首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modulation of aldehyde dehydrogenase (ALDH) activity has been suggested as a promising option for the prevention or treatment of many diseases. To date, only few activating compounds of ALDHs have been described. In this regard, N‐(1,3‐benzodioxol‐5‐ylmethyl)?2,6‐dichlorobenzamide has been used to protect the heart against ischemia/reperfusion damage. In the search for new modulating ALDH molecules, the binding capability of different compounds to the active site of human aldehyde dehydrogenase class 1A1 (ALDH1A1) was analyzed by molecular docking, and their ability to modulate the activity of the enzyme was tested. Surprisingly, tamoxifen, an estrogen receptor antagonist used for breast cancer treatment, increased the activity and decreased the Km for NAD+ by about twofold in ALDH1A1. No drug effect on human ALDH2 or ALDH3A1 was attained, showing that tamoxifen was specific for ALDH1A1. Protection against thermal denaturation and competition with daidzin suggested that tamoxifen binds to the aldehyde site of ALDH1A1, resembling the interaction of N‐(1,3‐benzodioxol‐5‐ylmethyl)?2,6‐dichlorobenzamide with ALDH2. Further kinetic analysis indicated that tamoxifen activation may be related to an increase in the Kd for NADH, favoring a more rapid release of the coenzyme, which is the rate‐limiting step of the reaction for this isozyme. Therefore, tamoxifen might improve the antioxidant response, which is compromised in some diseases. Proteins 2015; 83:105–116. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
5‐Methyl‐4‐methylidene‐6‐(trimethylsilyl)hexanal ( 1b ), a sila analog of the acyclic lily‐of‐the‐valley odorant 5,7,7‐trimethyl‐4‐methylideneoctanal ( 1a ), and the Si‐containing derivatives 2 – 6 were prepared in multistep syntheses, starting from Cl3SiH and Cl2SiMe2, respectively. Compounds 1b, 2 – 6 , and their new precursors were characterized by elemental analyses (C, H, N) and NMR spectroscopic studies (1H, 13C, 15N, and 29Si). To gain more information about the structure? odor correlation in the family of lily‐of‐the‐valley or ‘muguet’ odorants, C/Si analogs 1a / 1b and derivatives 2 – 6 were evaluated for their olfactory properties.  相似文献   

3.
4.
Even though the glycine conjugation pathway was one of the first metabolic pathways to be discovered, this pathway remains very poorly characterized. The bi‐substrate kinetic parameters of a recombinant human glycine N‐acyltransferase (GLYAT, E.C. 2.3.1.13) were determined using the traditional colorimetric method and a newly developed HPLC–ESI‐MS/MS method. Previous studies analyzing the kinetic parameters of GLYAT, indicated a random Bi–Bi and/or ping‐pong mechanism. In this study, the hippuric acid concentrations produced by the GLYAT enzyme reaction were analyzed using the allosteric sigmoidal enzyme kinetic module. Analyses of the initial rate (v) against substrate concentration plots, produced a sigmoidal curve (substrate activation) when the benzoyl‐CoA concentrations was kept constant, whereas the plot with glycine concentrations kept constant, passed through a maximum (substrate inhibition). Thus, human GLYAT exhibits mechanistic kinetic cooperativity as described by the Ferdinand enzyme mechanism rather than the previously assumed Michaelis–Menten reaction mechanism.  相似文献   

5.
The direct heterofunctionalization of acyclic α,β‐unsaturated aldehydes with N‐acylquinolinium ions contemplating the formation of two stereocentres is studied using dienamine catalysis. This work gives some new experimental insights on the remote stereocontrol in dienamine catalysis using unbiased aliphatic systems and large electrophiles, pointing to a (Z)‐preference of the reactive configuration of the second double bond.  相似文献   

6.
7.
8.
Setting optimal significance levels that minimize Type I and Type II errors allows for more transparent and well‐considered statistical decision making compared to the traditional α = 0.05 significance level. We use the optimal α approach to re‐assess conclusions reached by three recently published tests of the pace‐of‐life syndrome hypothesis, which attempts to unify occurrences of different physiological, behavioral, and life history characteristics under one theory, over different scales of biological organization. While some of the conclusions reached using optimal α were consistent to those previously reported using the traditional α = 0.05 threshold, opposing conclusions were also frequently reached. The optimal α approach reduced probabilities of Type I and Type II errors, and ensured statistical significance was associated with biological relevance. Biologists should seriously consider their choice of α when conducting null hypothesis significance tests, as there are serious disadvantages with consistent reliance on the traditional but arbitrary α = 0.05 significance level.  相似文献   

