共查询到20条相似文献,搜索用时 15 毫秒
1.
Matthew D. Shawkey Liliana D'Alba Ming Xiao Matthew Schutte Richard Buchholz 《Journal of morphology》2015,276(4):378-384
Iridescent colors in feathers are some of the brightest in nature, and are produced by coherent light scattering from periodic arrangements of melanosomes (melanin‐containing organelles). Hollow melanosomes, an evolutionary innovation largely restricted to birds, contain an optically powerful combination of high and low refractive indices (from the melanin and air, respectively) that enables production of brighter and more saturated colors than solid melanosomes. However, despite their significance to avian color and potential utility as optical biomaterials, little is known about the ontogeny of either the melanosomes themselves or the nanostructures they comprise. We used light and electron microscopy to characterize nanostructural development in regenerating feathers of wild turkeys, a species with iridescent color produced by a hexagonally close‐packed array of hollow melanosomes. We found that melanosomes form as solid bodies in melanocytes. Later in development, largely after placement in developing barbules, their interiors dissolve and leave hollow cores. These now hollow melanosomes are initially disorganized in the barbule, but become close‐packed as they are pulled to the edge of the barbule, likely through a combination of forces including depletion–attraction. These data suggest that these structurally colored tissues are self‐assembled and represent novel pathways of development. J. Morphol. 276:378–384, 2015. © 2014 Wiley Periodicals, Inc. 相似文献
2.
Vengama N. Modepalli Alexandra L. Rodriguez Rui Li Sivapriya Pavuluri Kevin R. Nicholas Colin J. Barrow David R. Nisbet Richard J. Williams 《Peptide Science》2014,102(2):197-205
Nanomaterials are rich in potential, particularly for the formation of scaffolds that mimic the landscape of the host environment of the cell. This niche arises from the spatial organization of a series of biochemical and biomechanical signals. Self‐assembling peptides have emerged as an important tool in the development of functional (bio‐)nanomaterials; these simple, easily synthesized subunits form structures which present the properties of these larger, more complex systems. Scaffolds based upon these nanofibrous matrices are promising materials for regenerative medicine as part of a new methodology in scaffold design where a “bottom‐up” approach is used in order to simulate the native cellular milieu. Importantly, SAPs hold the potential to be bioactive through the presentation of biochemical and biomechanical signals in a context similar to the natural extracellular matrix, making them ideal targets for providing structural and chemical support in a cellular context. Here, we discuss a new methodology for the presentation of biologically relevant epitopes through their effective presentation on the surface of the nanofibers. Here, we demonstrate that these signals have a direct effect on the viability of cells within a three‐dimensional matrix as compared with an unfunctionalized, yet mechanically and morphologically similar system. © 2014 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 102: 197–205, 2014. 相似文献
3.
Ning Zhou Xing Gao Yujian Lv Junping Cheng Wenxia Zhou Keliang Liu 《Journal of peptide science》2014,20(11):868-875
It is well known that GnRH analogs can self‐assemble into amyloid fibrils and that the duration of action of GnRH analogs depends on the ability of the amyloid to slowly release active peptides. The aim of this study was to investigate the influence of the amino acid residues at position 7 of GnRH analogues on peptide self‐assembly. It was found that the dominant shape of the nanostructure can be changed when the structures of the residues at position 7 differ significantly from that of leucine in Degarelix. When the backbone length was extended (peptide 9), or the side chain of the residue at position 7 was replaced by an aromatic ring (peptide 6), or the rotation of the amide bond was restricted (peptide 8), the nanostructure changed from fibrils to vesicles. The results also indicate that the increasing hydrophilicity had little influence on the nanostructure morphology. In addition, a suitable release rate was found to play a more important role for the duration of the peptide action by maintaining the equilibrium between the drug concentration and the persistent release time, while the nanostructure shape was found to exert little influence on the duration of the peptide action. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
4.
