首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteomic analysis of rice seedlings during cold stress   总被引:4,自引:0,他引:4  
Hashimoto M  Komatsu S 《Proteomics》2007,7(8):1293-1302
Low temperature is one of the important environmental changes that affect plant growth and agricultural production. To investigate the responses of rice to cold stress, changes in protein expression were analyzed using a proteomic approach. Two-week-old rice seedlings were exposed to 5 degrees C for 48 h, then total crude proteins were extracted from leaf blades, leaf sheaths and roots, separated by 2-DE and stained with CBB. Of the 250-400 protein spots from each organ, 39 proteins changed in abundance after cold stress, with 19 proteins increasing, and 20 proteins decreasing. In leaf blades, it was difficult to detect the changes in stress-responsive proteins due to the presence of an abundant protein, ribulose bisphosphate carboxylase/oxygenase large subunit (RuBisCO LSU), which accounted for about 50% of the total proteins. To overcome this problem, an antibody-affinity column was prepared to trap RuBisCO LSU, and the remaining proteins in the flow through from the column were subsequently separated using 2-DE. As a result, slight changes in stress responsive proteins were clearly displayed, and four proteins were newly detected after cold stress. From identified proteins, it was concluded that proteins related to energy metabolism were up-regulated, and defense-related proteins were down-regulated in leaf blades, by cold stress. These results suggest that energy production is activated in the chilling environment; furthermore, stress-related proteins are rapidly up-regulated, while defense-related proteins disappear, under long-term cold stress.  相似文献   

2.
Phosphorylation upon cold stress in rice (Oryza sativa L.) seedlings   总被引:2,自引:0,他引:2  
The response of plants to cold stress is not well understood at the biochemical level, although it has been studied extensively at the ecological level. To investigate whether protein phosphorylation may play an important role in cold stress, we exposed rice seedlings to low temperatures, prepared protein extracts from the leaves and incubated these in the presence of [γ-32P]ATP. The proteins were then separated by two-dimensional polyacrylamide gel electrophoresis. While several proteins were found to be phosphorylated upon cold stress one protein, pp35, which has an isoelectric point of 8.0, was more phosphorylated than the others. The pp35 protein was found to be phosphorylated when rice seedlings were incubated for 6 h at 5°C before the leaf protein extract was prepared and radioactive labeling was performed. The pp35 was, however, significantly more phosphorylated in cold-tolerant rice varieties. Antibodies were raised against purified pp35 in adult rabbits. Using this pp35 antibody, which can recognize the RuBisCO large-chain subunit (LSU), and from amino acid sequencing of pp35, we were able to identify and confirm the pp35 protein as the fragment of RuBisCO LSU (EC 4.1.1.39). Phosphorylation of the RuBisCO LSU may be important in cold tolerance. Received: 7 July 1998 / Accepted: 19 December 1998  相似文献   

