首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel heptapeptide comprising Ile‐Gln‐Ser‐Pro‐His‐Phe‐Phe (IQSPHFF) identified and found to undergo self‐assembly into microparticles in solution. To understand the effects of ultraviolet (UV) irradiation on the self‐assembly process, IQSPHFF solutions were exposed to the UV light of 365 nm at room temperature. This exposure was found to have a profound effect on the morphology of the self‐assembled aggregates, converting the microparticles to nanorod shapes. Circular dichroism and FTIR studies indicated distinct structural differences in the arrangements of the peptide moieties before and after UV irradiation. However, Mass spectrum analysis and high performance liquid chromatography of the peptide molecules before and after UV irradiation demonstrated that the chemical structure of IQSPHFF was not changed. UV–visible spectroscopy and fluorescence spectroscopy studies showed that the absorption peak both increased after UV irradiation. Overall, our data show that the heptapeptide with UV‐responsive properties. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 272–278, 2014.  相似文献   

2.
It is well known that GnRH analogs can self‐assemble into amyloid fibrils and that the duration of action of GnRH analogs depends on the ability of the amyloid to slowly release active peptides. The aim of this study was to investigate the influence of the amino acid residues at position 7 of GnRH analogues on peptide self‐assembly. It was found that the dominant shape of the nanostructure can be changed when the structures of the residues at position 7 differ significantly from that of leucine in Degarelix. When the backbone length was extended (peptide 9), or the side chain of the residue at position 7 was replaced by an aromatic ring (peptide 6), or the rotation of the amide bond was restricted (peptide 8), the nanostructure changed from fibrils to vesicles. The results also indicate that the increasing hydrophilicity had little influence on the nanostructure morphology. In addition, a suitable release rate was found to play a more important role for the duration of the peptide action by maintaining the equilibrium between the drug concentration and the persistent release time, while the nanostructure shape was found to exert little influence on the duration of the peptide action. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
The Sarcolipin (SLN) is a single trans‐membrane protein that can self‐assembly to dimer and oligomer for playing importantphysiological function. In this work, we addressed the dimerization of wild type SLN (wSLN) and its mutants (mSLNs) – I17A and I20A, using both coarse‐grained (CG) and atomistic (AT) molecular dynamics (MD) simulations. Our results demonstrated that wSLN homodimer assembled as a left‐handed helical complex, while mSLNs heterodimers assembled as right‐handed complexes. Analysis of residue‐residue contacts map indicated that isoleucine (Ile)‐leucione (Leu) zipper domain played an important role in dimerization. The potential of mean force (PMF) demonstrated that wSLN homodimer was more stable than mSLNs heterodimers. Meanwhile, the mSLNs heterodimers preferred right‐handed rather than left‐handed helix. AT‐MD simulations for wSLN and mSLNs were also in line with CG‐MD simulations. These results provided the insights for understanding the mechanisms of SLNs self‐assembling. Proteins 2017; 85:1065–1077. © 2017 Wiley Periodicals, Inc.  相似文献   

4.
Oligopeptides are well‐known to self‐assemble into a wide array of nanostructures including β‐sheet‐rich fibers that when present above a critical concentration become entangled and form self‐supporting hydrogels. The length, quantity, and interactions between fibers influence the mechanical properties of the hydrogel formed and this is typically achieved by varying the peptide concentration, pH, ionic strength, or the addition of a second species or chemical cross‐linking agent. Here, we outline an alternative, facile route to control the mechanical properties of the self‐assembling octa‐peptide, FEFEFKFK (FEKII); simply doping with controlled quantities of its double length peptide, FEFEFKFK‐GG‐FKFKFEFE (FEKII18). The structure and properties of a series of samples were studied here (0–100 M% of FEKII18) using Fourier transform infrared, small angle X‐ray scattering, transmission electron microscopy, and oscillatory rheology. All samples were found to contain elongated, flexible fibers and all mixed samples contained Y‐shaped branch points and parallel fibers which is attributed to the longer peptide self‐assembling within two fibers, thus creating a cross‐link in the network structure. Such behavior was reflected in an increase in the elasticity of the mixed samples with increasing quantity of double peptide. Interestingly the elastic modulus increased up to 30 times the pure FEKII value simply by adding 28 M% of FEKII18. These observations provide an easy, off‐the‐shelf method for an end‐user to control the cross‐linked network structure of the peptide hydrogel, and consequently strength of the hydrogel simply by physically mixing pre‐determined quantities of two similar peptide molecules. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 669–680, 2014.  相似文献   

5.
