首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adiponectin, a protein exclusively secreted by adipose tissue and present at low levels in obese individuals, is now widely recognized as a key determinant of insulin sensitivity and protection against obesity-associated metabolic syndrome. In Jordan, prevalence of diabetes (17.1%) is twice that of the United States (7.8%). In this study, we examined the contribution of the promoter variant rs266729 (− 11377C>G) of the ADIPOQ gene as a risk factor for diabetic patients in Jordan. DNA was extracted from blood samples for patients and controls .Polymerase chain reaction and restriction fragment length polymorphism were used to genotype this variant. A total of 420 type 2 diabetic patients and 230 controls were successfully genotyped. The results showed a significant genotypic (p = 0.00001) and allelic (p = 0.01) association with variant in the diabetic patients as compared to controls. This suggests that the ADIPOQ gene plays a major role in increasing the risk of diabetes, at least in the Jordanian Arab population.  相似文献   

2.
Recently, vaspin was identified as an adipokine with insulin-sensitizing effects, which is predominantly secreted from visceral adipose tissue in a rat model of type 2 diabetes. In this study, we examined whether vaspin mRNA expression is a marker of visceral obesity and correlates with anthropometric and metabolic parameters in paired samples of visceral and subcutaneous adipose tissue from 196 subjects with a wide range of obesity, body fat distribution, insulin sensitivity, and glucose tolerance. Vaspin mRNA expression was only detectable in 23% of the visceral and in 15% of the subcutaneous (SC) adipose tissue samples. Vaspin mRNA expression was not detectable in lean subjects (BMI<25) and was more frequently detected in patients with type 2 diabetes. No significant correlations were found between visceral vaspin gene expression and visceral fat area or SC vaspin expression. However, visceral vaspin expression significantly correlates with BMI, % body fat, and 2 h OGTT plasma glucose. Subcutaneous vaspin mRNA expression is significantly correlated with WHR, fasting plasma insulin concentration, and glucose infusion rate during steady state of an euglycemic-hyperinsulinemic clamp. Multivariate linear regression analysis revealed % body fat as strongest predictor of visceral vaspin and insulin sensitivity as strongest determinant of SC vaspin mRNA expression. In conclusion, our data indicate that induction of human vaspin mRNA expression in adipose tissue is regulated in a fat depot-specific manner and could be associated with parameters of obesity, insulin resistance, and glucose metabolism.  相似文献   

3.

Objective

To investigate the genetic association of eight variants of the adiponectin gene with type 2 diabetes mellitus (T2DM), obesity and serum adiponectin level in the south Indian population.

Methods

The study comprised of 1100 normal glucose tolerant (NGT) and 1100 type 2 diabetic, unrelated subjects randomly selected from the Chennai Urban Rural Epidemiology Study (CURES), in southern India. Fasting serum adiponectin levels were measured by radioimmunoassay. The variants were screened by polymerase chain reaction-restriction fragment length polymorphism. Linkage disequilibrium was estimated from the estimates of haplotype frequencies.

Results

Of the 8 variants, four SNPs namely, + 276 G/T (rs1501299), − 4522 C/T (rs822393), − 11365 C/G (rs266729), and + 712 G/A (rs3774261) were significantly associated with T2DM in our study population. The −3971 A/G (rs822396) and − 11391 G/A (rs17300539) SNPs' association with T2DM diabetes was mediated through obesity (where the association with type 2 diabetes was lost after adjusting for BMI). There was an independent association of + 276 G/T (rs1501299) and − 3971 A/G (rs822396) SNPs with generalized obesity and + 349 A/G (rs2241767) with central obesity. Four SNPs, −3971 A/G (rs822396), + 276 G/T (rs1501299), − 4522 C/T (rs822393) and Y111H T/C (rs17366743) were significantly associated with hypoadiponectinemia. The haplotypes GCCATGAAT and AGCGTGGGT conferred lower risk of T2DM in this south Indian population.

