, P = 0.036) and were elevated to the same extent in non-diabetic and diabetic haemodialysis patients (median of 1.09 compared to 0.60 μmol/l in control persons, P < 0.02). After iron infusion, transferrin saturation increased more markedly in non-diabetic subjects from 28% to 185% vs. from 33% to 101% in diabetic patients (P = 0.008). This increase was accompanied by the appearance of non-transferrin bound iron (5.91 ± 1.33 μmol/l), a loss in plasma iron-binding antioxidant capacity and a further increase in malondialdehyde which was more pronounced in diabetic patients (from 0.93 ± 0.30 μmol/l to 2.21 ± 0.69 μmol/l vs. from 1.21 ± 0.42 μmol/l to 1.86 ± 0.56 μmol/l in the non-diabetic subjects, P = 0.046). Conclusions: In haemodialysis patients, higher lipid peroxidation is determined by higher body iron stores. The increase induced by iron infusion is accompanied by a loss in iron-binding antioxidant capacity and is more pronounced in diabetes mellitus.  相似文献   

16.
Hydroponic isotope labelling of entire plants (HILEP) is a cost-effective method enabling metabolic labelling of whole and mature plants with a stable isotope such as (15)N. By utilising hydroponic media that contain (15)N inorganic salts as the sole nitrogen source, near to 100% (15)N-labelling of proteins can be achieved. In this study, it is shown that HILEP, in combination with mass spectrometry, is suitable for relative protein quantitation of seven week-old Arabidopsis plants submitted to oxidative stress. Protein extracts from pooled (14)N- and (15)N-hydroponically grown plants were fractionated by SDS-PAGE, digested and analysed by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS). Proteins were identified and the spectra of (14)N/(15)N peptide pairs were extracted using their m/z chromatographic retention time, isotopic distributions, and the m/z difference between the (14)N and (15)N peptides. Relative amounts were calculated as the ratio of the sum of the peak areas of the two distinct (14)N and (15)N peptide isotope envelopes. Using Mascot and the open source trans-proteomic pipeline (TPP), the data processing was automated for global proteome quantitation down to the isoform level by extracting isoform specific peptides. With this combination of metabolic labelling and mass spectrometry it was possible to show differential protein expression in the apoplast of plants submitted to oxidative stress. Moreover, it was possible to discriminate between differentially expressed isoforms belonging to the same protein family, such as isoforms of xylanases and pathogen-related glucanases (PR 2).  相似文献   

17.
Cervical cancer is the second most common cause of cancer-related death among women worldwide, especially in developing countries. Oxidative stress has been associated with cervical cancer. Many studies demonstrated that the low level of antioxidants induces the production of free radicals that cause lipid peroxidation, DNA, and protein damage leading to mutations that favors malignant transformation. This is a case-control institutional study conducted to evaluate the level of oxidative stress in cervical cancer patients and the age-matched healthy controls. We measured level of TBARS expressed as MDA, activity of SOD and GSH level by the spectrophotometric method, and level of 8-OHdG was estimated using a competitive sandwich ELISA assay. Our results showed a significant increase in the level of lipid peroxidation in group IV when compared to the control, group II and group III (p < 0.001). The activity of SOD was also significantly higher in group IV when compared to the control group (p < 0.001), group II (p < 0.001), and group III (p < 0.001). The level of GSH was also significantly lower in group IV when compared to the control group (p < 0.01), group II (p < 0.01), and group III (p < 0.01). The level of 8-OHdG was significantly higher in group IV than in the other groups (p < 0.01). The results suggest that oxidative stress is involved in the pathogenesis of cervical cancer, which is demonstrated by an increased level of lipid peroxidation and higher levels of 8-OHdG and an altered antioxidant defense system.  相似文献   

