首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The serine hydrolase monoacylglycerol lipase (MGL) functions as the main metabolizing enzyme of 2-arachidonoyl glycerol, an endocannabinoid signaling lipid whose elevation through genetic or pharmacological MGL ablation exerts therapeutic effects in various preclinical disease models. To inform structure-based MGL inhibitor design, we report the direct NMR detection of a reversible equilibrium between active and inactive states of human MGL (hMGL) that is slow on the NMR time scale and can be modulated in a controlled manner by pH, temperature, and select point mutations. Kinetic measurements revealed that hMGL substrate turnover is rate-limited across this equilibrium. We identify a network of aromatic interactions and hydrogen bonds that regulates hMGL active-inactive state interconversion. The data highlight specific inter-residue interactions within hMGL modulating the enzymes function and implicate transitions between active (open) and inactive (closed) states of the hMGL lid domain in controlling substrate access to the enzymes active site.  相似文献   

2.
Lipid composition and macromolecular crowding are key external effectors of protein activity and stability whose role varies between different proteins. Therefore, it is imperative to study their effects on individual protein function. CYP2J2 is a membrane‐bound cytochrome P450 in the heart involved in the metabolism of fatty acids and xenobiotics. In order to facilitate this metabolism, cytochrome P450 reductase (CPR), transfers electrons to CYP2J2 from NADPH. Herein, we use nanodiscs to show that lipid composition of the membrane bilayer affects substrate metabolism of the CYP2J2‐CPR nanodisc (ND) system. Differential effects on both NADPH oxidation and substrate metabolism by CYP2J2‐CPR are dependent on the lipid composition. For instance, sphingomyelin containing nanodiscs produced more secondary substrate metabolites than discs of other lipid compositions, implying a possible conformational change leading to processive metabolism. Furthermore, we demonstrate that macromolecular crowding plays a role in the lipid‐solubilized CYP2J2‐CPR system by increasing the Km and decreasing the Vmax, and effect that is size‐dependent. Crowding also affects the CYP2J2‐CPR‐ND system by decreasing both the Km and Vmax for Dextran‐based macromolecular crowding agents, implying an increase in substrate affinity but a lack of metabolism. Finally, protein denaturation studies show that crowding agents destabilize CYP2J2, while the multidomain protein CPR is stabilized. Overall, these studies are the first report on the role of the surrounding lipid environment and macromolecular crowding in modulating enzymatic function of CYP2J2‐CPR membrane protein system.  相似文献   

3.
The interfacial activation of many lipases at water/lipid interface is mediated by large conformational changes of a so‐called lid subdomain that covers up the enzyme active site. Here we investigated using molecular dynamic simulations in different explicit solvent environments (water, octane and water/octane interface) the molecular mechanism by which the lid motion of Burkholderia cepacia lipase might operate. Although B. cepacia lipase has so far only been crystallized in open conformation, this study reveals for the first time the major conformational rearrangements that the enzyme undergoes under the influence of the solvent, which either exposes or shields the active site from the substrate. In aqueous media, the lid switches from an open to a closed conformation while the reverse motion occurs in organic environment. In particular, the role of a subdomain facing the lid on B. cepacia lipase conformational rearrangements was investigated using position‐restrained MD simulations. Our conclusions indicate that the sole mobility of α9 helix side‐chains of B. cepacia lipase is required for the full completion of the lid conformational change which is essentially driven by α5 helix movement. The role of selected α5 hydrophobic residues on the lid movement was further examined. In silico mutations of two residues, V138 and F142, were shown to drastically modify the conformational behavior of B. cepacia lipase. Overall, our results provide valuable insight into the role played by the surrounding environment on the lid conformational rearrangement and the activation of B. cepacia lipase. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
A lipid nanodisc is a discoidal lipid bilayer stabilized by proteins, peptides, or polymers on its edge. Nanodiscs have two important connections to structural biology. The first is associated with high-density lipoprotein (HDL), a particle with a variety of functionalities including lipid transport. Nascent HDL (nHDL) is a nanodisc stabilized by Apolipoprotein A-I (APOA1). Determining the structure of APOA1 and its mimetic peptides in nanodiscs is crucial to understanding pathologies related to HDL maturation and designing effective therapies. Secondly, nanodiscs offer non-detergent membrane-mimicking environments and greatly facilitate structural studies of membrane proteins. Although seemingly similar, natural and synthetic nanodiscs are different in that nHDL is heterogeneous in size, due to APOA1 elasticity, and gradually matures to become spherical. Synthetic nanodiscs, in contrast, should be homogenous, stable, and size-tunable. This report reviews previous molecular dynamics (MD) simulation studies of nanodiscs and illustrates convergence and accuracy issues using results from new multi-microsecond atomistic MD simulations. These new simulations reveal that APOA1 helices take 10–20 μs to rearrange on the nanodisc, while peptides take 2 μs to migrate from the disc surfaces to the edge. These systems can also become kinetically trapped depending on the initial conditions. For example, APOA1 was trapped in a biologically irrelevant conformation for the duration of a 10 μs trajectory; the peptides were similarly trapped for 5 μs. It therefore remains essential to validate MD simulations of these systems with experiments due to convergence and accuracy issues. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.  相似文献   