3.
Introduction – A variety of sample preparation protocols for plant proteomic analysis using two‐dimensional gel electrophoresis (2‐DE) have been reported. However, they usually have to be adapted and further optimised for the analysis of plant species not previously studied. Objective – This work aimed to evaluate different sample preparation protocols for analysing Carica papaya L. leaf proteins through 2‐DE. Methodology – Four sample preparation methods were tested: (1) phenol extraction and methanol–ammonium acetate precipitation; (2) no precipitation fractionation; and the traditional trichloroacetic acid–acetone precipitation either (3) with or (4) without protein fractionation. The samples were analysed for their compatibility with SDS–PAGE (1‐DE) and 2‐DE. Fifteen selected protein spots were trypsinised and analysed by matrix‐assisted laser desorption/ionisation time‐of‐flight tandem mass spectrometry (MALDI‐TOF‐MS/MS), followed by a protein search using the NCBInr database to accurately identify all proteins. Results – Methods number 3 and 4 resulted in large quantities of protein with good 1‐DE separation and were chosen for 2‐DE analysis. However, only the TCA method without fractionation (no. 4) proved to be useful. Spot number and resolution advances were achieved, which included having an additional solubilisation step in the conventional TCA method. Moreover, most of the theoretical and experimental protein molecular weight and pI data had similar values, suggesting good focusing and, most importantly, limited protein degradation. Conclusion – The described sample preparation method allows the proteomic analysis of papaya leaves by 2‐DE and mass spectrometry (MALDI‐TOF‐MS/MS). The methods presented can be a starting point for the optimisation of sample preparation protocols for other plant species. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Using spectroscopic, biophysical and immunological techniques, we assayed the relative abundance often chloroplast proteins and protein complexes in the marine haptophyte, Isochrysis galbana Green, grown at nine steady-state dilution rates in nitrogen-limited chemostats. The proteins included Photosystem I reaction center (RCI) chlorophyll protein, CP1; Photosystem II reaction center (RC II) protein, D1; two chlorophyll a-binding apoproteins, CP 43 and CP 47; 33 KDa oxygen evolving protein, OEC 33; α subunit of coupling factor, CF1α; large (LSU) and small subunits (SSU) of ribulose 1,5-bisphosphate carboxylase, RuBisCO; the chlorophyll a/c/fucoxanthin protein complex, LHCP; and cytochrome b6/f. Seven of the ten protein complexes are encoded in the chloroplast, two are encoded in the nucleus and one shares chloroplast and nuclear genomes. Over the range of dilution rates (0.96-0.18 d?1) cell N decreased 42% and cellular chlorophyll a decreased 50%; however, the stoichiometric proportion of RC II: cytochrome b6/f: RC I remained constant, averaging 1:3.3:0.8. In contrast, RuBisCO / PS II decreased by 58%. The light harvesting chlorophyll a/c/fucoxanthin protein complex increased relative to RC II; however, as cells became more nitrogen limited the fraction of total cell nitrogen contained in RuBisCO decreased from 21.3 to 6.7%, whereas that of the light harvesting complex remained relatively constant, averaging 6.8%. Our results generally support the hypothesis that in nitrogen limited cells, proteins encoded in the nuclear genome are synthesized preferentially over those encoded in the chloroplast.  相似文献   

5.
6.
The purpose of this study was to evaluate the effect of temperature (10 and 27 degrees C) on the efficiency of bipolar membrane electroacidification (BMEA) to fractionate soybean proteins. BMEA is a technology derived from electrodialysis, based on the isoelectric precipitation of proteins. It appears that temperature has a significant effect on the selective precipitation of the soybean protein fractions, mainly 11 S and 7 S, during BMEA. At 27 degrees C, the precipitation profile of the four protein fractions is situated in a pH range from 6.6 to 4.4, with no possibility of separating any of theses fractions. However, at 10 degrees C, the 11 S globulin precipitates at a higher pH than at 27 degrees C, pH 6.7 vs 5.9, allowing the fractionation of 11 S from the other fractions. Using electroacidification it is possible to obtain a precipitate solution enriched in the 11 S fraction (71.8% of 11 S and 10.8% of 7 S) and a supernatant solution enriched in the 7 S fraction (46.6% of 7 S and 4.6% of 11S).  相似文献   