Amyloid‐like peptides are an ideal model for the mechanistic study of amyloidosis, which may lead to many human diseases, such as Alzheimer disease. This study reports a strong second harmonic generation (SHG) effect of amyloid‐like peptides, having a signal equivalent to or even higher than those of endogenous collagen fibers. Several amyloid‐like peptides (both synthetic and natural) were examined under SHG microscopy and shown they are SHG‐active. These peptides can also be observed inside cells (in vitro). This interesting property can make these amyloid‐like peptides second harmonic probes for bioimaging applications. Furthermore, SHG microscopy can provide a simple and label‐free approach to detect amyloidosis. Lattice corneal dystrophy was chosen as a model disease of amyloidosis. Morphological difference between normal and diseased human corneal biopsy samples can be easily recognized, proving that SHG can be a useful tool for disease diagnosis.  相似文献   

6.
A series of Trp and Arg analogs of antibacterial indolicidin (Ind) was synthesized and the antimicrobial and hemolytic activities were investigated. [L9]Ind, [L11]Ind, [K8,L9]Ind and [K6, 8,L9]Ind showed desirable characteristics, exhibiting negligible hemolytic activity while keeping strong antibacterial activity. The results indicated that the Trp residue at position 11 essentially contributes to both activities and one can not be exchanged for the other, whereas the Trp residues at positions 4 and 9 play important roles in antimicrobial and hemolytic activities, respectively. The Trp residues at positions 6 and 8 play no important roles in biological activities. We then found that the retro analog of Ind showed higher antibacterial activity than Ind against both Gram‐positive and Gram‐negative bacteria but remarkably lower hemolytic activity than that of Ind. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Peptide‐oligonucleotide conjugates (POCs) are interesting molecules as they covalently combine 2 of the most important biomacromolecules. Sometimes, the synthesis of POCs involves unexpected difficulties; however, POCs with self‐assembling propensity are even harder to synthesize and purify. Here, we show that solid‐phase peptide fragment condensation combined with thiol‐maleimide or copper‐catalyzed azide‐alkyne cycloaddition click chemistries is useful for the syntheses of self‐assembling POCs. We describe guidelines for the selection of reactive functional groups and their placement during the conjugation reaction and consider the cost‐effectiveness of the reaction. Purification is another important challenge during the preparation of POCs. Our results show that polyacrylamide gel electrophoresis under denaturing conditions is most suitable to recover a high yield of self‐assembling POCs. This report provides the first comprehensive study of the preparation of self‐assembling POCs, which will lay a foundation for the development of elegant and sophisticated molecular assemblies.  相似文献   

8.
Polybissilsesquioxanes with single‐handed helical morphologies attracted much attention during the last decade, which could be applied as asymmetric catalysts and chiral stationary phases. Herein, a pair of chiral biphenylene‐bridged bissilsesquioxanes were synthesized. They self‐assembled into helical bundles in ethanol, behavior that was confirmed in field emission scanning electron microscopy images. Circular dichroism analysis indicated that the biphenylene groups twisted in a single‐handed fashion. Single‐handed helical polybissilsesquioxane bundles were prepared via polycondensation of the bissilsesquioxanes, using a self‐templating approach. Because of the shrinkage that occurred during polycondensation, the helical pitches of the bundles were shorter than those of their corresponding organic self‐assemblies. The wide‐angle X‐ray diffraction pattern indicated that there were no π–π interactions among the diphenylene groups. The circular dichroism spectra indicated that the chirality was successfully transferred from the bissilsesquioxane self‐assemblies to the polybissilsesquioxane. The polybissilsesquioxanes displayed a capacity for the adsorption of nitrobenzene and had potential application for enantioseparation. Chirality 28:44–48, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
