首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the pressure‐induced structural changes in the mature human immunodeficiency virus type 1 protease dimer, using residual dipolar coupling (RDC) measurements in a weakly oriented solution. 1DNH RDCs were measured under high‐pressure conditions for an inhibitor‐free PR and an inhibitor‐bound complex, as well as for an inhibitor‐free multidrug resistant protease bearing 20 mutations (PR20). While PR20 and the inhibitor‐bound PR were little affected by pressure, inhibitor‐free PR showed significant differences in the RDCs measured at 600 bar compared with 1 bar. The structural basis of such changes was investigated by MD simulations using the experimental RDC restraints, revealing substantial conformational perturbations, specifically a partial opening of the flaps and the penetration of water molecules into the hydrophobic core of the subunits at high pressure. This study highlights the exquisite sensitivity of RDCs to pressure‐induced conformational changes and illustrates how RDCs combined with MD simulations can be used to determine the structural properties of metastable intermediate states on the folding energy landscape. Proteins 2015; 83:2117–2123. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

2.
J Sondek  D Shortle 《Proteins》1992,13(2):132-140
In a previous study, the small protein staphylococcal nuclease was shown to readily accommodate single alanine and glycine insertions, with average losses in stability comparable to substitutions at the same sites (PROT. 7:299-305, 1990). To more fully explore this unexpected adaptability to changes in residue spacing, 2 double amino acid insertions (alanyl-glycine, glycyl-glycine) and 3 additional single amino acid insertions with dissimilar side chains (proline, leucine, and glutamine) were constructed at 10 of the sites previously studied. At 8 of these sites, the type of amino acid side chain on the inserted residue significantly influenced the stability of the mutant protein. However, at 9 of the 10 sites, the double insertions were found to be no more destabilizing than the single alanine or glycine insertions. In contrast, double substitution mutations of staphylococcal nuclease, which replace two adjacent residues with alanine, do not show this striking degree of non-additivity. A comparison of the effects of single glutamine and single glycine insertions with alanyl-glycine insertions indicates that insertion of alanine into the peptide backbone is, on average, less destabilizing than appending the equivalent atoms onto the side chain of a glycine insertion. To explain their very different energetic effects, we propose that, unlike most substitutions, the inserted residue(s) must induce lateral displacements of the polypeptide chain, forcing the folded conformation away from that of wild type. The resulting obligatory shifts in the positioning of residues flanking the insertion generate a large number of degrees of freedom around which the mutant structure can relax.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The structural and energetic consequences of modifications to the hydrophobic cavity of interleukin 1-beta (IL-1beta) are described. Previous reports demonstrated that the entirely hydrophobic cavity of IL-1beta contains positionally disordered water. To gain a better understanding of the nature of this cavity and the water therein, a number of mutant proteins were constructed by site-directed mutagenesis, designed to result in altered hydrophobicity of the cavity. These mutations involve the replacement of specific phenylalanine residues, which circumscribe the cavity, with tyrosine, tryptophan, leucine and isoleucine. Using differential scanning calorimetry to determine the relative stabilities of the wild-type and mutant proteins, we found all of the mutants to be destabilizing. X-ray crystallography was used to identify the structural consequences of the mutations. No clear correlation between the hydrophobicities of the specific side-chains introduced and the resulting stabilities was found.  相似文献   

4.
The ionization of internal groups in proteins can trigger conformational change. Despite this being the structural basis of most biological energy transduction, these processes are poorly understood. Small angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy experiments at ambient and high hydrostatic pressure were used to examine how the presence and ionization of Lys-66, buried in the hydrophobic core of a stabilized variant of staphylococcal nuclease, affect conformation and dynamics. NMR spectroscopy at atmospheric pressure showed previously that the neutral Lys-66 affects slow conformational fluctuations globally, whereas the effects of the charged form are localized to the region immediately surrounding position 66. Ab initio models from SAXS data suggest that when Lys-66 is charged the protein expands, which is consistent with results from NMR spectroscopy. The application of moderate pressure (<2 kbar) at pH values where Lys-66 is normally neutral at ambient pressure left most of the structure unperturbed but produced significant nonlinear changes in chemical shifts in the helix where Lys-66 is located. Above 2 kbar pressure at these pH values the protein with Lys-66 unfolded cooperatively adopting a relatively compact, albeit random structure according to Kratky analysis of the SAXS data. In contrast, at low pH and high pressure the unfolded state of the variant with Lys-66 is more expanded than that of the reference protein. The combined global and local view of the structural reorganization triggered by ionization of the internal Lys-66 reveals more detectable changes than were previously suggested by NMR spectroscopy at ambient pressure.  相似文献   