9.
The intermediate filament protein keratin 8 (K8) interacts with the nucleotide‐binding domain 1 (NBD1) of the cystic fibrosis (CF) transmembrane regulator (CFTR) with phenylalanine 508 deletion (ΔF508), and this interaction hampers the biogenesis of functional ΔF508‐CFTR and its insertion into the plasma membrane. Interruption of this interaction may constitute a new therapeutic target for CF patients bearing the ΔF508 mutation. Here, we aimed to determine the binding surface between these two proteins, to facilitate the design of the interaction inhibitors. To identify the NBD1 fragments perturbed by the ΔF508 mutation, we used hydrogen–deuterium exchange coupled with mass spectrometry (HDX‐MS) on recombinant wild‐type (wt) NBD1 and ΔF508‐NBD1 of CFTR. We then performed the same analysis in the presence of a peptide from the K8 head domain, and extended this investigation using bioinformatics procedures and surface plasmon resonance, which revealed regions affected by the peptide binding in both wt‐NBD1 and ΔF508‐NBD1. Finally, we performed HDX‐MS analysis of the NBD1 molecules and full‐length K8, revealing hydrogen‐bonding network changes accompanying complex formation. In conclusion, we have localized a region in the head segment of K8 that participates in its binding to NBD1. Our data also confirm the stronger binding of K8 to ΔF508‐NBD1, which is supported by an additional binding site located in the vicinity of the ΔF508 mutation in NBD1.  相似文献   

10.
11.
In the present study, the 5‐HT2A and 5‐HT1A receptors functional activity and 5‐HT2A receptor gene expression were examined in the brain of ASC/Icg and congenic AKR.CBAD13Mit76C mouse strains (genetically predisposed to catalepsy) in comparison with the parental catalepsy‐resistant AKR/J and catalepsy‐prone CBA/Lac mouse strains. The significantly reduced 5‐HT2A receptor functional activity along with decreased 5‐HT2A receptor gene expression in the frontal cortex was found in all mice predisposed to catalepsy compared with catalepsy‐resistant AKR/J. 5‐HT2A agonist DOI (0.5 and 1 mg/kg, i.p.) significantly reduced catalepsy in ASC/Icg and CBA/Lac, but not in AKR.CBAD13Mit76C mice. Essential increase in 5‐HT1A receptor functional activity was shown in catalepsy‐prone mouse strains in comparison with catalepsy‐resistant AKR/J mice. However, in AKR.CBAD13Mit76C mice it was lower than in ASC/Icg and CBA/Lac mice. The inter‐relation between 5‐HT2A and 5‐HT1A receptors in the regulation of catalepsy was suggested. This suggestion was confirmed by prevention of DOI anticataleptic effect in ASC/Icg and CBA/Lac mice by pretreatment with 5‐HT1A receptor antagonist p‐MPPI (3 mg/kg, i.p.). At the same time, the activation of 5‐HT2A receptor led to the essential suppression of 5‐HT1A receptor functional activity, indicating the opposite effect of 5‐HT2A receptor on pre‐ and postsynaptic 5‐HT1A receptors. Thus, 5‐HT2A/5‐HT1A receptor interaction in the mechanism of catalepsy suppression in mice was shown.  相似文献   

12.
13.
A novel strain of influenza A H1N1 emerged in the spring of 2009 and has spread rapidly throughout the world. Although vaccines have recently been developed that are expected to be protective, their availability was delayed until well into the influenza season. Although anti‐influenza drugs such as neuraminidase inhibitors can be effective, resistance to these drugs has already been reported. Although human saliva was known to inhibit viral infection and may thus prevent viral transmission, the components responsible for this activity on influenza virus, in particular, influenza A swine origin influenza A virus (S‐OIV), have not yet been defined. By using a proteomic approach in conjunction with beads that bind α‐2,6‐sialylated glycoprotein, we determined that an α‐2‐macroglobulin (A2M) and an A2M‐like protein are essential components in salivary innate immunity against hemagglutination mediated by a clinical isolate of S‐OIV (San Diego/01/09 S‐OIV). A model of an A2M‐based “double‐edged sword” on competition of α‐2,6‐sialylated glycoprotein receptors and inactivation of host proteases is proposed. We emphasize that endogenous A2M in human innate immunity functions as a natural inhibitor against S‐OIV.  相似文献   

14.
Although there is X‐ray crystallographic evidence that the interaction between major histocompatibility complex (MHC, in humans HLA) class I molecules and T cell receptors (TCR) or killer cell Ig‐like receptors (KIR) may be accompanied by considerable changes in the conformation of selected residues or even entire loops within TCR or KIR, conformational changes between receptor‐bound and ‐unbound MHC class I molecules of comparable magnitude have not been observed so far. We have previously determined the structure of the MHC class I molecule HLA‐A1 bound to a melanoma antigen‐encoding gene (MAGE)‐A1‐derived peptide in complex with a recombinant antibody fragment with TCR‐like specificity, Fab‐Hyb3. Here, we compare the X‐ray structure of HLA‐A1:MAGE‐A1 with that complexed with Fab‐Hyb3 to gain insight into structural changes of the MHC molecule that might be induced by the interaction with the antibody fragment. Apart from the expulsion of several water molecules from the interface, Fab‐Hyb3 binding results in major rearrangements (up to 5.5 Å) of heavy chain residues Arg65, Gln72, Arg145, and Lys146. Residue 65 is frequently and residues 72 and 146 are occasionally involved in TCR binding‐induced conformational changes, as revealed by a comparison with MHC class I structures in TCR‐liganded and ‐unliganded forms. On the other hand, residue 145 is subject to a reorientation following engagement of HLA‐Cw4 and KIR2DL1. Therefore, conformational changes within the HLA‐A1:MAGE‐A1:Fab‐Hyb3 complex include MHC residues that are also involved in reorientations in complexes with natural ligands, pointing to their central importance for the peptide‐dependent recognition of MHC molecules.  相似文献   

