首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Estrogen receptor alpha (ERα) plays an important role in the development and progression of breast cancer and thus the attenuation of ERα activities is a promising treatment strategy. Furanodienone is one of the main bioactive chemical components of Rhizoma Curcumae which is commonly used in Chinese medicine for the treatment of cancer. In this study, we investigated the effects of furanodienone on human breast cancer MCF‐7, T47D, and MDA‐MB‐231 cells. Our results showed that furanodienone could inhibit MCF‐7, T47D, and MDA‐MB‐231 cells proliferation in a dose (10–160 µM) dependent manner. ERα‐negative MDA‐MB‐231 cells were less sensitive to furanodienone than ERα‐positive MCF‐7 and T47D cells. Furanodienone could effectively block 17β‐estradiol (E2)‐stimulated MCF‐7 cell proliferation and cell cycle progression and induce apoptosis evidenced by the flow cytometric detection of sub‐G1 DNA content and the appearance of apoptotic nuclei after DAPI staining. Furanodienone specifically down‐regulated ERα protein and mRNA expression levels without altering ERβ expression. Furanodienone treatment inhibited E2‐stimulation of estrogen response element (ERE)‐driven reporter plasmid activity and ablated E2‐targeted gene (e.g., c‐Myc, Bcl‐2, and cyclin D1) expression which resulted in the inhibition of cell cycle progression and cell proliferation, and in the induction of apoptosis. Knockdown of ERα in MCF‐7 cells by ERα‐specific siRNA decreased the cell growth inhibitory effect of furanodienone. These findings suggest that effects of furanodienone on MCF‐7 cells are mediated, at least in part, by inhibiting ERα signaling. J. Cell. Biochem. 112: 217–224, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Cryptotanshinone (CPT) has been demonstrated to inhibit proliferation and mammalian target of rapamycin (mTOR) pathway in MCF‐7 breast cancer cells. However, the same results are unable to be repeated in MDA‐MB‐231 cells. Given the main difference of oestrogen receptor α (ERα) between two types of breast cancer cells, It is possibly suggested that CPT inhibits mTOR pathway dependent on ERα in breast cancer. CPT could significantly inhibit cell proliferation of ERα‐positive cancer cells, whereas ERα‐negative cancer cells are insensitive to CPT. The molecular docking results indicated that CPT has a high affinity with ERα, and the oestrogen receptor element luciferase reporter verified CPT distinct anti‐oestrogen effect. Furthermore, CPT inhibits mTOR signalling in MCF‐7 cells, but not in MDA‐MB‐231 cells, which is independent on binding to the FKBP12 and disrupting the mTOR complex. Meanwhile, increased expression of phosphorylation AKT and insulin receptor substrate (IRS1) induced by insulin‐like growth factor 1 (IGF‐1) was antagonized by CPT, but other molecules of IGF‐1/AKT/mTOR signalling pathway such as phosphatase and tensin homolog (PTEN) and phosphatidylinositol‐4,5‐bisphosphate 3‐kinase (PI3K) were negatively affected. Finally, the MCF‐7 cells transfected with shERα for silencing ERα show resistant to CPT, and p‐AKT, phosphorylation of p70 S6 kinase 1 (p‐S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E‐BP1) were partially recovered, suggesting ERα is required for CPT inhibition of mTOR signalling. Overall, CPT inhibition of mTOR is dependent on ERα in breast cancer and should be a potential anti‐oestrogen agent and a natural adjuvant for application in endocrine resistance therapy.  相似文献   

4.
5.