5.
Human upstream binding factor (hUBF) HMG Box‐5 is a highly conserved protein domain, containing 84 amino acids and belonging to the family of the nonspecific DNA‐binding HMG boxes. Its native structure adopts a twisted L shape, which consists of three α‐helices and two hydrophobic cores: the major wing and the minor wing. In this article, we report a reversible three‐state thermal unfolding equilibrium of hUBF HMG Box‐5, which is investigated by differential scanning calorimetry (DSC), circular dichroism spectroscopy, fluorescence spectroscopy, and NMR spectroscopy. DSC data show that Box‐5 unfolds reversibly in two separate stages. Spectroscopic analyses suggest that different structural elements exhibit noncooperative transitions during the unfolding process and that the major form of the Box‐5 thermal intermediate ensemble at 55°C shows partially unfolded characteristics. Compared with previous thermal stability studies of other boxes, it appears that Box‐5 possesses a more stable major wing and two well separated subdomains. NMR chemical shift index and sequential 1HNi1HNi+1 NOE analyses indicate that helices 1 and 2 are native‐like in the thermal intermediate ensemble, while helix 3 is partially unfolded. Detailed NMR relaxation dynamics are compared between the native state and the intermediate ensemble. Our results implicate a fluid helix‐turn‐helix folding model of Box‐5, where helices 1 and 2 potentially form the helix 1‐turn‐helix 2 motif in the intermediate, while helix 3 is consolidated only as two hydrophobic cores form to stabilize the native structure. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Several recent studies have shown that it is possible to increase protein stability by improving electrostatic interactions among charged groups on the surface of the folded protein. However, the stability increases are considerably smaller than predicted by a simple Coulomb's law calculation, and in some cases, a charge reversal on the surface leads to a decrease in stability when an increase was predicted. These results suggest that favorable charge-charge interactions are important in determining the denatured state ensemble, and that the free energy of the denatured state may be decreased more than that of the native state by reversing the charge of a side chain. We suggest that when the hydrophobic and hydrogen bonding interactions that stabilize the folded state are disrupted, the unfolded polypeptide chain rearranges to compact conformations with favorable long-range electrostatic interactions. These charge-charge interactions in the denatured state will reduce the net contribution of electrostatic interactions to protein stability and will help determine the denatured state ensemble. To support this idea, we show that the denatured state ensemble of ribonuclease Sa is considerably more compact at pH 7 where favorable charge-charge interactions are possible than at pH 3, where unfavorable electrostatic repulsion among the positive charges causes an expansion of the denatured state ensemble. Further support is provided by studies of the ionic strength dependence of the stability of charge-reversal mutants of ribonuclease Sa. These results may have important implications for the mechanism of protein folding.  相似文献   

7.
8.
By considering the denatured state of a protein as an ensemble of conformations with varying numbers of sequence-specific interactions, the effects on stability, folding kinetics, and aggregation of perturbing these interactions can be predicted from changes in the molecular partition function. From general considerations, the following conclusions are drawn: (1) A perturbation that enhances a native interaction in denatured state conformations always increases the stability of the native state. (2) A perturbation that promotes a non-native interaction in the denatured state always decreases the stability of the native state. (3) A change in the denatured state ensemble can alter the kinetics of aggregation and folding. (4) The loss (or increase) in stability accompanying two mutations, each of which lowers (or raises) the free energy of the denatured state, will be less than the sum of the effects of the single mutations, except in cases where both mutations affect the same set of partially folded conformations. By modeling the denatured state as the ensemble of all non-native conformations of hydrophobic-polar (HP) chains configured on a square lattice, it can be shown that the stabilization obtained from enhancement of native interactions derives in large measure from the avoidance of non-native interactions in the D state. In addition, the kinetic effects of fixing single native contacts in the denatured state or imposing linear gradients in the HH contact probabilities are found, for some sequences, to significantly enhance the efficiency of folding by a simple hydrophobic zippering algorithm. Again, the dominant mechanism appears to be avoidance of non-native interactions. These results suggest stabilization of native interactions and imposition of gradients in the stability of local structure are two plausible mechanisms involving the denatured state that could play a role in the evolution of protein folding and stability.  相似文献   