Conclusion

The adiponectin gene variants and haplotype contribute to the genetic risk towards the development of type 2 diabetes, obesity and hypoadiponectinemia in the south Indian population.  相似文献   

4.
The incidence of obesity and type diabetes 2 has increased dramatically resulting in an increased interest in its biomedical relevance. However, the mechanisms that trigger the development of diabetes type 2 in obese patients remain largely unknown. Scientific, clinical and pharmaceutical communities are dedicating vast resources to unravel this issue by applying different omics tools. During the last decade, the advances in proteomic approaches and the Human Proteome Organization have opened and are opening a new door that may be helpful in the identification of patients at risk and to improve current therapies. Here, we briefly review some of the advances in our understanding of type 2 diabetes that have occurred through the application of proteomics. We also review, in detail, the current improvements in proteomic methodologies and new strategies that could be employed to further advance our understanding of this pathology. By applying these new proteomic advances, novel therapeutic and/or diagnostic protein targets will be discovered in the obesity/Type 2 diabetes area.  相似文献   

5.
抵抗素(resistin)是近年来新发现的一个由脂肪组织特异表达分泌的细胞因子,其在前脂肪细胞分化过程中抑制脂肪生成.众多的研究显示抵抗素可诱导脂肪、肝脏及肌肉组织产生胰岛素抵抗,损伤机体的糖脂代谢功能.由于胰岛素抵抗在一些其他代谢性疾病及并发症如动脉粥样硬化及高血压发病机制中也发挥重要作用,提示抵抗素有可能介入了这些疾病的发病过程.本文简要介绍抵抗素的结构、分布及表达调控,并重点分析抵抗素在胰岛素抵抗中的作用.  相似文献   

6.
抵抗素(resistin)是近年来新发现的一个由脂肪组织特异表达分泌的细胞因子,其在前脂肪细胞分化过程中抑制脂肪生成。众多的研究显示抵抗素可诱导脂肪、肝脏及肌肉组织产生胰岛素抵抗,损伤机体的糖脂代谢功能。由于胰岛素抵抗在一些其他代谢性疾病及并发症如动脉粥样硬化及高血压发病机制中也发挥重要作用,提示抵抗素有可能介入了这些疾病的发病过程。本文简要介绍抵抗素的结构、分布及表达调控,并重点分析抵抗素在胰岛素抵抗中的作用。  相似文献   

7.
Type 2 diabetes is characterized by an inadequate pancreatic beta-cell response to the progressive insulin resistance. Its pathogenesis is complex and has been connected with a state of preclinical chronic inflammation. Vasoactive intestinal peptide (VIP) and its receptors play a relevant role in the homeostasis of insulin secretion as well as in the control of inflammation. In particular, VIP receptor 1 (VPAC1) has been found to be down-modulated during inflammation, and to be associated with several diseases. The objective of this study was to compare the distribution of SNPs mapping in the VIP receptor 1 gene in cases with type 2 diabetes and matched controls. Seven hundred cases with type 2 diabetes (423 males and 277 females) and 830 random controls (419 males and 411 females) were analyzed for the distribution of three common SNPs mapping in the VPAC1 gene. The results show a significantly different genotype distribution of the SNP rs9677 in the 3’-UTR of VPAC1 in female cases with type 2 diabetes compared to gender-matched controls (ptrend = 6 × 10− 4). The rs9677 CC genotype confers the highest risk (OR: 2.1) and correlates with worse clinical parameters such as higher level of total cholesterol, higher LDL/HDL ratio and a higher HbA1c concentration. The genetic association reported here indicates that VIP/VPAC1 signaling can be a relevant pathway in the pathogenesis of type 2 diabetes in females suggesting that at least some aspects of the genetic predisposition to this disease can be gender-specific.  相似文献   

