首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast prions are superb models for understanding the mechanisms of self‐perpetuating protein aggregates formation. [PSI+] stands among the most documented yeast prions and results from self‐assembly of the translation termination factor Sup35p into protein fibrils. A plethora of cellular factors were shown to affect [PSI+] formation and propagation. Clearance of Sup35p prion particles is however poorly understood and documented. Here, we investigated the role of the proteasome in the degradation of Sup35p and in [PSI+] prion propagation. We found that cells lacking the RPN4 gene, which have reduced intracellular proteasome pools, accumulated Sup35p and have defects in [PSI+] formation and propagation. Sup35p is degraded in vitro by the 26S and 20S proteasomes in a ubiquitin‐independent manner, generating an array of amyloidogenic peptides derived from its prion‐domain. We also demonstrate the formation of a proteasome‐resistant fragment spanning residues 83–685 which is devoid of the prion‐domain that is essential for [PSI+] propagation. Most important was the finding that the 26S and 20S proteasomes degrade Sup35p fibrils in vitro and abolish their infectivity. Our results point to an overlooked role of the proteasome in clearing toxic protein aggregates, and have important implications for a better understanding of the life cycle of infectious protein assemblies.  相似文献   

2.
Intracellular protein degradation is a major source of short antigenic peptides that can be presented on the cell surface in the context of major histocompatibility class I molecules for recognition by cytotoxic T lymphocytes. The capacity of the most important cytosolic protease, the 20 S proteasome, to generate peptide fragments with an average length of 7-8 amino acid residues has been thoroughly investigated. It has been shown that the cleavage products are not randomly generated, but originate from the commitment of the catalytically active subunits to complex recognition motifs in the primary amino acid sequence. The role of the even larger 26 S proteasome is less well defined, however. It has been demonstrated that the 26 S proteasome can bind and degrade ubiquitin-tagged proteins and minigene translation products in vivo and in vitro, but the nature of the degradation products remains elusive. In this study, we present the first analysis of cleavage products from in vitro digestion of the unmodified model substrate beta-casein with both the 26 S and 20 S proteasome. The data we obtained show that 26 S and 20 S proteasomes generate overlapping, but at the same time substantially different, sets of fragments by following very similar instructions.  相似文献   

3.
Oxidized proteins are recognized and degraded preferentially by the proteasome. This is true for numerous proteins including calmodulin (CaM). The degradation of CaM was investigated in a human fibroblast cell line under conditions of oxidative stress. Low molecular CaM fragments or peptides were found under such conditions. In in vitro experiments it was investigated whether this CaM breakdown product formation is induced by protein oxidation or is due to a limited proteolysis-derived degradation by the 20S proteasome. Native unoxidized CaM was not degraded by 20S proteasome, oxidized CaM was degraded in a time- and H2O2 concentration-dependent manner. Peptides of similar molecular weight were detected in isolated calmodulin as in oxidatively stressed fibroblasts. The peptides were identified using isolated calmodulin. Therefore, in oxidatively stressed fibroblasts and in vitro CaM is forming oxidation-driven fragments and proteasomal cleavage peptides of approximately 30 amino acids which undergo a slow or no degradation.  相似文献   

4.
Similar to all other eukaryotic cells and tissues muscle tissue contains the proteolytic system of 20S/26S proteasomes with the 20S proteasome existing predominantly in a latent state. Unlike with the mammalian enzymein vitro transition from the latent to the activated state of the 20S proteasomes isolated from muscle of several fish species and from lobster can be achieved by heat shock. It is very likely that the activated state of the 20S proteasome corresponds to the physiologically active form of the enzyme since only that one is able to attack sarcoplasmic and myofibrillar proteins to any significant extent. As perfusion of rat hindquarters with presumptive low molecular mass activators like free fatty acids does not result in an activation of the muscle proteasome other — possibly protein activators — may serve this purposein vivo. The 26S proteasome complex may be regarded as such a proteasome/activator complex. The 26S proteasome complex has the ability to degrade protein (-ubiquitin-conjugates) by an ATP-consuming reaction. Since increased amounts of ubiquitinated proteins as well as an enhanced activity of the ATP (-ubiquitin)-dependent proteolytic system have been measured in rat muscle tissue during various catabolic conditions, it is not unlikely that this pathway is responsible for catalysis of muscle protein breakdown.Abbreviations Bz benzoyl - PGPH peptidylglutamylpeptide hydrolysing - Suc succinyl - Z benzyloxycarbonyl  相似文献   