5.
Phospholipid bilayer nanodiscs are model membrane systems that provide an environment where membrane proteins are highly stable and monodisperse without the use of detergents or liposomes. Nanodiscs consist of a discoidal phospholipid bilayer encircled by two copies of an amphipathic alpha helical membrane scaffold protein, which is modeled from apolipoprotein A-1. Hydrogen exchange mass spectrometry was used to probe the structure and dynamics of the scaffold protein in the presence and absence of lipid. On nanodisc self-assembly, the entire scaffold protein gained significant protection from exchange, consistent with a large, protein-wide, structural rearrangement. This protection was short-lived and the scaffold protein was highly deuterated within 2 h. Several regions of the scaffold protein, in both the lipid-free and lipid-associated states, displayed EX1 unfolding kinetics. The rapid deuteration of the scaffold protein and the presence of correlated unfolding events both indicate that nanodiscs are dynamic rather than rigid bodies in solution. This work provides a catalog of the expected scaffold protein peptic peptides in a nanodisc-hydrogen exchange mass spectrometry experiment and their deuterium uptake signatures, data that can be used as a benchmark to verify correct assembly and nanodisc structure. Such reference data will be useful control data for all hydrogen exchange mass spectrometry experiments involving nanodiscs in which transmembrane or lipid-associated proteins are the primary molecule(s) of interest.  相似文献   

6.
Self-aggregation of isolated plant light-harvesting complexes (LHCs) upon detergent extraction is associated with fluorescence quenching and is used as an in vitro model to study the photophysical processes of nonphotochemical quenching (NPQ). In the NPQ state, in vivo induced under excess solar light conditions, harmful excitation energy is safely dissipated as heat. To prevent self-aggregation and probe the conformations of LHCs in a lipid environment devoid from detergent interactions, we assembled LHCII trimer complexes into lipid nanodiscs consisting of a bilayer lipid matrix surrounded by a membrane scaffold protein (MSP). The LHCII nanodiscs were characterized by fluorescence spectroscopy and found to be in an unquenched, fluorescent state. Remarkably, the absorbance spectra of LHCII in lipid nanodiscs show fine structure in the carotenoid and Qy region that is different from unquenched, detergent-solubilized LHCII but similar to that of self-aggregated, quenched LHCII in low-detergent buffer without magnesium ions. The nanodisc data presented here suggest that 1), LHCII pigment-protein complexes undergo conformational changes upon assembly in nanodiscs that are not correlated with downregulation of its light-harvesting function; and 2), these effects can be separated from quenching and aggregation-related phenomena. This will expand our present view of the conformational flexibility of LHCII in different microenvironments.  相似文献   