Self‐assembly of PAs composed of palmitic acid and several repeated heptad peptide sequences, C15H31CO‐(IEEYTKK)n‐NH2 (n = 1–4, represented by PA1–PA4), was investigated systematically. The secondary structures of the PAs were characterized by CD. PA3 and PA4 (n = 3 and 4, respectively) showed an α‐helical structure, whereas PA1 and PA2 (n = 1 and 2, respectively) did not display an α‐helical conformations under the tested conditions. The morphology of the self‐assembled peptides in aqueous medium was studied by transmission electron microscopy. As the number of heptad repeats in the PAs increased, the nanostructure of the self‐assembled peptides changed from nanofibers to nanovesicles. Changes of the secondary structures and the self‐assembly morphologies of PA3 and PA4 in aqueous medium with various cations were also studied. The critical micelle concentrations were determined using a pyrene fluorescence probe. In conclusion, this method may be used to design new peptide nanomaterials. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Antimicrobial resistance (AMR) is a silent pandemic declared by the WHO that requires urgent attention in the post-COVID world. AMR is a critical public health concern worldwide, potentially affecting people at different stages of life, including the veterinary and agriculture industries. Notably, very few new-age antimicrobial agents are in the current developmental pipeline. Thus, the design, discovery, and development of new antimicrobial agents are required to address the menace of AMR. Antimicrobial peptides (AMPs) are an important class of antimicrobial agents for combating AMR due to their broad-spectrum activity and ability to evade AMR through a multimodal mechanism of action. However, molecular size, aggregability, proteolytic degradation, cytotoxicity, and hemolysis activity significantly limit the clinical application of natural AMPs. The de novo design and engineering of a short synthetic amphipathic AMP (≤16 aa, Mol. Wt. ≤ 2 kDa) with an unusual architecture comprised of coded and noncoded amino acids (NCAAs) is presented here, which demonstrates potent antibacterial activity against a few selected bacterial strains mentioned in the WHO priority list. The designer AMP is conformationally ordered in solution and effectively permeabilizes the outer and inner membranes, leading to bacterial growth inhibition and death. Additionally, the peptide is resistant to proteolysis and has negligible cytotoxicity and hemolysis activity up to 150 μM toward cultured human cell lines and erythrocytes. The designer AMP is unique and appears to be a potent therapeutic candidate, which can be subsequently subjected to preclinical studies to explicitly understand and address the menace of AMR.  相似文献   

11.
Bacterial resistance induced by the use of antibiotics has provided a chance for the development of antimicrobial peptides (AMPs), and modification of AMPs to enhance the antibacterial activity or stability has become a research focus. PMAP‐37 is an AMP isolated from porcine myeloid marrow, and studies on its modification have not yet been reported. In this study, three PMAP‐37 analogs named PMAP‐37(F9‐R), PMAP‐37(F34‐R), and PMAP‐37(F9/34‐R) were designed by residue substitution to enhance the positive charge. The antimicrobial activity of PMAP‐37 and its analogs in vitro and in vivo were detected. The results showed that compared with PMAP‐37, PMAP‐37(F9‐R) and PMAP‐37(F9/34‐R) exhibited antibacterial activity against S. flexneri CICC21534. Although PMAP‐37(F34‐R) had no antibacterial activity against S. flexneri CICC21534, its minimal inhibitory concentrations (MICs) were significantly lower than those of PMAP‐37 against most bacterial strains. Besides, all PMAP‐37 analogs were pH stable, retaining stable antibacterial activity after treatment with solution from pH 2 to pH 8/9. In addition, the PMAP‐37 analogs displayed increased thermal stability, and PMAP‐37(F34‐R) retained >60% antibacterial activity after boiling for 2 hours. Furthermore, the PMAP‐37 analogs exhibited impressive therapeutic efficacy in bacterial infections by reducing bacterial burden and inflammatory damage in the lung and liver, resulting in a reduction in mortality. Notably, the therapeutic effect of PMAP‐37(F34‐R) was comparable to that of ceftiofur sodium, and even superior to antibiotics in L. monocytogenes CICC21533 infection model. In conclusion, the PMAP‐37(F34‐R) may be a candidate for the treatment of bacterial infections in the clinic.  相似文献   

12.