9.
10.
The conformational transitions of a small oncogene product, p13(MTCP1), have been studied by high-pressure fluorescence of the intrinsic tryptophan emission and high-pressure 1D and 2D 1H-15N NMR. While the unfolding transition monitored by fluorescence is cooperative, two kinds of NMR spectral changes were observed, depending on the pressure range. Below approximately 200 MPa, pressure caused continuous, non-linear shifts of many of the 15N and 1H signals, suggesting the presence of an alternate folded conformer(s) in rapid equilibrium (tau相似文献   

11.
Trimethylamine‐N‐oxide (TMAO) is a naturally occurring osmolyte that stabilizes proteins against denaturation. Although the impact of TMAO on the folding thermodynamics of many proteins has been well characterized, far fewer studies have investigated its effects on protein folding kinetics. In particular, no previous studies have used Φ‐value analysis to determine whether TMAO may alter the structure of the folding transition state. Here we have measured the effects on folding kinetics of 16 different amino acid substitutions distributed across the structure of the Fyn SH3 domain both in the presence and absence of TMAO. The folding and unfolding rates in TMAO, on average, improved to equivalent degrees, with a twofold increase in the protein folding rate accompanied by a twofold decrease in the unfolding rate. Importantly, TMAO caused little alteration to the Φ‐values of the mutants tested, implying that this compound minimally perturbs the folding transition state structure. Furthermore, the solvent accessibility of the transition state was not altered as reflected in an absence of a TMAO‐induced change in the denaturant β factors. Through TMAO‐induced folding studies, a β factor of 0.5 was calculated for this compound, suggesting that the protein backbone, which is the target of action of TMAO, is 50% exposed in the transition state as compared to the native state. This finding is consistent with the equivalent effects of TMAO on the folding and unfolding rates. Through thermodynamic analysis of mutants, we also discovered that the stabilizing effect of TMAO is lessened with increasing temperature.  相似文献   

12.
Mass spectrometry is now an indispensable tool in the armamentarium of molecular biophysics, where it is used for tasks ranging from protein sequencing and mapping of post‐translational modifications to studies of higher order structure, conformational dynamics, and interactions of proteins with small molecule ligands and other biopolymers. This mini‐review highlights several popular mass spectrometry‐based tools that are now commonly used for structural studies of proteins beyond their covalent structure with a particular emphasis on hydrogen exchange and direct electrospray ionization mass spectrometry.  相似文献   

13.
Investigating the relative importance of protein stability, function, and folding kinetics in driving protein evolution has long been hindered by the fact that we can only compare modern natural proteins, the products of the very process we seek to understand, to each other, with no external references or baselines. Through a large-scale all-atom simulation of protein evolution, we have created a large diverse alignment of SH3 domain sequences which have been selected only for native state stability, with no other influencing factors. Although the average pairwise identity between computationally evolved and natural sequences is only 17%, the residue frequency distributions of the computationally evolved sequences are similar to natural SH3 sequences at 86% of the positions in the domain, suggesting that optimization for the native state structure has dominated the evolution of natural SH3 domains. Additionally, the positions which play a consistent role in the transition state of three well-characterized SH3 domains (by phi-value analysis) are structurally optimized for the native state, and vice versa. Indeed, we see a specific and significant correlation between sequence optimization for native state stability and conservation of transition state structure.  相似文献   