Estrogen receptor (ER)‐positive breast cancer cells have low levels of constitutive NF‐κB activity while ER negative (?) cells and hormone‐independent cells have relatively high constitutive levels of NF‐κB activity. In this study, we have examined the aspects of mutual repression between the ERα and NF‐κB proteins in ER+ and ER? hormone‐independent cells. Ectopic expression of the ERα reduced cell numbers in ER+ and ER? breast cancer cell lines while NF‐κB‐binding activity and the expression of several NF‐κB‐regulated proteins were reduced in ER? cells. ER overexpression in ER+/E2‐independent LCC1 cells only weakly inhibited the predominant p50 NF‐κB. GST‐ERα fusion protein pull downs and in vivo co‐immunoprecipitations of NF‐κB:ERα complexes showed that the ERα interacts with p50 and p65 in vitro and in vivo. Inhibition of NF‐κB increased the expression of diverse E2‐regulated proteins. p50 differentially associated directly with the ER:ERE complex in LCC1 and MCF‐7 cells by supershift analysis while p65 antibody reduced ERα:ERE complexes in the absence of a supershift. ChIP analysis demonstrated that NF‐κB proteins are present on an endogenous ERE. Together these results demonstrate that the ER and NF‐κB undergo mutual repression, which may explain, in part, why expression of the ERα in ER? cells does not confer growth signaling. Secondly, the acquisition of E2‐independence in ER+ cells is associated with predominantly p50:p50 NF‐κB, which may reflect alterations in the ER in these cells. Since the p50 homodimer is less sensitive to the presence of the ER, this may allow for the activation of both pathways in the same cell. J. Cell. Biochem. 107: 448–459, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
We used ChIP‐Seq to map ERα‐binding sites and to profile changes in RNA polymerase II (RNAPII) occupancy in MCF‐7 cells in response to estradiol (E2), tamoxifen or fulvestrant. We identify 10 205 high confidence ERα‐binding sites in response to E2 of which 68% contain an estrogen response element (ERE) and only 7% contain a FOXA1 motif. Remarkably, 596 genes change significantly in RNAPII occupancy (59% up and 41% down) already after 1 h of E2 exposure. Although promoter proximal enrichment of RNAPII (PPEP) occurs frequently in MCF‐7 cells (17%), it is only observed on a minority of E2‐regulated genes (4%). Tamoxifen and fulvestrant partially reduce ERα DNA binding and prevent RNAPII loading on the promoter and coding body on E2‐upregulated genes. Both ligands act differently on E2‐downregulated genes: tamoxifen acts as an agonist thus downregulating these genes, whereas fulvestrant antagonizes E2‐induced repression and often increases RNAPII occupancy. Furthermore, our data identify genes preferentially regulated by tamoxifen but not by E2 or fulvestrant. Thus (partial) antagonist loaded ERα acts mechanistically different on E2‐activated and E2‐repressed genes.  相似文献   

7.
Newcastle disease virus (NDV) is endowed with the oncolytic ability to kill tumor cells, while rarely causing side effects in normal cells. Both estrogen receptor α (ERα) and the G protein estrogen receptor (GPER) modulate multiple biological activities in response to estrogen, including apoptosis in breast cancer (BC) cells. Here, we investigated whether NDV‐D90, a novel strain isolated from natural sources in China, promoted apoptosis by modulating the expression of ERα or the GPER in BC cells exposed to 17β‐estradiol (E2). We found that NDV‐D90 significantly killed the tumor cell lines MCF‐7 and BT549 in a time‐ and dose‐dependent manner. We also found that NDV‐D90 exerted its effects on the two cell lines mainly by inducing apoptosis but not necrosis. NDV‐D90 induced apoptosis via the intrinsic and extrinsic signaling pathways in MCF‐7 cells (ER‐positive cells) during E2 exposure not only by disrupting the E2/ERα axis and enhancing GPER expression but also by modulating the expression of several apoptosis‐related proteins through ERα‐and GPER‐independent processes. NDV‐D90 promoted apoptosis via the intrinsic signaling pathway in BT549 cells (ER‐negative cells), possibly by impairing E2‐mediated GPER expression. Furthermore, NDV‐D90 exerted its antitumor effects in vivo by inducing apoptosis. Overall, these results demonstrated that NDV‐D90 promotes apoptosis by differentially modulating the expression of ERα and the GPER in ER‐positive and negative BC cells exposed to estrogen, respectively, and can be utilized as an effective approach to treating BC.  相似文献   

8.