7.
Membrane mimetics are essential for structural and functional studies of membrane proteins. A promising lipid-based system are phospholipid nanodiscs, where two copies of a so-called membrane scaffold protein (MSP) wrap around a patch of lipid bilayer. Consequently, the size of a nanodisc is determined by the length of the MSP. Furthermore, covalent MSP circularization was reported to improve nanodisc stability. However, a more detailed comparative analysis of the biophysical properties of circularized and linear MSP nanodiscs for their use in high-resolution NMR has not been conducted so far. Here, we analyze the membrane fluidity and temperature-dependent size variability of circularized and linear nanodiscs using a large set of analytical methods. We show that MSP circularization does not alter the membrane fluidity in nanodiscs. Further, we show that the phase transition temperature increases for circularized versions, while the cooperativity decreases. We demonstrate that circularized nanodiscs keep a constant size over a large temperature range, in contrast to their linear MSP counterparts. Due to this size stability, circularized nanodiscs are beneficial for high-resolution NMR studies of membrane proteins at elevated temperatures. Despite their slightly larger size as compared to linear nanodiscs, 3D NMR experiments of the voltage-dependent anion channel 1 (VDAC1) in circularized nanodiscs have a markedly improved spectral quality in comparison to VDAC1 incorporated into linear nanodiscs of a similar size. This study provides evidence that circularized MSP nanodiscs are a promising tool to facilitate high-resolution NMR studies of larger and challenging membrane proteins in a native lipid environment.  相似文献   

8.
Nanodiscs are composed of scaffold protein or peptide such as apolipoprotein A‐I (apoA‐I) and phospholipids. Although peptide‐based nanodiscs have an advantage to modulate the size of nanodiscs by changing phospholipid/peptide ratios, they are usually less stable than apoA‐I‐based nanodiscs. In this study, we designed a novel nanodisc scaffold peptide (NSP) that has proline‐punctuated bihelical amphipathic structure based on apoA‐I mimetic peptides. NSP formed α‐helical structure on 1‐palmitoyl‐2‐oleoyl phosphatidylcholine (POPC) nanodiscs prepared by cholate dialysis method. Dynamic light scattering measurements demonstrated that diameters of NSP nanodiscs vary depending upon POPC/NSP ratios. Comparison of thermal unfolding of nanodiscs monitored by circular dichroism measurements demonstrated that NSP forms much more stable nanodiscs with POPC than monohelical peptide, 4F, exhibiting comparable stability to apoA‐I‐POPC nanodiscs. Intrinsic Trp fluorescence measurements showed that Trp residues of NSP exhibit more hydrophobic environment than that of 4 F on nanodiscs, suggesting the stronger interaction of NSP with phospholipids. Thus, the bihelical structure of NSP appears to increase the stability of nanodiscs because of the enhanced interaction of peptides with phospholipids. In addition, NSP as well as 4F spontaneously solubilized POPC vesicles into nanodiscs without using detergent. These results indicate that bihelical NSP forms nanodiscs with comparable stability to apoA‐I and has an ability to control the size of nanodiscs simply by changing phospholipid/peptide ratios. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
The nanodisc is a discoidal particle (~ 10-12 nm large) that trap membrane proteins into a small patch of phospholipid bilayer. The nanodisc is a particularly attractive option for studying membrane proteins, especially in the context of ligand-receptor interactions. The method pioneered by Sligar and colleagues is based on the amphipathic properties of an engineered highly a-helical scaffold protein derived from the apolipoprotein A1. The hydrophobic faces of the scaffold protein interact with the fatty acyl side-chains of the lipid bilayer whereas the polar regions face the aqueous environment. Analyses of membrane proteins in nanodiscs have significant advantages over liposome because the particles are small, homogeneous and water-soluble. In addition, biochemical and biophysical methods normally reserved to soluble proteins can be applied, and from either side of the membrane. In this visual protocol, we present a step-by-step reconstitution of a well characterized bacterial ABC transporter, the MalE-MalFGK2 complex. The formation of the disc is a self-assembly process that depends on hydrophobic interactions taking place during the progressive removal of the detergent. We describe the essential steps and we highlight the importance of choosing a correct protein-to-lipid ratio in order to limit the formation of aggregates and larger polydisperse liposome-like particles. Simple quality controls such as gel filtration chromatography, native gel electrophoresis and dynamic light scattering spectroscopy ensure that the discs have been properly reconstituted.  相似文献   