14.
The green fluorescence proteins (GFP) are widely used as reporters in molecular and cell biology. For their use it in high-pressure microbiology and biotechnology studies, their structural properties, thermodynamic parameters and stability diagrams have to be known. We investigated the pressure stability of the red-shifted green fluorescent protein (rsGFP) using Fourier-transform infrared spectroscopy, fluorescence and UV/Vis spectroscopy. We found that rsGFP does not unfold up to approximately 9kbar at room temperature. Its unique three-dimensional structure is held responsible for the high-pressure stability. At higher temperatures, its secondary structure collapses below 9kbar (e.g. the denaturation pressure at 58 degrees C is 7.8kbar). The analysis of the IR data shows that the pressure-denatured state contains more disordered structures at the expense of a decrease of intramolecular beta-sheets. As indicated by the large volume change of DeltaV degrees (u) approximately -250(+/-50)mlmol(-1) at 58 degrees C, this highly cooperative transition can be interpreted as a collapse of the beta-can structure of rsGFP. For comparison, the temperature-induced unfolding of rsGFP has also been studied. At high temperature (T(m)=78 degrees C), the unfolding resulted in the formation of an aggregated state. Contrary to the pressure-induced unfolding, the temperature-induced unfolding and aggregation of GFP is irreversible. From the FT-IR data, a tentative p,T-stability diagram for the secondary structure collapse of GFP has been obtained. Furthermore, changes in fluorescence and absorptivity were found which are not correlated to the secondary structural changes. The fluorescence and UV/Vis data indicate smaller conformational changes in the chromophore region at much lower pressures ( approximately 4kbar) which are probably accompanied by the penetration of water into the beta-can structure. In order to investigate also the kinetics of this initial step, pressure-jump relaxation experiments were carried out. The partial activation volumes observed indicate that the conformational changes in the chromophore region when passing the transition state are indeed rather small, thus leading to a comparably small volume change of -20 ml mol(-1) only. The use of the chromophore absorption and fluorescence band of rsGFP in using GFP as reporter for gene expression and other microbiological studies under high pressure conditions is thus limited to pressures of about 4kbar, which still exceeds the pressure range relevant for studies in vivo in micro-organisms, including piezophilic bacteria from deep-sea environments.  相似文献   

15.
The problem of protein self‐organization is in the focus of current molecular biology studies. Although the general principles are understood, many details remain unclear. Specifically, protein folding rates are of interest because they dictate the rate of protein aggregation which underlies many human diseases. Here we offer predictions of protein folding rates and their correlation with folding nucleus sizes. We calculated free energies of the transition state and sizes of folding nuclei for 84 proteins and peptides whose other parameters were measured at the point of thermodynamic equilibrium between their unfolded and native states. We used the dynamic programming method where each residue was considered to be either as folded as in its native state or completely disordered. The calculated and measured folding rates showed a good correlation at the temperature mid‐transition point (the correlation coefficient was 0.75). Also, we pioneered in demonstrating a moderate (‐0.57) correlation coefficient between the calculated sizes of folding nuclei and the folding rates. Predictions made by different methods were compared. The established good correlation between the estimated free energy barrier and the experimentally found folding rate of each studied protein/peptide indicates that our model gives reliable results for the considered data set. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Hemochromatosis factor E (HFE) is a member of class I MHC family and plays a significant role in the iron homeostasis. Denaturation of HFE induced by guanidinium chloride (GdmCl) was measured by monitoring changes in [θ]222 (mean residue ellipticity at 222 nm), intrinsic fluorescence emission intensity at 346 nm (F346) and the difference absorption coefficient at 287 nm (Δε287) at pH 8.0 and 25°C. Coincidence of denaturation curves of these optical properties suggests that GdmCl‐induced denaturation (native (N) state ? denatured (D) state) is a two‐state process. The GdmCl‐induced denaturation was found reversible in the entire concentration range of the denaturant. All denaturation curves were analyzed for , Gibbs free energy change associated with the denaturation equilibrium (N state ? D state) in the absence of GdmCl, which is a measure of HFE stability. We further performed molecular dynamics simulation for 40 ns to see the effect of GdmCl on the structural stability of HFE. A well defined correlation was established between in vitro and in silico studies. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 133–142, 2016.  相似文献   