5.
Huntington’s disease is the result of a long polyglutamine tract in the gene encoding huntingtin protein, which in turn causes a large number of cellular changes and ultimately results in neurodegeneration of striatal neurons. Although many theories have been proposed, the precise mechanism by which the polyglutamine expansion causes cellular changes is not certain. Some evidence supports the hypothesis that the long polyglutamine tract inhibits the proteasome, a multiprotein complex involved in protein degradation. However, other studies report normal proteasome function in cells expressing long polyglutamine tracts. The controversy may be due to the methods used to examine proteasome activity in each of the previous studies. In the present study, we measured proteasome function by examining levels of endogenous peptides that are products of proteasome cleavage. Peptide levels were compared among mouse striatal cell lines expressing either 7 glutamines (STHdh Q7/Q7) or 111 glutamines in the huntingtin protein, either heterozygous (STHdh Q7/Q111) or homozygous (STHdh Q111/Q111). Both of the cell lines expressing huntingtin with 111 glutamines showed a large reduction in nearly all of the peptides detected in the cells, relative to levels of these peptides in cells homozygous for 7 glutamines. Treatment of STHdh Q7/Q7 cells with proteasome inhibitors epoxomicin or bortezomib also caused a large reduction in most of these peptides, suggesting that they are products of proteasome-mediated cleavage of cellular proteins. Taken together, these results support the hypothesis that proteasome function is impaired by the expression of huntingtin protein containing long polyglutamine tracts.  相似文献   

6.
7.
8.
20S proteasomes are large, multicatalytic proteases that play an important role in intracellular protein degradation. The barrel-like architecture of 20S proteasomes, formed by the stacking of four heptameric protein rings, is highly conserved from archaea to eukaryotes. The outer two rings are composed of alpha-type subunits, and the inner two rings are composed of beta-type subunits. The halophilic archaeon Haloferax volcanii synthesizes two different alpha-type proteins, alpha1 and alpha2, and one beta-type protein that assemble into at least two 20S proteasome subtypes. In this study, we demonstrate that all three of these 20S proteasomal proteins (alpha1, alpha2, and beta) are modified either post- or cotranslationally. Using electrospray ionization quadrupole time-of-flight mass spectrometry, a phosphorylation site of the beta subunit was identified at Ser129 of the deduced protein sequence. In addition, alpha1 and alpha2 contained N-terminal acetyl groups. These findings represent the first evidence of acetylation and phosphorylation of archaeal proteasomes and are one of the limited examples of post- and/or cotranslational modification of proteins in this unusual group of organisms.  相似文献   

9.
《Free radical research》2013,47(9):1013-1026
Abstract

Oxidized and cross-linked modified proteins are known to accumulate in ageing. Little is known about whether the accumulation of proteins modified by advanced glycation end products (AGEs) is due to an affected intracellular degradation. Therefore, this study was designed to determine whether the intracellular enzymes cathepsin B, cathepsin D and the 20S proteasome are able to degrade AGE-modified proteins in vitro. It shows that AGE-modified albumin is degraded by cathepsin D, while cathepsin B was less effective in the degradation of aldehyde-modified albumin and the 20S proteasome was completely unable to degrade them. Mouse primary embryonic fibroblasts isolated from a cathepsin D knockout animals were found to have an extensive intracellular AGE-accumulation, mainly in lysosomes, and a reduction of AGE-modified protein degradation compared to cells isolated from wild type animals. In summary, it can be assumed that cathepsin D plays a significant role in the removal of AGE-modified proteins.  相似文献   

10.
Although cellular proteins conjugated to K48‐linked Ub chains are targeted to proteasomes, proteins conjugated to K63‐ubiquitin chains are directed to lysosomes. However, pure 26S proteasomes bind and degrade K48‐ and K63‐ubiquitinated substrates similarly. Therefore, we investigated why K63‐ubiquitinated proteins are not degraded by proteasomes. We show that mammalian cells contain soluble factors that selectively bind to K63 chains and inhibit or prevent their association with proteasomes. Using ubiquitinated proteins as affinity ligands, we found that the main cellular proteins that associate selectively with K63 chains and block their binding to proteasomes are ESCRT0 (Endosomal Sorting Complex Required for Transport) and its components, STAM and Hrs. In vivo, knockdown of ESCRT0 confirmed that it is required to block binding of K63‐ubiquitinated molecules to the proteasome. In addition, the Rad23 proteins, especially hHR23B, were found to bind specifically to K48‐ubiquitinated proteins and to stimulate proteasome binding. The specificities of these proteins for K48‐ or K63‐ubiquitin chains determine whether a ubiquitinated protein is targeted for proteasomal degradation or delivered instead to the endosomal‐lysosomal pathway.  相似文献   