15.
In Chinese hamster ovary cells expressing rabbit sodium‐dependent glucose transporter (rbSGLT1) protein kinase A (PKA) activators (forskolin and 8‐Br‐cAMP) stimulated α‐methyl D ‐glucopyranoside uptake. Kinetic analysis revealed an increase in both Vmax and affinity of the transport. Immunohistochemistry and biotinylation experiments showed that this stimulation was accompanied by an increased amount of SGLT1 localized into the plasma membrane, which explains the higher Vmax of the transport. Cytochalasin D only partly attenuated the effect of forskolin as did deletion of the PKA phosphorylation site of SGLT1 in transient transfection studies. Experiments using an anti‐phosphopeptide antibody revealed that forskolin also increased the extent of phosphorylation of SGLT1 in the membrane fraction. These results suggested that regulation of SGLT1 mediated glucose transport involves an additional direct effect on SGLT1 by phosphorylation. To evaluate this assumption further, phosphorylation studies of recombinant human SGLT1 (hSGLT1) in vitro were performed. In the presence of the catalytic subunit PKA and [32P] ATP 1.05 mol of phosphate were incorporated/mol of hSGLT1. Additionally, phosphorylated hSGLT1 demonstrated a reduction in tryptophan fluorescence intensity and a higher quenching by the hydrophilic Trp quencher acrylamide, particularly in the presence of D ‐glucose. These results indicate that PKA‐mediated phosphorylation of SGLT1 changes the conformation of the empty carrier and the glucose carrier complex, probably causing the increase in transport affinity. Thus, PKA‐mediated phosphorylation of the transporter represents a further mechanism in the regulation of SGLT1‐mediated glucose transport in epithelial cells, in addition to a change in surface membrane expression. J. Cell. Biochem. 106: 444–452, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
17.
Chromatography is an essential tool for purifying biopharmaceutical products. Many processes are still developed based on traditional routines and empirical procedures. Product losses are mostly due to insufficient optimization of purification setups and product sensitivity to process conditions. In order to eliminate these shortcomings, a systematic strategy for the setup of ion‐exchange chromatography is presented, which considers both product stability as well as operational conditions. The stages—a hybrid approach combining high‐throughput screening and analytical small‐scale chromatography—are as follows: (1) pH stability (short‐term); (2) pH stability (long‐term), followed by a screening of additives to enhance protein stability, if required; (3) analytical pH gradient chromatography for evaluation of the operational pH window; and (4) salt stability (long‐term) in the operational pH window determined. The efficiency and straightforwardness of the strategy were shown in a case study on capturing the human α‐galactosidase A enzyme. Following the above procedure, the enzyme was found to be salt‐unstable; a purification factor of 13.2, a concentration factor of 4, and an overall yield of 84.3% were achieved. The applied strategy allowed for a quick establishment of a dedicated capture step at low salt concentrations under stable conditions by well‐chosen prior screening experiments.  相似文献   

18.
19.
20.
Niemann‐Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by over‐accumulation of low‐density lipoprotein‐derived cholesterol and glycosphingolipids in late endosomes/lysosomes (LE/L) throughout the body. Human mutations in either NPC1 or NPC2 genes have been directly associated with impaired cholesterol efflux from LE/L. Independent from its role in cholesterol homeostasis and its NPC2 partner, NPC1 was unexpectedly identified as a critical player controlling intracellular entry of filoviruses such as Ebola. In this study, a yeast three‐hybrid system revealed that the NPC1 cytoplasmic tail directly interacts with the clathrin adaptor protein AP‐1 via its acidic/di‐leucine motif. Consequently, a nonfunctional AP‐1A cytosolic complex resulted in a typical NPC‐like phenotype mainly due to a direct impairment of NPC1 trafficking to LE/L and a partial secretion of NPC2. Furthermore, the mislocalization of NPC1 was not due to cholesterol accumulation in LE/L, as it was not rescued upon treatment with Mβ‐cyclodextrin, which almost completely eliminated intracellular free cholesterol. Our cumulative data demonstrate that the cytosolic clathrin adaptor AP‐1A is essential for the lysosomal targeting and function of NPC1 and NPC2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号