10.
We have devised a procedure to incorporate the anthrax protective antigen (PA) pore complexed with the N‐terminal domain of anthrax lethal factor (LFN) into lipid nanodiscs and analyzed the resulting complexes by negative‐stain electron microscopy. Insertion into nanodiscs was performed without relying on primary and secondary detergent screens. The preparations were relatively pure, and the percentage of PA pore inserted into nanodiscs on EM grids was high (~43%). Three‐dimensional analysis of negatively stained single particles revealed the LFN‐PA nanodisc complex mirroring the previous unliganded PA pore nanodisc structure, but with additional protein density consistent with multiple bound LFN molecules on the PA cap region. The assembly procedure will facilitate collection of higher resolution cryo‐EM LFN‐PA nanodisc structures and use of advanced automated particle selection methods.  相似文献   

11.
Human monoacylglycerol lipase (MGL) catalyzes the hydrolysis of 2-arachidonoylglycerol to arachidonic and glycerol, which plays a pivotal role in the normal biological processes of brain. Co-crystal structure of the MGL in complex with its inhibitor, compound 1, shows that the helix α4 undergoes large-scale conformational changes in response to the compound 1 binding compared to the apo MGL. However, the detailed conformational transition pathway of the helix α4 in the inhibitor binding process of MGL has remained unclear. Here, conventional molecular dynamics (MD) and nudged elastic band (NEB) simulations were performed to explore the conformational transition pathway of the helix α4. Conventional MD simulations unveiled that the compound 1 induced the closed conformation of the active site of MGL, reduced the conformational flexibility of the helix α4, and elicited the large-scale conformational rearrangement of the helix α4, leading to the complete folding of the helix α4. Moreover, NEB simulations revealed that the conformational transition pathway of helix α4 underwent an almost 180° counter-clockwise rotation of the helix α4. Our computational results advance the structural and mechanistic understanding of the inhibitory mechanism.  相似文献   

12.
Proteomic identification of protein interactions with membrane associated molecules in their native membrane environment pose a challenge because of technical problems of membrane handling. We investigate the possibility of employing membrane nanodiscs for harboring the membrane associated molecule to tackle the challenges. Nanodiscs are stable, homogenous pieces of membrane with a discoidal shape. They are stabilized by an encircling amphipatic protein with an engineered epitope tag. In the present study we employ the epitope tag of the nanodiscs for detection and co-immunoprecipitation of interaction partners of the glycolipid ganglioside GM1 harbored by nanodiscs. Highly specific binding activity for nanodisc-GM1 immobilized on sensorchips was observed by surface plasmon resonance in culture media from enterotoxigenic Escherischia coli. To isolate the interaction partner(s) from enterotoxigenic Escherischia coli, GM1-nanodiscs were employed for co-immunoprecipitation. The B subunit of heat labile enterotoxin was identified as a specific interaction partner by mass spectrometry, thus demonstrating that nanodisc technology is useful for highly specific detection and identification of interaction partners to specific lipids embedded in a membrane bilayer.  相似文献   