8.
9.
Dehwah MA  Xu A  Huang Q 《遗传学报》2012,39(1):11-18
MicroRNAs belong to a newly identified class of small non-coding RNAs that have been widely implicated in the fine-tuning of many physiological processes such as the pathogenesis of type 2 diabetes(T2D) and obesity.Microarray studies have highlighted an altered profile of miRNA expression in insulin target tissues in diabetic and obese models.Emerging evidences suggest that miRNAs play significant roles in insulin production,secretion and actions,as well as in diverse aspects of glucose homeostasis and adipocyte differentiation. The identification of tissue-specific miRNAs implicated in T2D and obesity might be useful for the future development of effective strategies for early diagnosis and therapeutic intervention of obesity-related medical complications.  相似文献   

10.
奚晓雪  郭军 《生命科学》2010,(4):321-325
ZnT8(zinc transporter,member8)是锌离子转运蛋白,主要定位于胰岛β细胞,能将胞浆锌离子转运至胰岛素储存/分泌性囊泡内,其转运功能降低会影响胰岛素合成、储存和分泌,能增加2型糖尿病(T2DM)的发病风险。ZnT8蛋白也可作为抗原引起β细胞自身免疫损伤,诱发1型糖尿病(T1DM)。ZnT8基因多态性是引起其锌离子转运功能和免疫原性变化的重要因素,与糖尿病的发生、发展密切相关。该文综述了ZnT8与T1DM和T2DM的研究进展,提示ZnT8可作为糖尿病防治的新药物靶点。  相似文献   

11.
In recent years, the search for genetic determinants of type 2 diabetes (T2D) has changed dramatically. Although linkage and small-scale candidate gene studies were highly successful in the identification of genes, which, when mutated, caused monogenic forms of T2D, they were largely unsuccessful when applied to the more common forms of the disease. To date, these approaches have only identified two loci (PPARG, KCNJ11) robustly implicated in T2D susceptibility. The ability to perform large-scale association analysis, including genome-wide association studies (GWAS) in many thousands of samples from different populations, and subsequently, the shift to form large international collaborations to perform meta-analyses across many studies has taken the number of independent loci showing genome-wide significant associations with T2D to 44. This number includes six loci identified initially through the analysis of quantitative glycaemic phenotypes, illustrating the usefulness of this approach both to identify new disease genes and gain insight into the mechanisms leading to disease. Combined, these loci still only account for ~10% of the observed familial clustering in Europeans, leaving much of the variance unexplained. In this review, we will describe what GWAS have taught us about the genetic basis of T2D and discuss possible next steps to uncover the remaining heritability.  相似文献   

12.
The alpha 2B adrenergic receptor (A2AB) is a heptahelical G protein-coupled receptor for catecholamines. We compared the almost complete coding region (about 1,175 bp) of the A2AB gene from 48 mammalian species, including eight newly determined sequences, representing all the 18 eutherian and two marsupial orders. Comparison of the encoded proteins reveals that residues thought to be involved in agonist binding are highly conserved, as are the regions playing a role in G protein-coupling. The three extracellular loops are generally more variable than the transmembrane domains and two of the intracellular loops, indicating a lower functional constraint. However, the greatest variation is observed in the very long, third intracellular loop, where only a few residues and a polyglutamyl tract are preserved. Although this polyglutamyl domain displays a great variation in length, its presence in all described A2ABs confirms its proposed role in agonist-dependent phosphorylation of the third intracellular loop. Phylogenetic analyses of the A2AB data set, including Bayesian methods, recognized the superordinal clades Afrotheria, Laurasiatheria, and Euarchontoglires, in agreement with recent molecular evidence, albeit with lower support. Within Afrotheria, A2AB strongly supports the paenungulate clade and the association of the continental African otter shrew with Malagasy tenrecs. Among Laurasiatheria, A2AB confirms the nesting of whales within the artiodactyls, as a sister group to hippopotamus. Within the Euarchontoglires, there is constant support for rodent monophyly.  相似文献   