7.
The mitogenicity of germ cell proteins released from round spermatids (RS) and pachytene spermatocytes (PS) was investigated. Germ cells were isolated by centrifugal elutriation from 90-day-old rat testes and incubated in a supplement enriched culture media that lacked exogenous proteins. The conditioned culture media of RS and PS were dialysed/concentrated and lyophilized to prepare RS protein (RSP) and PS protein (PSP). Mitogenic activity of RSP and PSP was determined by 3H-thymidine incorporation into Swiss 3T3 fibroblasts. RSP and PSP stimulated 3H-thymidine incorporation by fibroblasts in a dose-dependent manner. At a higher concentration of RSP (300 micrograms/ml), fibroblast proliferation was stimulated from 6- to 20-fold of control cultures, whereas PSP (300 micrograms/ml) stimulated fibroblast proliferation 2.5-fold of control cultures. Since RSP exhibited substantially greater mitogenic activity than PSP we further investigated the RSP mitogenic substance(s) by immunoneutralization with antibodies against several growth factors. The mitogenic activity of RSP was significantly reduced by treatment with nerve growth factor (NGF) antibody, while neither the treatment of RSP with acidic fibroblast growth factor (aFGF) antibody, nor basic fibroblast growth factor (bFGF) antibody significantly modified the mitogenic activity of RSP. Interestingly, murine NGF-beta, recombinant human NGF-beta, and bovine serum albumin (BSA) did not exhibit mitogenic activity on 3T3 fibroblasts. Nevertheless, the presence of a NGF-like protein in RS and PS was confirmed by indirect immunofluorescence staining with a murine NGF antibody. Subsequently, a Western blot analysis with the NGF antibody identified two immunoreactive bands of 41 +/- 2 kDa and 51 +/- 1 kDa in both RSP and PSP under reduced conditions. These germ cell NGF-like proteins were apparently different from similarly prepared murine and human NGFs (13 kDa) in their molecular weight. Furthermore, neurite outgrowth from pheochromocytoma cells (PC-12), a functional bioassay for NGF-like activity, was stimulated by addition of RSP and PSP to the culture media of the PC-12 cells. These results demonstrate mitogenic activity in germ cell proteins (RSP and PSP) and identify a NGF-like protein(s) which is associated with most of this activity.  相似文献   

8.
9.
In plants, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is an important enzyme in the Calvin cycle, catalyzing the first step of carbon fixation. Because of its critical role in photosynthesis, RuBisCO comprises 30-60% of the total protein content in green leaf tissue and represents a major protein which can interfere with determination of lower abundance proteins in plant proteomics. A potential solution to aid in the determination of low level proteins in plant proteomics are RuBisCO immunodepletion columns. Two formats, spin and LC, of Seppro IgY RuBisCO depletion columns were evaluated for cross species applicability. The spin and LC columns were found to deplete arabidopsis RuBisCO by greater than 90 and 98%, respectively, and automation could be achieved with the LC format. Canola RuBisCO was depleted to a similar extent, and there was evidence suggesting that corn and tobacco RuBisCO were also highly depleted in flow through fractions. Model proteins were spiked into samples to provide insight into the degree of non-specific binding. Finally, improved detection and identification of lower abundance proteins was demonstrated after depletion.  相似文献   

10.
To better understand the underlying molecular basis of leaf development in maize, a reference map of nuclear proteins in basal region of seedling leaf was established using a combination of 2DE and MALDI‐TOF‐MS. In total, 441 reproducible protein spots in nuclear proteome of maize leaf basal region were detected with silver staining in a pH range of 3–10, among which 203 spots corresponding to 163 different proteins were identified. As expected, proteins implicated in RNA and protein‐associated functions were overrepresented in nuclear proteome. Remarkably, a high percentage (10%) of proteins was identified to be involved in cell division and growth. In addition, comparative nuclear proteomic analysis in leaf basal region of highly heterotic hybrid Mo17/B73 and its parental lines was also performed and 52 of 445 (11.69%) detected protein spots were differentially expressed between the hybrid and its parental lines, among which 16 protein spots displayed nonadditively expressed pattern. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of nuclear proteins, which may be responsible for the observed leaf size heterosis.  相似文献   

11.
A gene bank of the nutritionally versatile, nitrogen-fixing cyanobacterium Chlorogloeopsis fritschii was constructed in Charon 4A. 2,800 recombinants containing 10–20 kbp C. fritschii DNA fragments were screened by Southern hybridization using probes containing the genes for the large (LSU) and small (SSU) subunits of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) from Anacystis nidulans. A single recombinant plaque (CDG1) containing a 10.9 kbp EcoR1 fragment from C. fritschii hybridized to both the LSU and SSU probes, indicating a possible linkage of these RuBisCO genes in C. fritschii. RuBisCO activity and protein were detected in CDG1 lysates of Escherichia coli. Hybridization was also obtained between C. fritschii DNA and the LSU probe from Chlamydomonas reinhardtii, although no homology was detected using the LSU probe from maize or the SSU probe from pea.Abbreviations RuBisCO d-ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP d-ribulose 1,5-bisphosphate - LSU large subunit of RuBisCO - SSU small subunit of RuBisCO - SDS sodium dodecyl sulphate - DOC deoxycholate  相似文献   