Chaitanya K. Thota Allison A. Berger Bjrn Harms Maria Seidel Christoph Bttcher Hans von Berlepsch Chaunxiong Xie Roderich Süssmuth Christian Roth Beate Koksch 《Peptide Science》2020,112(1)
Infections caused by Staphylococcal and Micrococcal species represent a major public health burden. Although treatments do exist, these tend to be associated with cytotoxic effects; furthermore, the emergence of antimicrobial resistance presents an immediate challenge. New classes of active compounds are required to address these threats to human health. Here we present a de novo peptidomimetic strategy that produces self‐assembling cationic antimicrobials. To identify a candidate compound with bactericidal activity, a small library of 8 peptidomimetics comprising ultrashort peptide sequences attached to a 3,5‐diaminobenzoic acid scaffold was generated and tested against Micrococcus luteus and Staphylococcus aureus. Self‐assembly appears to be the driving force for increased potency, likely by contributing to increased local surface charge density and peptide mass and producing a multivalent effect that enhances electrostatic interactions with negatively charged bacterial membranes, causing membrane disruption. The most active library member C7 forms patched micellar nanoparticles and has an activity higher than that of known natural antimicrobial peptides against M luteus. C7 also shows activity comparable to that of gramicidin S and the standard antibiotic vancomycin used in antibacterial therapy, but with a greater selectivity index. Importantly, C7 is also nontoxic and nonhemolytic, unlike the currently administered vancomycin, which can cause acute renal failure, and gramicidin S, which is highly hemolytic in nature. The short sequence length, ease of design, convenient synthesis strategy, and presence of a substitutable hydrophobic residue that enables self‐assembly into different nanostructures make this model compound highly attractive for generating cost‐effective, rapid‐acting peptide‐based antimicrobials. 相似文献
5.
Chilukuri Subbalakshmi Sunkara V. Manorama Ramakrishnan Nagaraj 《Journal of peptide science》2012,18(5):283-292
The morphology of structures formed by the self‐assembly of short N‐terminal t‐butyloxycarbonyl (Boc) and C‐terminal methyl ester (OMe) protected and Boc‐deprotected hydrophobic peptide esters was investigated. We have observed that Boc‐protected peptide esters composed of either only aliphatic hydrophobic amino acids or aliphatic hydrophobic amino acids in combination with aromatic amino acids, formed highly organized structures, when dried from methanol solutions. Transmission and scanning electron microscopic images of the peptides Boc‐Ile‐Ile‐OMe, Boc‐Phe‐Phe‐Phe‐Ile‐Ile‐OMe and Boc‐Trp‐Ile‐Ile‐OMe showed nanotubular structures. Removal of the Boc group resulted in disruption of the ability to form tubular structures though spherical aggregates were formed. Both Boc‐Leu‐Ile‐Ile‐OMe and H‐Leu‐Ile‐Ile‐OMe formed only spherical nanostructures. Dynamic light scattering studies showed that aggregates of varying dimensions were present in solution suggesting that self‐assembly into ordered structures is facilitated by aggregation in solution. Fourier transform infrared spectroscopy and circular dichroism spectroscopy data show that although all four of the protected peptides adopt well‐defined tertiary structures, upon removal of the Boc group, only H‐Phe‐Phe‐Phe‐Ile‐Ile‐OMe had the ability to adopt β‐structure. Our results indicate that hydrophobic interaction is a very important determinant for self‐assembly and presence of charged and aromatic amino acids in a peptide is not necessary for self‐assembly. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
6.
Self‐assembly of PAs composed of palmitic acid and several repeated heptad peptide sequences, C15H31CO‐(IEEYTKK)n‐NH2 (n = 1–4, represented by PA1–PA4), was investigated systematically. The secondary structures of the PAs were characterized by CD. PA3 and PA4 (n = 3 and 4, respectively) showed an α‐helical structure, whereas PA1 and PA2 (n = 1 and 2, respectively) did not display an α‐helical conformations under the tested conditions. The morphology of the self‐assembled peptides in aqueous medium was studied by transmission electron microscopy. As the number of heptad repeats in the PAs increased, the nanostructure of the self‐assembled peptides changed from nanofibers to nanovesicles. Changes of the secondary structures and the self‐assembly morphologies of PA3 and PA4 in aqueous medium with various cations were also studied. The critical micelle concentrations were determined using a pyrene fluorescence probe. In conclusion, this method may be used to design new peptide nanomaterials. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
7.