13.
The bacterial Sec pathway is responsible for the translocation of secretory preproteins. During the later stages of transport, the membrane‐embedded signal peptidase I (SPase I) cleaves the signal peptide from a preprotein. We used tryptophan fluorescence spectroscopy of a soluble, catalytically active E. coli SPase I Δ2‐75 enzyme to study its dynamic conformational changes while in solution and when interacting with lipids and signal peptides. We generated four single Trp SPase I Δ2‐75 mutants, W261, W284, W300, and W310. Based on fluorescence quenching experiments, W300 and W310 were found to be more solvent accessible than W261 and W284 in the absence of ligands. W300 and W310 inserted into lipids, consistent with their location at the enzyme's proposed membrane‐interface region, while the solvent accessibilities of W261, W284, and W300 were modified in the presence of signal peptide, suggesting propagation of structural changes beyond the active site in response to peptide binding. The signal peptide binding affinity for the enzyme was measured via FRET experiments and the Kd determined to be 4.4 μM. The location of the peptide with respect to the enzyme was also established; this positioning is crucial for the peptide to gain access to the enzyme active site as it emerges from the translocon into the membrane bilayer. These studies reveal enzymatic structural changes required for preprotein proteolysis as it interacts with its two key partners, the signal peptide and membrane phospholipids. Proteins 2014; 82:596–606. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
CD39 can exist in at least two distinct functional states depending on the presence and intact membrane integration of its two transmembrane helices. In native membranes, the transmembrane helices undergo dynamic rotational motions that are required for enzymatic activity and are regulated by substrate binding. In this study, we show that bilayer mechanical properties regulate conversion between the two enzymatic functional states by modulating transmembrane helix dynamics. Alteration of membrane properties by insertion of cone-shaped or inverse cone-shaped amphiphiles or by cholesterol removal switches CD39 to the same enzymatic state that removal or solubilization of the transmembrane domains does. The same membrane alterations increase the propensity of both transmembrane helices to rotate within the packed structure, resulting in a structure with greater mobility but not an altered primary conformation. Membrane alteration also abolishes the ability of the substrate to stabilize the helices in their primary conformation, indicating a loss of coupling between substrate binding and transmembrane helix dynamics. Removal of either transmembrane helix mimics the effect of membrane alteration on the mobility and substrate sensitivity of the remaining helix, suggesting that the ends of the extracellular domain have intrinsic flexibility. We suggest that a mechanical bilayer property, potentially elasticity, regulates CD39 by altering the balance between the stability and flexibility of its transmembrane helices and, in turn, of its active site.  相似文献   

15.
The function of membrane-bound transporters is commonly affected by the milieu of the hydrophobic, membrane-spanning part of the transmembrane protein. Consequently, functional studies of these proteins often involve incorporation into a native-like bilayer where the lipid components of the membrane can be controlled. The classical approach is to reconstitute the purified protein into liposomes. Even though the use of such liposomes is essential for studies of transmembrane transport processes in general, functional studies of the transporters themselves in liposomes suffer from several disadvantages. For example, transmembrane proteins can adopt two different orientations when reconstituted into liposomes, and one of these populations may be inaccessible to ligands, to changes in pH or ion concentration in the external solution. Furthermore, optical studies of proteins reconstituted in liposomes suffer from significant light scattering, which diminishes the signal-to-noise value of the measurements. One attractive approach to circumvent these problems is to use nanodiscs, which are phospholipid bilayers encircled by a stabilizing amphipathic helical membrane scaffold protein. These membrane nanodiscs are stable, soluble in aqueous solution without detergent and do not scatter light significantly. In the present study, we have developed a protocol for reconstitution of the aa(3)- and ba(3)-type cytochrome c oxidases into nanodiscs. Furthermore, we studied proton-coupled electron-transfer reactions in these enzymes with microsecond time resolution. The data show that the nanodisc membrane environment accelerates proton uptake in both oxidases.  相似文献   