12.
We identified an efficient protocol for extracting proteins from whole earthworm, Eisenia fetida, for 2‐DE. Sample preparation is a critical step in a 2‐DE proteome approach and is absolutely essential for obtaining good results. Six protein extraction protocols based on different protein precipitation agents were tested and evaluated using 2‐DE. The methods generated remarkably different 2‐DE protein spot patterns. We conclude that trichloroacetic acid (TCA)‐A eliminates interfering compounds, thus allowing for the efficient resolubilization of proteins. TCA‐A gives good distinction, more bands in 1‐DE gels, and the most number of protein spots in 2‐DE gels. It is also rapid, provides the higher protein yield, and has the less number of steps. To demonstrate the quality of the extracted proteins, we cut several protein spots that were common to four methods from 2‐DE gels, analyzed them using MALDI‐TOF/TOF MS, and tentatively identified them. The classic TCA‐A method proved to be most useful as a standard method of extracting proteins from E. fetida.  相似文献   

13.
Maize (Zea mays L. cv Golden Cross Bantam T51) seedlings were grown under full sunlight or 50% sunlight in a temperature-controlled glasshouse at the temperatures of near optimum (30/25°C) and suboptimum (17/13°C) with seven levels of nitrate-N (0.4 to 12 millimolars). The contents of phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPD), and ribulose-1,5-P2 carboxylase/oxygenase (RuBisCO) were immunochemically determined for each treatment with rabbit antibodies raised against the respective maize leaf proteins (anti-PEPC and anti-PPD) or spinach leaf protein (anti-RuBisCO). The content of each enzymic protein increased with increasing N and raised under reduced temperature. The positive effect of light intensity on their contents was evident only at near optimal temperature. The relative increase in PEPC and PPD content with increasing N was significantly greater than that of RuBisCO irrespective of growth conditions. These enzymic proteins comprised about 8, 6, and 35% of total soluble protein, respectively, at near optimal growth condition. In contrast to significant increase in the proportion of soluble protein allocated to PEPC and PPD seen under certain conditions, the proportion allocated to RuBisCO decreased reciprocally with an increased biomass yield by N supply.

These results indicated that the levels of PEPC and PPD parallel to maize biomass more tightly than that of RuBisCO at least under near optimal growth condition.

  相似文献   

14.
Phragmites communis Trin. (common reed) is a recognized model plant for studying its adaptation to contrasting and harsh environments. To understand the inherent molecular basis for its remarkable resistance to combined stresses, we performed a comprehensive proteomic analysis of the leaf proteins from two ecotypes, i.e. swamp and desert dune, naturally growing in the desert region of northwestern China. First, a proteome reference map of Phragmites was established based on the swamp ecotype. Proteins were resolved by 2‐D/SDS‐PAGE and identified by MALDI‐TOF/TOF MS. In total, 177 spots were identified corresponding to 51 proteins. The major proteins identified are proteins involved in photosynthesis, glutathione and ascorbic acid metabolism as well as protein synthesis and quality control. Second, the 2‐DE profiles of the two ecotypes were compared quantitatively via DIGE analysis. Compared with swamp ecotype, 51 proteins spots are higher‐expressed and 58 protein spots are lower‐expressed by twofold or more in desert dune ecotype. Major differences were found for the proteins involved in light reaction of photosynthesis, protein biosynthesis and quality control and antioxidative reactions. The physiological significance of such differences is discussed in the context of a flow of complex events in relation to plant adaptation to combined environmental stresses.  相似文献   