About 70% of human breast cancers express and are dependent for growth on estrogen receptor α (ERα), and therefore are sensitive to antiestrogen therapies. However, progression to an advanced, more aggressive phenotype is associated with acquisition of resistance to antiestrogens and/or invasive potential. In this study, we highlight the role of the serine/threonine‐protein kinase D1 (PKD1) in ERα‐positive breast cancers. Growth of ERα‐positive MCF‐7 and MDA‐MB‐415 human breast cancer cells was assayed in adherent or anchorage‐independent conditions in cells overexpressing or depleted for PKD1. PKD1 induces cell growth through both an ERα‐dependent manner, by increasing ERα expression and cell sensitivity to 17β‐estradiol, and an ERα‐independent manner, by reducing cell dependence to estrogens and conferring partial resistance to antiestrogen ICI 182,780. PKD1 knockdown in MDA‐MB‐415 cells strongly reduced estrogen‐dependent and independent invasion. Quantification of PKD1 mRNA levels in 38 cancerous and non‐cancerous breast cell lines and in 152 ERα‐positive breast tumours from patients treated with adjuvant tamoxifen showed an association between PKD1 and ERα expression in 76.3% (29/38) of the breast cell lines tested and a strong correlation between PKD1 expression and invasiveness (P < 0.0001). In tamoxifen‐treated patients, tumours with high PKD1 mRNA levels (n = 77, 50.66%) were significantly associated with less metastasis‐free survival than tumours with low PKD1 mRNA expression (n = 75, 49.34%; P = 0.031). Moreover, PKD1 mRNA levels are strongly positively associated with EGFR and vimentin levels (P < 0.0000001). Thus, our study defines PKD1 as a novel attractive prognostic factor and a potential therapeutic target in breast cancer.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Upon tumour necrosis factor alpha (TNFα) stimulation, cells respond actively by way of cell survival, apoptosis or programmed necrosis. The receptor‐interacting proteins 1 (RIP1) and 3 (RIP3) are responsible for TNFα‐mediated programmed necrosis. To delineate the differential contributions of RIP3 and RIP1 to programmed necrosis, L929 cells were stimulated with TNFα, carbobenzoxy‐valyl‐alanyl‐aspartyl‐[O‐methyl]‐fluoromethylketone (zVAD) or zVAD along with TNFα following RNA interference against RIP1 and RIP3, respectively. RIP1 silencing did not protect cells from TNFα‐mediated cell death, while RIP3 down‐regulation made them refractory to TNFα. The heat shock protein 90 inhibitor geldanamycin (GA) down‐regulated both RIP1 and RIP3 expression, which rendered cells resistant to zVAD/TNFα‐mediated cell death but not to TNFα‐mediated cell death alone. Therefore, the protective effect of GA on zVAD/TNFα‐stimulated necrosis might be attributed to RIP3, not RIP1, down‐regulation. Pretreatment of L929 cells with rapamycin mitigated zVAD‐mediated cell death, while the autophagy inhibitor chloroquine did not affect necrotic cell death. Meanwhile, necrotic cell death by zVAD and TNFα was caused by reactive oxygen species generation and effectively diminished by lipid‐soluble butylated hydroxyanisole. Taken together, the results indicate that RIP1 and RIP3 can independently mediate death signals being transduced by two different death stimuli, zVAD and TNFα. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Osteosarcoma is characterized by a high malignant and metastatic potential. The chemokine stromal‐derived factor‐1α (SDF‐1α) and its receptor, CXCR4, play a crucial role in adhesion and migration of human cancer cells. Integrins are the major adhesive molecules in mammalian cells, and has been associated with metastasis of cancer cells. Here, we found that human osteosarcoma cell lines had significant expression of SDF‐1 and CXCR4 (SDF‐1 receptor). Treatment of osteosarcoma cells with SDF‐1α increased the migration and cell surface expression of αvβ3 integrin. CXCR4‐neutralizing antibody, CXCR4 specific inhibitor (AMD3100) or small interfering RNA against CXCR4 inhibited the SDF‐1α‐induced increase the migration and integrin expression of osteosarcoma cells. Pretreated of osteosarcoma cells with MAPK kinase (MEK) inhibitor PD98059 inhibited the SDF‐1α‐mediated migration and integrin expression. Stimulation of cells with SDF‐1α increased the phosphorylation of MEK and extracellular signal‐regulating kinase (ERK). In addition, NF‐κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) also inhibited SDF‐1α‐mediated cell migration and integrin up‐regulation. Stimulation of cells with SDF‐1α induced IκB kinase (IKKα/β) phosphorylation, IκB phosphorylation, p65 Ser536 phosphorylation, and κB‐luciferase activity. Furthermore, the SDF‐1α‐mediated increasing κB‐luciferase activity was inhibited by AMD3100, PD98059, PDTC and TPCK or MEK1, ERK2, IKKα and IKKβ mutants. Taken together, these results suggest that the SDF‐1α acts through CXCR4 to activate MEK and ERK, which in turn activates IKKα/β and NF‐κB, resulting in the activations of αvβ3 integrins and contributing the migration of human osteosarcoma cells. J. Cell. Physiol. 221: 204–212, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号