The morphology of structures formed by the self‐assembly of short N‐terminal t‐butyloxycarbonyl (Boc) and C‐terminal methyl ester (OMe) protected and Boc‐deprotected hydrophobic peptide esters was investigated. We have observed that Boc‐protected peptide esters composed of either only aliphatic hydrophobic amino acids or aliphatic hydrophobic amino acids in combination with aromatic amino acids, formed highly organized structures, when dried from methanol solutions. Transmission and scanning electron microscopic images of the peptides Boc‐Ile‐Ile‐OMe, Boc‐Phe‐Phe‐Phe‐Ile‐Ile‐OMe and Boc‐Trp‐Ile‐Ile‐OMe showed nanotubular structures. Removal of the Boc group resulted in disruption of the ability to form tubular structures though spherical aggregates were formed. Both Boc‐Leu‐Ile‐Ile‐OMe and H‐Leu‐Ile‐Ile‐OMe formed only spherical nanostructures. Dynamic light scattering studies showed that aggregates of varying dimensions were present in solution suggesting that self‐assembly into ordered structures is facilitated by aggregation in solution. Fourier transform infrared spectroscopy and circular dichroism spectroscopy data show that although all four of the protected peptides adopt well‐defined tertiary structures, upon removal of the Boc group, only H‐Phe‐Phe‐Phe‐Ile‐Ile‐OMe had the ability to adopt β‐structure. Our results indicate that hydrophobic interaction is a very important determinant for self‐assembly and presence of charged and aromatic amino acids in a peptide is not necessary for self‐assembly. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
14.
pVEC is a cell‐penetrating peptide derived from the murine vascular endothelial‐cadherin protein. To evaluate the potential of pVEC as antimicrobial peptide (AMP), we synthesized pVEC and its analogs with Trp and Arg/Lys substitution, and their antimicrobial and lipopolysaccharide (LPS)‐neutralizing activities were investigated. pVEC and its analogs displayed a potent antimicrobial activity (minimal inhibitory concentration: 4–16 μM) against Gram‐positive and Gram‐negative bacteria but no or less hemolytic activity (less than 10% hemolysis) even at a concentration of 200 μM. These peptides induced a near‐complete membrane depolarization (more than 80%) at 4 μM against Staphylococcus aureus and a significant dye leakage (35–70%) from bacterial membrane‐mimicking liposome at a concentration as low as 1 μM. The fluorescence profiles of pVEC and its analogs in dye leakage from liposome and membrane depolarization were similar to those of a frog‐derived AMP, magainin 2. These results suggest that pVEC and its analogs kill bacteria by forming a pore or ion channel in the cytoplasmic membrane. pVEC and its analogs significantly inhibited nitric oxide production or tumor necrosis factor‐α release in LPS‐stimulated mouse macrophage RAW264.7 cells at 10 to 50 μM, in which RAW264.7 were not damaged. Taken together, our results suggest that pVEC and its analogs with potent antimicrobial and LPS‐neutralizing activities can serve as AMPs for the treatment of microbial infection and sepsis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Peptide P11‐4 (QQRFEWEFEQQ) was designed to self‐assemble to form β‐sheets and nematic gels in the pH range 5–7 at concentrations ≥12.6 mM in water. This self‐assembly is reversibly controlled by adjusting the pH of the solvent. It can also self‐assemble into gels in biological media. This together with its biocompatibility and biodegradability make P11‐4 an attractive building block for the fabrication of nanoscale materials with uses in, for example, tissue engineering. A limitation to large‐scale production of such peptides is the high cost of solid phase chemical synthesis. We describe expression of peptide P11‐4 in the bacterium Escherichia coli from constructs carrying tandem repeats of the peptide coding sequence. The vector pET31b+ was used to express P11‐4 repeats fused to the ketosteroid isomerase protein which accumulates in easily recoverable inclusion bodies. Importantly, the use of auto‐induction growth medium to enhance cell density and protein expression levels resulted in recovery of 2.5 g fusion protein/L culture in both shake flask and batch fermentation. Whole cell detergent lysis allowed recovery of inclusion bodies largely composed of the fusion protein. Cyanogen bromide cleavage followed by reverse phase HPLC allowed purification of the recombinant peptide with a C‐terminal homoserine lactone (rP11‐4(hsl)). This recombinant peptide formed pH dependent hydrogels, displayed β‐structure measured by circular dichroism and fibril formation observed by transmission electron microscopy. Biotechnol. Bioeng. 2009;103: 241–251. © 2009 Wiley Periodicals, Inc.  相似文献   

16.