Polybissilsesquioxanes with single‐handed helical morphologies attracted much attention during the last decade, which could be applied as asymmetric catalysts and chiral stationary phases. Herein, a pair of chiral biphenylene‐bridged bissilsesquioxanes were synthesized. They self‐assembled into helical bundles in ethanol, behavior that was confirmed in field emission scanning electron microscopy images. Circular dichroism analysis indicated that the biphenylene groups twisted in a single‐handed fashion. Single‐handed helical polybissilsesquioxane bundles were prepared via polycondensation of the bissilsesquioxanes, using a self‐templating approach. Because of the shrinkage that occurred during polycondensation, the helical pitches of the bundles were shorter than those of their corresponding organic self‐assemblies. The wide‐angle X‐ray diffraction pattern indicated that there were no π–π interactions among the diphenylene groups. The circular dichroism spectra indicated that the chirality was successfully transferred from the bissilsesquioxane self‐assemblies to the polybissilsesquioxane. The polybissilsesquioxanes displayed a capacity for the adsorption of nitrobenzene and had potential application for enantioseparation. Chirality 28:44–48, 2016. © 2015 Wiley Periodicals, Inc. 相似文献
8.
《Peptide Science》2017,108(6)
Short peptides composed of phenylalanine and sequences derived from amyloidogenic peptides have the ability to self‐assemble to form nanostructures including hydrogels. The self‐assembly of peptides composed of only hydrophobic amino acids and aliphatic protecting groups have not been investigated in detail. We have examined various aspects of nanostructures formed by N‐terminal t‐butyloxycarbonyl‐protected aliphatic dipeptide methyl esters dissolved in various solvents. Scanning electron microscopic images indicate that depending on the sequence, position of the amino acid and solvent of dissolution, the peptides self‐assemble into superstructures such as nanotubes and needles particularly from aqueous mixtures of organic solvents. Crystallization was not required for self‐assembly into nanostructures. Circular dichroism and attenuated total internal reflection fourier transform infrared spectroscopy studies indicate that the peptides adopt β‐conformation in the superstructures both in solution and solid state. The nanostructures composed of entirely aliphatic moieties have the ability to bind to aromatic dyes such as Rhodamine 6G, Nile red and Congo red. They also bind to Thioflavin T although the structures do not resemble amyloid fibrils. The powder X‐ray diffraction patterns suggest distinctive packing of the monomers. These structures are stabilized by intermolecular hydrogen bonds and hydrophobic interactions resulting in superstructures containing long distance order and were devoid of hemolytic activity. 相似文献
9.
Polycations are very useful in biotechnology. However, most existing polycations have high toxicity that significantly limits their clinical translation. We designed poly(ethylene argininylaspartate diglyceride) (PEAD) that is based on arginine, aspartic acid, glycerol, and ethylene glycol. A set of in vitro assays demonstrated that PEAD exhibited no cytotoxicity at 1 mg/mL, which is at least 100 times higher than the widely used polycation-polyethylenimine. Subcutaneous injection of 1 mg PEAD in rats did not cause an adverse response acutely or after 4 weeks. Zeta potential measurements revealed that PEAD has high affinity to biological polyanions such as DNA and hyaluronic acid. This polycation represents a new platform of biocompatible polycations that may lead to clinical innovations in gene therapy, controlled release, tissue engineering, biosensors, and medical devices. 相似文献
10.
《Peptide Science》2018,110(1)
Amphipathic peptides with alternating polar and nonpolar amino acid sequences efficiently self‐assemble into functional β‐sheet fibrils as long as the nonpolar residues have sufficient hydrophobicity. For example, the Ac‐(FKFE)2‐NH2 peptide rapidly self‐assembles into β‐sheet bilayer nanoribbons, while Ac‐(AKAE)2‐NH2 fails to self‐assemble under similar conditions due to the significantly reduced hydrophobicity and β‐sheet propensity of Ala relative to Phe. Herein, we systematically explore the effect of substituting only two of the four Ala residues at various positions in the Ac‐(AKAE)2‐NH2 peptide with amino acids of increasing hydrophobicity, β‐sheet potential, and surface area (including Phe, 1‐naphthylalanine (1‐Nal), 2‐naphthylalanine (2‐Nal), cyclohexylalanine (Cha), and pentafluorophenylalanine (F5‐Phe)) on the self‐assembly propensity of the resulting sequences. It was found that double Phe variants, regardless of the position of substitution, failed to self‐assemble under the conditions used in this study. In contrast, all double 1‐Nal and 2‐Nal variants readily self‐assembled, albeit at differing rates depending on the substitution patterns. To determine whether this was due to hydrophobicity or side chain surface area, we also prepared double Cha and F5‐Phe variant peptides (both side chain groups are more hydrophobic than Phe). Each of these variants also underwent effective self‐assembly, with the aromatic F5‐Phe peptides doing so with greater efficiency. These findings provide insight into the role of amino acid hydrophobicity and sequence pattern on self‐assembly proclivity of amphipathic peptides and on how targeted substitutions of nonpolar residues in these sequences can be exploited to tune the characteristics of the resulting self‐assembled materials. 相似文献
11.