18.
In order to understand the pathogenesis of estradiol induced effects in the seminiferous epithelium, studies were undertaken in adult rats with estradiol-3-benzoate administered for different durations. After 30 d of treatment, a significant rise in lipid peroxidation with concomitant fall in the activities of superoxide dismutase and catalase was observed. Both, serum and intra-testicular testosterone levels were found severely depleted. Seminiferous epithelium was devoid of elongated spermatids and spermatozoa by 30 d of treatment. Number of spermatocytes and round spermatids were significantly (p < 0.001) reduced. Flowcytometric analysis confirmed a drastic reduction of the haploid cell population (1c peak). Beginning from day 10 of treatment, there was a consistent rise in the number of pyknotic/apoptotic germ cells in the seminiferous epithelium. A gradual increase in Bax protein expression was observed with the duration of treatment. The shift in Bax immunostaining from the cytoplasm and nucleus of germ cells (at 10 d of treatment) to only nuclei of cells by 30 d of treatment was also noticed. By this time testicular tissue showed three-fold increase in caspase-8 enzyme activity. Viable testicular cells isolated in vitro decreased drastically subsequent to different periods of estradiol treatment. The above findings substantiate the fact that the testicular pathogenesis of estradiol benzoate treatment may be primarily because of altered reproductive hormone levels and high oxidative stress leading to germ cell apoptosis and subsequent germ cell loss in the seminiferous epithelium.  相似文献   

19.
Oxidative stress (OS) contributes to cardiovascular damage in type 2 diabetes mellitus (T2DM). The peptide glucagon-like peptide-1 (GLP-1) inhibits OS and exerts cardiovascular protective actions. Our aim was to investigate whether cardiac remodeling (CR) and cardiovascular events (CVE) are associated with circulating GLP-1 and biomarkers of OS in T2DM patients. We also studied GLP-1 antioxidant effects in a model of cardiomyocyte lipotoxicity. We examined 72 T2DM patients with no coronary or valve heart disease and 14 nondiabetic subjects. A median of 6 years follow-up information was obtained in 60 patients. Circulating GLP-1, dipeptidyl peptidase-4 activity, and biomarkers of OS were quantified. In T2DM patients, circulating GLP-1 decreased and OS biomarkers increased, compared with nondiabetics. Plasma GLP-1 was inversely correlated with serum 3-nitrotyrosine in T2DM patients. Patients showing high circulating 3-nitrotyrosine and low GLP-1 levels exhibited CR and higher risk for CVE, compared to the remaining patients. In palmitate-stimulated HL-1 cardiomyocytes, GLP-1 reduced cytosolic and mitochondrial oxidative stress, increased mitochondrial ATP synthase expression, partially restored mitochondrial membrane permeability and cytochrome c oxidase activity, blunted leakage of creatine to the extracellular medium, and inhibited oxidative damage in total and mitochondrial DNA. These results suggest that T2DM patients with reduced circulating GLP-1 and exacerbated OS may exhibit CR and be at higher risk for CVE. In addition, GLP-1 exerts antioxidant effects in HL-1 palmitate-overloaded cardiomyocytes. It is proposed that therapies aimed to increase GLP-1 may counteract OS, protect from CR, and prevent CVE in patients with T2DM.  相似文献   

20.
The current coronavirus disease 2019 (COVID-19) pandemic has presented unprecedented challenges to global health. Although the majority of COVID-19 patients exhibit mild-to-no symptoms, many patients develop severe disease and need immediate hospitalization, with most severe infections associated with a dysregulated immune response attributed to a cytokine storm. Epidemiological studies suggest that overall COVID-19 severity and morbidity correlate with underlying comorbidities, including diabetes, obesity, cardiovascular diseases, and immunosuppressive conditions. Patients with such comorbidities exhibit elevated levels of reactive oxygen species (ROS) and oxidative stress caused by an increased accumulation of angiotensin II and by activation of the NADPH oxidase pathway. Moreover, accumulating evidence suggests that oxidative stress coupled with the cytokine storm contribute to COVID-19 pathogenesis and immunopathogenesis by causing endotheliitis and endothelial cell dysfunction and by activating the blood clotting cascade that results in blood coagulation and microvascular thrombosis. In this review, we survey the mechanisms of how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces oxidative stress and the consequences of this stress on patient health. We further shed light on aspects of the host immunity that are crucial to prevent the disease during the early phase of infection. A better understanding of the disease pathophysiology as well as preventive measures aimed at lowering ROS levels may pave the way to mitigate SARS-CoV-2-induced complications and decrease mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号