17.
In this work we have probed the interactions of the amyloid Aβ(1–42) peptide with self‐assembled nanospheres. The nanospheres were formed by self‐assembly of a newly developed bolaamphiphile bis(N‐alpha‐amido‐methionine)‐1,8 octane dicarboxylate under aqueous conditions. It was found that the interactions of the Aβ(1–42) peptide with the nanospheres were concentration as well as pH dependent and the peptide largely adopts a random coil structure upon interacting with the nanospheres. Further, upon incorporation with the nanospheres, we observed a relative diminution in the aggregation of Aβ(1–42) at low concentrations of Aβ(1–42). The interactions between the nanospheres and the Aβ(1–42) peptide were investigated by atomic force microscopy, transmission electron microscopy, circular dichroism, FTIR and fluorescence spectroscopy, and the degree of fibrillation in the presence and absence of nanospheres was monitored by the Thioflavine T assay. We believe that the outcome from this work will help further elucidate the binding properties of Aβ peptide as well as designing nanostructures as templates for further investigating the nucleation and fibrillation process of Aβ‐like peptides. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
TectoRNA, an artificial RNA with self‐assembling ability, has been employed as a structural platform for RNA nanotechnology and RNA synthetic biology. In this study, tectoRNA was applied as a specific template for chemical peptide ligation. On the basis of a self‐assembling tectoRNA, we designed and constructed a template RNA that facilitates peptide ligation depending on controlled dimer formation. Two RNA‐binding peptides were recognized by two peptide‐binding RNA motifs embedded in the template RNA, and chemical ligation was promoted because of the entropic effect of Mg2+‐dependent dimerization. In a series of biochemical analyses, we determined the relationship between the structures of the tectoRNA‐based templates and the extent of acceleration in peptide ligation. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Peptide‐based hydrogels have gained much interest for biomedical applications as a result of their biocompatibility. Herein, we reported a synthetic pH‐sensitive and calcium‐responsive peptide‐amphiphilic hydrogel. The sequences of the peptide amphiphiles were derived from the repeat‐in‐toxin (RTX) motif. At a certain peptide‐amphiphile concentration, self‐assembly was accompanied by the formation of a rigid, viscoelastic hydrogel at low pH or the presence of calcium ions. Circular dichroism spectra showed that the peptide amphiphiles adopted beta‐sheet structure. Meanwhile, as revealed by transmission electron microscopy, the peptide‐amphiphile self‐assembly was accompanied by the formation of long interconnected nanofibrillar superstructure. Material properties of the resulting peptide‐amphiphile hydrogel were characterized using oscillatory sheer rheology, and the storage modulus (G′) was found to be one order of magnitude higher than the loss modulus (G″), indicating a moderately rigid viscoelastic material. Furthermore, with systematical residue substitution, it was found that the aspartic acid within the repeat‐in‐toxin sequence of peptide amphiphiles was responsible for the pH and calcium selectivity. The environmental responsiveness, secondary structure, morphology, and mechanical nature of the peptide‐amphiphile hydrogel make it a possible material candidate for biomedical and engineering application. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
A new self‐assembly platform for the fast and straightforward synthesis of bicontinuous, mesoporous TiO2 films is presented, based on the triblock terpolymer poly(isoprene ‐ b ‐ styrene ‐ b ‐ ethylene oxide). This new materials route allows the co‐assembly of the metal oxide as a fully interconnected minority phase, which results in a highly porous photoanode with strong advantages over the state‐of‐the‐art nanoparticle‐based photoanodes employed in solid‐state dye‐sensitized solar cells. Devices fabricated through this triblock terpolymer route exhibit a high availability of sub‐bandgap states distributed in a narrow and low enough energy band, which maximizes photoinduced charge generation from a state‐of‐the‐art organic dye, C220. As a consequence, the co‐assembled mesoporous metal oxide system outperformed the conventional nanoparticle‐based electrodes fabricated and tested under the same conditions, exhibiting solar power‐conversion efficiencies of over 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号