Although the development of chemically induced, self-assembled protein-based materials is rapidly expanding, methods for directing their assembly in solution are sparse, and problems of population heterogeneity remain. By exerting control over the assembly of advanced protein structures, new classes of ordered protein nanomaterials become feasible, affecting numerous applications ranging from therapeutics to nanostructural engineering. Focusing on a protein-based method for modulating the stability of a chemically induced dihydrofolate reductase (DHFR) dimer, we demonstrate the sensitivity of a methotrexate competition assay in determining the change in DHFR-DHFR binding cooperativity via interfacial mutations over a 1.3 kcal/mol range. This represents a change of more than 40% of the dimer complex binding energy conferred from protein-protein cooperativity (~3.1 kcal/mol). With the development of this investigative system and refinement of protein-based techniques for complex stability modulation, the directed assembly of protein nanomaterials into heterocomplexes and a concomitant decrease in population heterogeneity becomes a realizable goal. 相似文献
12.
Marat A. Ziganshin Radik A. Larionov Alexander V. Gerasimov Sufia A. Ziganshina Alexander E. Klimovitskii Khasan R. Khayarov Timur A. Mukhametzyanov Valery V. Gorbatchuk 《Journal of peptide science》2019,25(8)
Thermal treatment of short‐chain oligopeptides is able to initiate the process of their self‐assembly with the formation of organic nanostructures with unique properties. On the other hand, heating can lead to a chemical reaction with the formation of new substances with specific properties and ability to form structures with different morphology. Therefore, in order to have a desired process, researcher needs to find its temperature range. In the present work, cyclization of L‐isoleucyl‐L‐alanine dipeptide in the solid state upon heating was studied. Kinetic parameters of this reaction were estimated within the approaches of the nonisothermal kinetics. The correlation between side chain structure of dipeptides and temperature of their cyclization in the solid state was found for the first time. This correlation may be used to predict the temperature, at which dipeptide self‐assembly changes to chemical reaction. The differences in self‐assembly of linear and cyclic dipeptides were demonstrated using atomic force microscopy. The effect of dipeptide concentration in a source solution and an organic solvent used on self‐assembly of dipeptides was shown. The new information obtained on the thermal properties and self‐assembly of linear and cyclic forms of L‐isoleucyl‐L‐alanine may be useful for the design of new nanomaterials based on oligopeptides, as well as for the synthesis of cyclic oligopeptides. 相似文献
13.
DNA is a widely used biopolymer for the construction of nanometer‐scale objects due to its programmability and structural predictability. One long‐standing goal of the DNA nanotechnology field has been the construction of three‐dimensional DNA crystals. We previously determined the X‐ray crystal structure of a DNA 13‐mer that forms a continuously hydrogen bonded three‐dimensional lattice through Watson‐Crick and non‐canonical base pairs. Our current study sets out to understand how the sequence of the Watson‐Crick duplex region influences crystallization of this 13‐mer. We screened all possible self‐complementary sequences in the hexameric duplex region and found 21 oligonucleotides that crystallized. Sequence analysis showed that one specific Watson‐Crick pair influenced the crystallization propensity and the speed of crystal self‐assembly. We determined X‐ray crystal structures for 13 of these oligonucleotides and found sequence‐specific structural changes that suggests that this base pair may serve as a structural anchor during crystal assembly. Finally, we explored the crystal self‐assembly and nucleation process. Solution studies indicated that these oligonucleotides do not form base pairs in the absence of cations, but that the addition of divalent cations leads to rapid self‐assembly to higher molecular weight complexes. We further demonstrate that crystals grown from mixtures of two different oligonucleotide sequences contain both oligonucleotides. These results suggest that crystal self‐assembly is nucleated by the formation of the Watson‐Crick duplexes initiated by a simple chemical trigger. This study provides new insight into the role of sequence for the assembly of periodic DNA structures. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 618–626, 2015. 相似文献
14.