16.
The predicted active site of chorismate mutase of baker's yeast Saccharomyces cerevisiae has been studied by continuum electrostatics, molecular surface/volume calculations, and molecular modeling. Our study shows that despite being subject to an allosteric transition, the enzyme's active-site pocket neither decreased in volume nor deformed significantly in shape between the active R state and the inactive T state. We find that the polar atmosphere in the pocket is responsible for the enzyme's affinity. A single amino acid, Glu23, can adequately account for the atmospheric variation. This residue swings into the active-site pocket from the R state to the T state. In the R state, Glu23 on helix H2 doubly pairs with Arg204 and Lys208 of H11, which is packed against H2. In the T state, a slide occurs between H11 and H2 such that Glu23 can no longer interact with Lys208 and competes with Asp24 for interacting with Arg204. Consequently, Glu23 is found in the T state to couple with Arg157, an active-site residue critical to substrate binding. The tandem sliding of H11 in both monomers profoundly changes the interactions in the dimer interface. The loop between H11 and H12 demonstrates the largest conformational change. Hence, we establish a connection between the allosteric transition and the activity of the enzyme. The conformational change in the transition is suggested to propagate into the active-site pocket via a series of polar interactions that result in polarity reversal in the active-site pocket, which regulates the enzyme's activity. Proteins 31:445–452, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
18.
The serine hydrolase monoacylglycerol lipase (MGL) modulates endocannabinoid signaling in vivo by inactivating 2-arachidonoylglycerol (2-AG), the main endogenous agonist for central CB1 and peripheral CB2 cannabinoid receptors. To characterize this key endocannabinoid enzyme by mass spectrometry-based proteomics, we first overexpressed recombinant hexa-histidine-tagged human MGL (hMGL) in Escherichia coli and purified it in a single chromatographic step with high yield (approximately 30 mg/L). With 2-AG as substrate, hMGL displayed an apparent V max of 25 micromol/(microg min) and K m of 19.7 microM, an affinity for 2-AG similar to that of native rat-brain MGL (rMGL) (Km=33.6 microM). hMGL also demonstrated a comparable affinity (Km approximately 8-9 microM) for the novel fluorogenic substrate, arachidonoyl, 7-hydroxy-6-methoxy-4-methylcoumarin ester (AHMMCE), in a sensitive, high-throughput fluorometric MGL assay. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) unequivocably demonstrated the mass (34,126 Da) and purity of this hMGL preparation. After in-solution tryptic digestion, hMGL full proteomic characterization was carried out, which showed (1) an absence of intramolecular disulfide bridges in the functional, recombinant enzyme and (2) the post-translational removal of the enzyme's N-terminal methionine. Availability of sufficient quantities of pure, well-characterized hMGL will enable further molecular and structural profiling of this key endocannabinoid-system enzyme.  相似文献   

19.
A high-resolution structure of a ligand-bound, soluble form of human monoglyceride lipase (MGL) is presented. The structure highlights a novel conformation of the regulatory lid-domain present in the lipase family as well as the binding mode of a pharmaceutically relevant reversible inhibitor. Analysis of the structure lacking the inhibitor indicates that the closed conformation can accommodate the native substrate 2-arachidonoyl glycerol. A model is proposed in which MGL undergoes conformational and electrostatic changes during the catalytic cycle ultimately resulting in its dissociation from the membrane upon completion of the cycle. In addition, the study outlines a successful approach to transform membrane associated proteins, which tend to aggregate upon purification, into a monomeric and soluble form.  相似文献   

20.
The conformational space of a hydrophobic peptide fragment of glycophorin A in a lipid membrane was studied with the Monte Carlo method using the solvation model described in the first communication of this series. The simulation was performed for various starting orientations of the peptide relative the membrane bilayer: outside, inside, partially immersed, and transbilayer. We showed that the membrane substantially stabilizes the α-helical conformation of the central hydrophobic part of the glycophorin A molecule, which for the most part is immersed in the apolar core of the bilayer. For various conformational states, energy values were calculated and the orientations of the peptide relative to the membrane were characterized. Depending on the thickness of the bilayer, either an entirely α-helical conformation in transbilayer orientation or a conformation with a kink in the central part of the helix with theN- andC-termini exposed on one side of the membrane corresponds to the minimal-energy structure. The transmembrane orientation of glycophorin A is energetically advantageous when the membrane thickness is close to the length of its hydrophobic helical portion, which is consistent with the effect ofhydrophobic match observed experimentally. The prospects for further refinement of the model are discussed. For communication I, see [1].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号