首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modern nano‐HPLC systems are capable of extremely precise control of solvent gradients, allowing high‐resolution separation of peptides. Most proteomics laboratories use a simple linear analytical gradient for nano‐LC‐MS/MS experiments, though recent evidence indicates that optimized non‐linear gradients result in increased peptide and protein identifications from cell lysates. In concurrent work, we examined non‐linear gradients for the analysis of samples fractionated at the peptide level, where the distribution of peptide retention times often varies by fraction. We hypothesized that greater coverage of these samples could be achieved using per‐fraction optimized gradients. We demonstrate that the optimized gradients improve the distribution of peptides throughout the analysis. Using previous generation MS instrumentation, a considerable gain in peptide and protein identifications can be realized. With current MS platforms that have faster electronics and achieve shorter duty cycle, the improvement in identifications is smaller. Our gradient optimization method has been implemented in a simple graphical tool (GOAT) that is MS‐vendor independent, does not require peptide ID input, and is freely available for non‐commercial use at http://proteomics.swmed.edu/goat/  相似文献   

2.
3.
4.
5.
6.
7.
《Chirality》2017,29(6):282-293
Enantiomeric thalidomide undergoes various kinds of biotransformations including chiral inversion, hydrolysis, and enzymatic oxidation, which results in several metabolites, thereby adding to the complexity in the understanding of the nature of thalidomide. To decipher this complexity, we analyzed the multidimensional metabolic reaction networks of thalidomide and related molecules in vitro . Characteristic patterns in the amount of various metabolites of thalidomide and related molecules generated during a combination of chiral inversion, hydrolysis, and hydroxylation were observed using liquid chromatography–tandem mass spectrometry and chiroptical spectroscopy. We found that monosubstituted thalidomide derivatives exhibited different time‐dependent metabolic patterns compared with thalidomide. We also revealed that monohydrolyzed and monohydroxylated metabolites of thalidomide were likely to generate mainly by a C‐5 oxidation of thalidomide and subsequent ring opening of the hydroxylated metabolite. Since chirality was conserved in most of these metabolites during metabolism, they had the same chirality as that of nonmetabolized thalidomide. Our findings will contribute toward understanding the significant pharmacological effects of the multiple metabolites of thalidomide and its derivatives.  相似文献   

8.
9.
10.
11.
A thorough understanding of the fragmentation processes in MS/MS can be a powerful tool in assessing the resulting peptide and protein identifications. We here present the freely available, open‐source FragmentationAnalyzer tool ( http://fragmentation‐analyzer.googlecode.com ) that makes it straightforward to analyze large MS/MS data sets for specific types of identified peptides, using a common set of peptide properties. This enables the detection of fragmentation pattern nuances related to specific instruments or due to the presence of post‐translational modifications.  相似文献   

12.
13.
14.
A sensitive and high‐throughput chiral liquid chromatography–tandem mass spectrometry method was developed and validated for the quantification of R‐pantoprazole and S‐pantoprazole in human plasma. Sample extraction was carried out by using ethyl acetate liquid–liquid extraction in 96‐well plate format. The separation of pantoprazole enantiomers was performed on a CHIRALCEL OJ‐RH column and an overlapping injection mode was used to achieve a run time of 5.0 min/sample. The mobile phase consisted of 1) 10 mM ammonium acetate in methanol: acetonitrile (1:1, v/v) and 2) 20 mM ammonium acetate in water. Isocratic elution was used with flow rate at 500 μL/min. The enantiomers were quantified on a triple‐quadrupole mass spectrometer under multiple reaction monitoring (MRM) mode with m/z 382.1/230.0 for pantoprazole and m/z 388.4/230.1 for pantoprazole‐d7. Linearity from 20.0 to 5000 ng/mL was established for each enantiomer (r2 > 0.99). Extraction recovery ranged from 91.7% to 96.4% for R‐pantoprazole and from 92.5% to 96.5% for S‐pantoprazole and the IS‐normalized matrix factor was 0.98 to 1.07 for R‐pantoprazole and S‐pantoprazole, respectively. The method was demonstrated with acceptable accuracy, precision, selectivity, and stability and the method was applied to support a pharmacokinetic study of a phase I clinical trial of racemic pantoprazole in healthy Chinese subjects. Chirality 28:569–575, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
16.
17.
18.
In this study the analysis and confirmation of flumequine enantiomers in rat plasma by ultra‐fast liquid chromatography coupled with electron spray ionization mass spectrometry (using propranolol as an internal standard [IS]) was developed and validated. Plasma samples were prepared by liquid–liquid extraction using methyl tert‐butyl ether as the extraction solvent. Direct resolution of the R‐ and S‐isomers was performed on a CHIRALCEL OJ‐RH column (4.6 × 150 mm, 5 μm) using acetonitrile / 0.1% formic acid / 1 mM ammonium acetate as the mobile phase. Detection was operated by electron spray ionization in the selected ion monitoring and positive ion mode. The target ions at m/z 262.1 and m/z 260.1 were selected for the quantification of the enantiomers and IS, respectively. The linear range was 0.5–500 ng/mL. The precisions (coefficient of variation, CV%) and recoveries were 1.43–8.68 and 94.24–106.76%, respectively. The lowest quantitation limit for both enantiomers is 0.5 ng/mL, which is sensitive enough to be applied to sample analysis in other related studies.  相似文献   

19.
A rapid, simple, and sensitive liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry (LC–APCI-MS/MS) method was developed for the identification and quantification of emodin metabolites in Raji cells, using aloe-emodin as an internal standard. Analyses were performed on an LC system employing a Cosmosil 5C18 AR-II column and a stepwise gradient elution with methanol–20 mM ammonium formate at a flow rate of 1.0 mL/min operating in the negative ion mode. As a result, the starting material emodin and its five metabolites were detected by analyzing extracts of Raji cells that had been cultivated in the presence of emodin. The identification of the metabolites and elucidation of their structures were performed by comparing their retention times and spectral patterns with those of synthetic samples. In addition to the major metabolite 8-O-methylemodin, four other metabolites were assigned as ω-hydroxyemodin, 3-O-methyl-ω-hydroxyemodin, 3-O-methylemodin (physcion), and chrysophanol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号