Self‐assembly of lipids or polymeric amphiphiles into vesicular structures has been achieved by various methods since the first generation of liposomes in the 1960s. Vesicles can be obtained with diameters from the nanometer to the micrometer regime. From the perspective of cell mimicking, vesicles with diameters of several micrometers are most relevant. These vesicles are called giant unilamellar vesicles (GUVs). Commonly used methods to form GUVs are solvent‐displacement techniques, especially since the development of microfluidics. These methodologies however, trap undesirable organic solvents in their membrane as well as other potentially undesired additives (surfactants, polyelectrolytes, polymers, etc.). In contrast to those strategies, summarized herein are solvent‐free approaches as suitable clean alternatives. The vesicles are formed from a dry thin layer of the lipid or amphiphilic polymers and are hydrated in aqueous media using the entropically favored self‐assembly of amphiphiles into GUVs. The rearrangement of the amphiphilic films into vesicular structures is usually aided by shear forces such as an alternative current (electroformation) or the swelling of water‐soluble polymeric supports (gel‐assisted hydration). 相似文献
15.
A novel heptapeptide comprising Ile‐Gln‐Ser‐Pro‐His‐Phe‐Phe (IQSPHFF) identified and found to undergo self‐assembly into microparticles in solution. To understand the effects of ultraviolet (UV) irradiation on the self‐assembly process, IQSPHFF solutions were exposed to the UV light of 365 nm at room temperature. This exposure was found to have a profound effect on the morphology of the self‐assembled aggregates, converting the microparticles to nanorod shapes. Circular dichroism and FTIR studies indicated distinct structural differences in the arrangements of the peptide moieties before and after UV irradiation. However, Mass spectrum analysis and high performance liquid chromatography of the peptide molecules before and after UV irradiation demonstrated that the chemical structure of IQSPHFF was not changed. UV–visible spectroscopy and fluorescence spectroscopy studies showed that the absorption peak both increased after UV irradiation. Overall, our data show that the heptapeptide with UV‐responsive properties. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 272–278, 2014. 相似文献
16.
Debika Datta Adicherla Harikrishna Ramakrishnan Nagaraj Nitin Chaudhary 《Peptide Science》2019,111(3)
Self‐assembly of peptides and proteins into aggregates with a signature of cross‐β conformation is a hallmark of amyloids. Short peptides have provided important insights in understanding the various interactions that drive self‐assembly as well as the molecular architecture of the self‐assembled structures. The short amyloidogenic‐stretch of β‐amyloid, Aβ16‐22 (Ac‐KLVFFAE‐am), is a good model peptide to study the aspects of β‐amyloid fibril formation. In order to investigate how a turn‐supporting sequence could modulate the interaction of the Ac‐KLV XZ AE‐am chains, where X and Z are the aromatic amino acids, Phe, Tyr, or Trp, we investigated the self‐assembly of Ac‐KLVFFAE‐am, Ac‐KLVFYAE‐am, Ac‐KLVYYAE‐am, and Ac‐KLVWWAE‐am separated by turn‐inducing dipeptide motifs, Asn‐Gly, DPro‐Gly, and Aib‐DPro. The peptides harboring β‐turn‐inducing motifs aggregate rapidly causing large enhancements in thioflavin T (ThT) fluorescence compared to control, β‐turn motif lacking peptides. The morphology of fibrils strongly depends on the type of β‐turn. Ac‐KLVFYAE‐am repeats separated by Aib‐DPro and DPro‐Gly have the highest aggregation propensity among all the peptides studied; they caused very large enhancement in ThT fluorescence. Ac‐KLVYYAE‐am is largely non‐amyloidogenic; the DPro‐Gly and Aib‐DPro connected repeats, however, resulted in distinct fibrils that bind ThT. The study indicates that β‐turn motifs can be exploited to modulate and control the aggregation propensity of peptides and the morphology of aggregates. 相似文献
17.