11.
Proteolytic treatment of intact bacterial cells is an ideal means for identifying surface‐exposed peptide epitopes and has potential for the discovery of novel vaccine targets. Cell stability during such treatment, however, may become compromised and result in the release of intracellular proteins that complicate the final analysis. Staphylococcus aureus is a major human pathogen, causing community and hospital‐acquired infections, and is a serious healthcare concern due to the increasing prevalence of multiple antibiotic resistances amongst clinical isolates. We employed a cell surface “shaving” technique with either trypsin or proteinase‐K combined with LC‐MS/MS. Trypsin‐derived data were controlled using a “false‐positive” strategy where cells were incubated without protease, removed by centrifugation and the resulting supernatants digested. Peptides identified in this fraction most likely result from cell lysis and were removed from the trypsin‐shaved data set. We identified 42 predicted S. aureus COL surface proteins from 260 surface‐exposed peptides. Trypsin and proteinase‐K digests were highly complementary with ten proteins identified by both, 16 specific to proteinase‐K treatment, 13 specific to trypsin and three identified in the control. The use of a subtracted false‐positive strategy improved enrichment of surface‐exposed peptides in the trypsin data set to approximately 80% (124/155 peptides). Predominant surface proteins were those associated with methicillin resistance–surface protein SACOL0050 (pls) and penicillin‐binding protein 2′ (mecA), as well as bifunctional autolysin and the extracellular matrix‐binding protein Ebh. The cell shaving strategy is a rapid method for identifying surface‐exposed peptide epitopes that may be useful in the design of novel vaccines against S. aureus.  相似文献   

12.
Proteasome is a ‘proteolytic factory’ that constitutes an essential part of the ubiquitin‐proteasome pathway. The involvement of proteasome in regulation of all major aspects of cellular physiology makes it an attractive drug target. So far, only inhibitors of the proteasome entered the clinic as anti‐cancer drugs. However, proteasome regulators may also be useful for treatment of inflammatory and neurodegenerative diseases. We established in our previous studies that the peptide Tat2, comprising the basic domain of HIV‐1 Tat protein: R49KKRRQRR56, supplemented with Q66DPI69 fragment, inhibits the 20S proteasome in a noncompetitive manner. Mechanism of Tat2 likely involves allosteric regulation because it competes with the proteasome natural 11S activator for binding to the enzyme noncatalytic subunits. In this study, we performed alanine walking coupled with biological activity measurements and FTIR and CD spectroscopy to dissect contribution of a charge and conformation of Tat2 to its capability to influence peptidase activity of the proteasome. In solution, Tat2 and most of its analogs with a single Ala substitution preferentially adopted a conformation containing PPII/turn structural motifs. Replacing either Asp10 or two or more adjacent Arg/Lys residues induced a random coil conformation, probably by disrupting ionic interactions responsible for stabilization of the peptides ordered structure. The random coil Tat2 analogs lost their capability to activate the latent 20S proteasome. In contrast, inhibitory properties of the peptides more significantly depended on their positive charge. The data provide valuable clues for the future optimization of the Tat2‐based proteasome regulators. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
BackgroundThe proteasome catalyzes the degradation of many mis-folded proteins, which are otherwise cytotoxic. There is interest in the discovery of proteasome agonists, but previous efforts to do so have been disappointing.MethodsThe cleavage of small fluorogenic peptides is used routinely as an assay to screen for proteasome modulators. We have developed follow-on assays that employ more physiologically relevant substrates.ResultsTo demonstrate the efficacy of this workflow, the NIH Clinical Collection (NCC) was screened. While many compounds stimulated proteasome-mediated proteolysis of the pro-fluorogenic peptide substrates, most failed to evince activity in assays with larger peptide or protein substrates. We also show that two molecules claimed previously to be proteasome agonists, oleuropein and betulinic acid, indeed accelerate hydrolysis of the fluorogenic substrate, but have no effect on the turnover of a mis-folded protein in vitro or in cellulo. However, two small molecules from the NCC, MK-866 and AM-404, stimulate the proteasome-mediated turnover of a mis-folded protein in living cells by 3- to 4-fold.ConclusionAssays that monitor the proteasome-mediated degradation of larger peptides and proteins can distinguish bona fide agonists from compounds only able to stimulate the cleavage of short, non-physiologically relevant peptides.General significanceA suite of assays has been established that allows the discovery of bona fide proteasome agonists. AM-404 and MK-866 can be useful tools for cell culture experiments, and can serve as scaffolds to generate more potent 20S stimulators.  相似文献   