15.
Changes in various nitrogen compounds during senescence of the fourth leaf were studied in two cultivars of spring wheat (Triticum aestivum L.). One of the cultivars (Yecora) was supplied with two N levels; the other (Tauro) was grown with the high N level and pruned above the fourth leaf, whereas the control was left intact. In both cultivars grown with high N supply, net nitrogen export from the fourth leaf did not occur until 35 days after sowing (DAS). Loss of leaf soluble proteins started earlier than that of chlorophylis, and coincided initially with an increase in insoluble protein. In N deficient plants the level of total N, soluble protein, and the activity of nitrate reductase (NRA. EC 1.6.6.1) started to decrease about 5 days earlier, and along with chlorophyll, continued to decrease at a faster rate, than in high N plants. Also, with low N supply, the large subunit (LSU, 58 kDa) of ribulose-1.5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) decreased in greater proportion than other soluble proteins, while with high N supply the decrease in Rubisco LSU was similar to that of other soluble proteins. Nitrogen deficiency caused a greater decrease in soluble proteins than in insoluble proteins, and NRA relative to soluble proteins. The faster senescing Tauro cultivar had lower levels of most parameters, especially NRA, soluble protein and, after 35 DAS. Rubisco LSU as a proportion of soluble protein. The decrease in sink strength due to shoot pruning did generally not affect the level of the various nitrogenous compounds until 35 DAS; thereafter the levels of most parameters, especially soluble protein, Rubisco LSU and, at late stages of senescence, insoluble protein, were higher in pruned than in control shoots. Thus, shoot pruning slows down senescence. The 56- and 78-kDa polypeptides increased, rather than decreased, with leaf age; the level of these two polypeptides showed a negative relationship with Rubisco LSU (r = -0.933 and r = -0.758, respectively).  相似文献   

16.
To establish a proteomic reference map for soybean leaves, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 260 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS. Fifty-three of these protein spots were identified by searching NCBInr and SwissProt databases using the Mascot search engine. Sixty-seven spots that were not identified by MALDI-TOF-MS analysis were analyzed with liquid chromatography tandem mass spectrometry (LC-MS/MS), and 66 of these spots were identified by searching against the NCBInr, SwissProt and expressed sequence tag (EST) databases. We have identified a total of 71 unique proteins. The majority of the identified leaf proteins are involved in energy metabolism. The results indicate that 2D-PAGE, combined with MALDI-TOF-MS and LC-MS/MS, is a sensitive and powerful technique for separation and identification of soybean leaf proteins. A summary of the identified proteins and their putative functions is discussed.  相似文献   

17.
The present study continues our previous research on investigating the biological effects of low-level gamma radiation in rice at the heavily contaminated Iitate village in Fukushima, by extending the experiments to unraveling the leaf proteome. 14-days-old plants of Japonica rice (Oryza sativa L. cv. Nipponbare) were subjected to gamma radiation level of upto 4 µSv/h, for 72 h. Following exposure, leaf samples were taken from the around 190 µSv/3 d exposed seedling and total proteins were extracted. The gamma irradiated leaf and control leaf (harvested at the start of the experiment) protein lysates were used in a 2-D differential gel electrophoresis (2D-DIGE) experiment using CyDye labeling in order to asses which spots were differentially represented, a novelty of the study. 2D-DIGE analysis revealed 91 spots with significantly different expression between samples (60 positive, 31 negative). MALDI-TOF and TOF/TOF mass spectrometry analyses revealed those as comprising of 59 different proteins (50 up-accumulated, 9 down-accumulated). The identified proteins were subdivided into 10 categories, according to their biological function, which indicated that the majority of the differentially expressed proteins consisted of the general (non-energy) metabolism and stress response categories. Proteome-wide data point to some effects of low-level gamma radiation exposure on the metabolism of rice leaves.  相似文献   