Ovalbumin and lysozyme are two main proteins in hen egg white with the isoelectric points of 4.8 and 11, respectively. Herein we report the manufacture of stable, narrowly distributed nanogels (hydrodynamic radius about 100 nm) using a novel and convenient method: ovalbumin and lysozyme solutions were mixed at pH 5.3, the mixture solution was adjusted to pH 10.3, then subsequently stirred and heated. The nanogels were characterized using a combination of techniques. The nanogels have spherical shape and core-shell structure. The core is mainly composed of lysozyme and the shell is mainly composed of ovalbumin. The proteins in the nanogels are in denatured states and they are bound by intermolecular hydrophobic interactions, hydrogen bonds, and disulfide bonds. The charges of the nanogels can be modulated by the pH of the medium. The electrostatic repulsion of ovalbumin molecules on the nanogel surface stabilizes the nanogels in aqueous solution. The formation mechanism of the nanogels is discussed. 相似文献
18.
Collagen, a critical part of the extra-cellular matrix of tissues, is a popular native material for building scaffolding for tissue-engineering applications. To mimic the structural and functional profiles of materials found in the native extra-cellular matrix, numerous efforts have been made toward developing a novel scaffold combining collagen with other biomacromolecules. All of these works have been focused on improving the mechanical or biochemical properties of the collagen-based matrix. Unfortunately, most of these studies have failed to consider the nanostructure of collagen in the complex matrix. The aim of our study was to investigate the aggregation pattern of collagen after addition of polysaccharides with positive or negative charge, the dose-response relationship, and the effect on reconstitution kinetics. Generally, collagen self-assembles into fibrils with a diameter of around 95 nm but, in the presence of various polysaccharides in varying amounts, collagen self-assembles into different shapes with larger diameters compared with collagen alone. Although the morphology and diameter of the collagen fibrils varies with reconstitution conditions, the D-periods of the fibrils all remained the same regardless of the species or concentration of polysaccharides. The kinetics of fibril formation was determined from turbidity-time curves. All turbidity curves demonstrated that polysaccharides only alter the lag time and time frame of reconstitution, but have no significant effect on the mechanism of reconstitution. Together our data indicate that the presence of biomacromolecules can alter the kinetics and the 3D fibril ultrastructure of assembled collagen and that the consequent structural changes may affect cellular responses in medical applications. 相似文献
19.
David A. Turner Peter Baillie‐Johnson Alfonso Martinez Arias 《BioEssays : news and reviews in molecular, cellular and developmental biology》2016,38(2):181-191
Understanding the mechanisms of early embryonic patterning and the timely allocation of specific cells to embryonic regions and fates as well as their development into tissues and organs, is a fundamental problem in Developmental Biology. The classical explanation for this process had been built around the notion of positional information. Accordingly the programmed appearance of sources of Morphogens at localized positions within a field of cells directs their differentiation. Recently, the development of organs and tissues from unpatterned and initially identical stem cells (adult and embryonic) has challenged the need for positional information and even the integrity of the embryo, for pattern formation. Here we review the emerging area of organoid biology from the perspective of Developmental Biology. We argue that the events underlying the development of these systems are not purely linked to “self‐organization,” as often suggested, but rather to a process of genetically encoded self‐assembly where genetic programs encode and control the emergence of biological structures. 相似文献
20.
Evan M. Smoak Melanie P. Dabakis Marsiyana M. Henricus Robert Tamayev Ipsita A. Banerjee 《Journal of peptide science》2011,17(1):14-23
In this work we have probed the interactions of the amyloid Aβ(1–42) peptide with self‐assembled nanospheres. The nanospheres were formed by self‐assembly of a newly developed bolaamphiphile bis(N‐alpha‐amido‐methionine)‐1,8 octane dicarboxylate under aqueous conditions. It was found that the interactions of the Aβ(1–42) peptide with the nanospheres were concentration as well as pH dependent and the peptide largely adopts a random coil structure upon interacting with the nanospheres. Further, upon incorporation with the nanospheres, we observed a relative diminution in the aggregation of Aβ(1–42) at low concentrations of Aβ(1–42). The interactions between the nanospheres and the Aβ(1–42) peptide were investigated by atomic force microscopy, transmission electron microscopy, circular dichroism, FTIR and fluorescence spectroscopy, and the degree of fibrillation in the presence and absence of nanospheres was monitored by the Thioflavine T assay. We believe that the outcome from this work will help further elucidate the binding properties of Aβ peptide as well as designing nanostructures as templates for further investigating the nucleation and fibrillation process of Aβ‐like peptides. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd. 相似文献