17.
Despite the large number of publications on three‐helix protein folding, there is no study devoted to the influence of handedness on the rate of three‐helix protein folding. From the experimental studies, we make a conclusion that the left‐handed three‐helix proteins fold faster than the right‐handed ones. What may explain this difference? An important question arising in this paper is whether the modeling of protein folding can catch the difference between the protein folding rates of proteins with similar structures but with different folding mechanisms. To answer this question, the folding of eight three‐helix proteins (four right‐handed and four left‐handed), which are similar in size, was modeled using the Monte Carlo and dynamic programming methods. The studies allowed us to determine the orders of folding of the secondary‐structure elements in these domains and amino acid residues which are important for the folding. The obtained data are in good correlation with each other and with the experimental data. Structural analysis of these proteins demonstrated that the left‐handed domains have a lesser number of contacts per residue and a smaller radius of cross section than the right‐handed domains. This may be one of the explanations of the observed fact. The same tendency is observed for the large dataset consisting of 332 three‐helix proteins (238 right‐ and 94 left‐handed). From our analysis, we found that the left‐handed three‐helix proteins have some less‐dense packing that should result in faster folding for some proteins as compared to the case of right‐handed proteins.Proteins 2013; © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Fluorescence and circular dichroism data as a function of temperature were obtained to characterize the unfolding of nuclease A and two of its less stable mutants. These spectroscopic data were obtained with a modified instrument that enables the nearly simultaneous detection of both fluorescence and CD data on the same sample. A global analysis of these multiple datasets yielded an excellent fit of a model that includes a change in the heat capacity change, ΔCp, between the unfolded and native states. This analysis gives a ΔCp of 2.2 kcal/mol/·K for thermal unfolding of the WT protein and 1.3 and 1.8 kcal/mol/K for the two mutants. These ΔCp values are consistent with significant population of the cold unfolded state at ∼0°C. Independent evidence for the existence of a cold unfolded state is the observation of a separately migrating peak in size exclusion chromatography. The new chromatographic peak is seen near 0°C, has a partition coefficient corresponding to a larger hydrodynamic radius, and shows a red-shifted fluorescence spectrum, as compared to the native protein. Data also indicate that the high-temperature unfolded form of mutant nuclease is relatively compact. Size exclusion chromatography shows the high temperature unfolded form to have a hydrodynamic radius that is larger than that for the native form, but smaller than that for the urea or pH-induced unfolded forms. Addition of chemical denaturants to the high-temperature unfolded form causes a further unfolding of the protein, as indicated by an increase in the apparent hydrodynamic radius and a decrease in the rotational correlation time for Trp140 (as determined by fluorescence anisotropy decay measurements). Proteins 28:227–240, 1997 © 1997 Wiley-Liss Inc.  相似文献   

19.
The role of hydrophobic interactions established by the residues that belong to the main hydrophobic core of ribonuclease A in its pressure-folding transition state was investigated using the Phi-value method. The folding kinetics was studied using pressure-jump techniques both in the pressurization and depressurization directions. The ratio between the folding activation volume and the reaction volume (beta p-value), which is an index of the compactness or degree of solvation of the transition state, was calculated. All the positions analyzed presented fractional Phi f-values, and the lowest were those corresponding to the most critical positions for the ribonuclease A stability. The structure of the transition state of the hydrophobic core of ribonuclease A, from the point of view of formed interactions, is a relatively, uniformly expanded form of the folded structure with a mean Phi f-value of 0.43. This places it halfway between the folded and unfolded states. On the other hand, for the variants, the average of beta p-values is 0.4, suggesting a transition state that is 40% native-like. Altogether the results suggest that the pressure-folding transition state of ribonuclease A looks like a collapsed globule with some secondary structure and a weakened hydrophobic core. A good correlation was found between the Phi f-values and the Deltabeta p-values. Although the nature of the transition state inferred from pressure-induced folding studies and the results of the protein engineering method have been reported to be consistent for other proteins, to the best of our knowledge this is the first direct comparison using a set of mutants.  相似文献   

20.
Ubiquitin (Ub) chains regulate a wide range of biological processes, and Ub chain connectivity is a critical determinant of the many regulatory roles that this post‐translational modification plays in cells. To understand how distinct Ub chains orchestrate different biochemical events, we and other investigators have developed enzymatic and non‐enzymatic methods to synthesize Ub chains of well‐defined length and connectivity. A number of chemical approaches have been used to generate Ub oligomers connected by non‐native linkages; however, few studies have examined the extent to which non‐native linkages recapitulate the structural and functional properties associated with native isopeptide bonds. Here, we compare the structure and function of Ub dimers bearing native and non‐native linkages. Using small‐angle X‐ray scattering (SAXS) analysis, we show that scattering profiles for the two types of dimers are similar. Moreover, using an experimental structural library and atomistic simulations to fit the experimental SAXS profiles, we find that the two types of Ub dimers can be matched to analogous structures. An important application of non‐native Ub oligomers is to probe the activity and selectivity of deubiquitinases. Through steady‐state kinetic analyses, we demonstrate that different families of deubiquitinases hydrolyze native and non‐native isopeptide linkages with comparable efficiency and selectivity. Considering the significant challenges associated with building topologically diverse native Ub chains, our results illustrate that chains harboring non‐native linkages can serve as surrogate substrates for explorations of Ub function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号