13.
14.
Genome-wide association studies (GWAS) have identified over 70 loci associated with type 2 diabetes (T2D). Most genetic variants associated with T2D are common variants with modest effects on T2D and are shared with major ancestry groups. To what extent the genetic component of T2D can be explained by common variants relies upon the shape of the genetic architecture of T2D. Fine mapping utilizing populations with different patterns of linkage disequilibrium and functional annotation derived from experiments in relevant tissues are mandatory to track down causal variants responsible for the pathogenesis of T2D.  相似文献   

15.
The two insulin receptor (IR) isoforms IR-A and IR-B are responsible for the pleiotropic actions of insulin and insulin-like growth factors. Consequently, changes in IR isoform expression and in the bioavailability of their ligands will impact on IR-mediated functions. Although alteration of IR isoform expression has been linked to insulin resistance, knowledge of IR isoform expression and mechanisms underlying tissue/cell-type-specific changes in metabolic disease are lacking. Using mouse models of obesity/diabetes and measuring the mRNA of the IR isoforms and mRNA/protein levels of total IR, we provide a data set of IR isoform expression pattern that documents changes in a tissue-dependent manner. Combining tissue fractionation and a new in situ mRNA hybridization technology to visualize the IR isoforms at cellular resolution, we explored the mechanism underlying the change in IR isoform expression in perigonadal adipose tissue, which is mainly caused by tissue remodelling, rather than by a shift in IR alternative splicing in a particular cell type, e.g. adipocytes.  相似文献   

16.
17.
Adiponectin and its association with insulin resistance and type 2 diabetes   总被引:1,自引:0,他引:1  
Adiponectin is an adipokine, which is expressed in adipose tissue and is thought to play an important role in glucose metabolism. Hypoadiponectinemia can cause reduction of fatty acid oxidation, decreased glucose uptake in skeletal muscle cells, and increased gluconeogenesis in hepatic cells. The level of plasma glucose can be increased. On the other hand, the decrease of fatty acid oxidation increases the level of free fatty acid (FFA), which increases the insulin resistance, and then decreases the glucose uptake, which ultimately causes increased plasma glucose and type 2 diabetes (T2D). This review describes the process from hypoadiponectinemia to T2D and the genesis of hypoadiponeetinemia at a molecular level.  相似文献   

18.
19.
《Genomics》2019,111(4):980-985
Resistin, an adipokine, is involved in obesity and Type 2 Diabetes (T2D). The current study evaluates the association between RETN polymorphisms (−638 G/A, −420C/G & −358 G/A) and the risk towards T2D. Controls and T2D patients were enrolled from Gujarat, India. Polymorphisms of RETN were genotyped by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism. For the genotype-phenotype correlation analysis Fasting Blood Glucose (FBG), Body Mass Index (BMI) and plasma lipid profile were used. Plasma levels of resistin were assayed by ELISA. Our study suggests an association of RETN −420C/G polymorphism with T2D risk. The CC genotype of RETN −420C/G polymorphism was found to be associated with FBG, BMI, and total cholesterol. Plasma resistin levels were found to be significantly increased in diabetic patients as compared to controls. Our findings suggest −420C/G polymorphism of RETN as an important factor which could pose a powerful risk towards T2D susceptibility.  相似文献   

20.
During 2003–2006 totally 1470 women 46–60 y.o., living mainly in Moscow city and Moscow region, were observed. There were three groups of women: obese, diabetic and practically healthy. The anthropometric and clinical data were compared with elemental status, estimated by atomic emission and mass spectroscopy with inductively coupled plasma (ICP-AES/ICP-MS) analyses of occipital scalp hair. The obesity in women was corresponding to elevated hair K, Hg, Pb and decreased Ca, Mg, Zn, I. The type 2 diabetes was corresponding to elevated hair K, Na, Hg and decreased Ca, Mg, Zn, Co. So, the obtained data demonstrate the very similar changes in hair elemental content in both obese and diabetic women, thus suggesting the general pathophysiological mechanisms of metabolic mineral disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号