18.
Grapes are commercially grown worldwide for fresh fruit and wine. They are mainly classified into bunch and muscadine grapes. These species differ in their sugar content and composition, photosynthetic efficiency and tolerance to abiotic and biotic stresses. Grape berry relies on carbohydrates produced during photosynthesis to support its development and composition. In view of the unique physiology and genetic make‐up of muscadine grape, a proteomics study was performed to increase our knowledge of Vitis leaf proteome in order to improve enological and disease tolerance characteristics of grape species. A high throughput two‐dimensional gel electrophoresis (2‐DE) was conducted on muscadine, bunch and hybrid bunch leaf proteins. The differentially expressed proteins were excised from 2‐DE gels, subjected to in‐gel trypsin digestion, and analysed in MALDI/TOF mass spectrometer. The mass spectra were collected and protein identification was performed by searching against Viridiplantae database using Matrix Science algorithm. Proteins were mapped to universal protein resource to study gene ontology. We have discovered >255 proteins with pIs between 3.5 and 8.0 and molecular weight between 12 and 100 kDa among the Vitis species. Comparative analysis of leaf proteome showed that 54 polypeptides varied qualitatively and quantitatively among the three Vitis species studied. Of these, seven proteins were unique to muscadine, two proteins were present in both muscadine and bunch, while 28 proteins were common to all the three species. Bioinformatic analysis of these proteins showed that they are involved in signal transduction pathway, transport of metabolites, energy metabolism, protein trafficking, photosynthesis and defence. We have also identified proteins unique to muscadine grape that are involved in defence and stress tolerance. In addition, photosynthesis‐related proteins were found to be more abundant in Vitis vinifera grape compared to other Vitis species.  相似文献   

19.
Mahmood T  Jan A  Kakishima M  Komatsu S 《Proteomics》2006,6(22):6053-6065
Plants exhibit resistance against incompatible pathogens, via localized and systemic responses as part of an integrated defense mechanism. To study the compatible and incompatible interactions between rice and bacteria, a proteomic approach was applied. Rice cv. Java 14 seedlings were inoculated with compatible (Xo7435) and incompatible (T7174) races of Xanthomonas oryzae pv. oryzae (Xoo). Cytosolic and membrane proteins were fractionated from the leaf blades and separated by 2-D PAGE. From 366 proteins analyzed, 20 were differentially expressed in response to bacterial inoculation. These proteins were categorized into classes related to energy (30%), metabolism (20%), and defense (20%). Among the 20 proteins, ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RuBisCO LSU) was fragmented into two smaller proteins by T7174 and Xo7435 inoculation. Treatment with jasmonic acid (JA), a signaling molecule in plant defense responses, changed the level of protein accumulation for 5 of the 20 proteins. Thaumatin-like protein and probenazole-inducible protein (PBZ) were commonly up-regulated by T7174 and Xo7435 inoculation and JA treatment. These results suggest that synthesis of the defense-related thaumatin-like protein and PBZ are stimulated by JA in the defense response pathway of rice against bacterial blight.  相似文献   

20.
Quantitative proteomics based on isotopic labeling has become the method of choice to accurately determine changes in protein abundance in highly complex mixtures. Isotope‐coded protein labeling (ICPL), which is based on the nicotinoylation of proteins at lysine residues and free N‐termini was used as a simple, reliable and fast method for the comparative analysis of three different cellular states of the halophilic archaeon Halobacterium salinarum through pairwise comparison. The labeled proteins were subjected to SDS‐PAGE, in‐gel digested and the proteolytic peptides were separated by LC and analyzed by MALDI‐TOF/TOF MS. Automated quantitation was performed by comparing the MS peptide signals of 12C and 13C nicotinoylated isotopic peptide pairs. The transitions between (i) aerobic growth in complex versus synthetic medium and (ii) aerobic versus anaerobic/phototrophic growth, both in complex medium, provide a wide span in nutrient and energy supply for the cell and thus allowed optimal studies of proteome changes. In these two studies, 559 and 643 proteins, respectively, could be quantified allowing a detailed analysis of the adaptation of H. salinarum to changes of its living conditions. The subtle cellular response to a wide variation of nutrient and energy supply demonstrates a fine tuning of the cellular protein inventory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号