14.
Proteasomes are large multicatalytic protease complexes which fulfil central functions in major intracellular proteolytic pathways of the eukaryotic cell. 20S proteasomes are 700 kDa cylindrically shaped particles, found in the cytoplasm and the nucleus of all eukaryotes. They are composed of a pool of 14 different subunits (MW 22–25 kDa) arranged in a stack of 4 rings with 7-fold symmetry. In the yeastSaccharomyces cerevisiae a complete set of 14 genes coding for 20S proteasome subunits have been cloned and sequenced. 26S proteasomes are even larger proteinase complexes (about 1700 kDa) which degrade ubiquitinylated proteins in an ATP-dependent fashionin vitro. The 26S proteasome is build up from the 20S proteasome as core particle and two additional 19S complexes at both ends of the 20S cylinder. Recently existence of a 26S proteasome in yeast has been demonstrated. Several 26S proteasome specific genes have been cloned and sequenced. They share similarity with a novel defined family of ATPases. 20S and 26S proteasomes are essential for functioning of the eukaryotic cell. Chromosomal deletion of 20S and 26S proteasomal genes in the yeastS. cerevisiae caused lethality of the cell. Thein vivo functions of proteasomes in major proteolytic pathways have been demonstrated by the use of 20S and 26S proteasomal mutants. Proteasomes are needed for stress dependent and ubiquitin mediated proteolysis. They are involved in the degradation of short-lived and regulatory proteins. Proteasomes are important for cell differentiation and adaptation to environmental changes. Proteasomes have also been shown to function in the control of the cell cycle.  相似文献   

15.
The ubiquitin/proteasome system regulates protein turnover by degrading polyubiquitinated proteins. To date, all studies on the relationship of apoptosis and the proteasome have emphasized the key role of the proteasome in the regulation of apoptosis, by virtue of its ability to degrade regulatory molecules involved in apoptosis. We now demonstrate how induction of apoptosis may regulate the activity of the proteasome. During apoptosis, caspase activation results in the cleavage of three specific subunits of the 19S regulatory complex of the proteasome: S6' (Rpt5) and S5a (Rpn10), whose role is to recognize polyubiquitinated substrates of the proteasome, and S1 (Rpn2), which with S5a and S2 (Rpn1) holds together the lid and base of the 19S regulatory complex. This caspase-mediated cleavage inhibits the proteasomal degradation of ubiquitin-dependent and -independent cellular substrates, including proapoptotic molecules such as Smac, so facilitating the execution of the apoptotic program by providing a feed-forward amplification loop.  相似文献   

16.
The 20 S proteasome is a ubiquitous, barrel-shaped protease complex responsible for most of cellular proteolysis, and its reduced activity is thought to be associated with accumulations of aberrant or misfolded proteins, resulting in a number of neurodegenerative diseases, including amyotrophic lateral sclerosis, spinal and bulbar muscular atrophy, Parkinson disease, and Alzheimer disease. The 20 S proteasomes of archaebacteria (archaea) are structurally simple and proteolytically powerful and thought to be an evolutionary precursor to eukaryotic proteasomes. We successfully reproduced the archaeal proteasome in a functional state in mammalian cells, and here we show that the archaeal proteasome effectively accelerated species-specific degradation of mutant superoxide dismutase-1 and the mutant polyglutamine tract-extended androgen receptor, causative proteins of familial amyotrophic lateral sclerosis and spinal and bulbar muscular atrophy, respectively, and reduced the cellular toxicities of these mutant proteins. Further, we demonstrate that archaeal proteasome can also degrade other neurodegenerative disease-associated proteins such as alpha-synuclein and tau. Our study showed that archaeal proteasomes can degrade aggregation-prone proteins whose toxic gain of function causes neurodegradation and reduce protein cellular toxicity.  相似文献   

17.
Plant cells contain a mixture of 26S and 20S proteasomes that mediate ubiquitin-dependent and ubiquitin-independent proteolysis, respectively. The 26S proteasome contains the 20S proteasome and one or two regulatory particles that are required for ubiquitin-dependent degradation. Comparative analyses of Arabidopsis proteasome mutants revealed that a decrease in 26S proteasome biogenesis causes heat shock hypersensitivity and reduced cell division rates that are compensated by increased cell expansion. Loss of 26S proteasome function also leads to an increased 20S proteasome biogenesis, which in turn enhances the cellular capacity to degrade oxidized proteins and thus increases oxidative stress tolerance. These findings suggest the intriguing possibility that 26S and 20S proteasome activities are regulated to control plant development and stress responses. This mini-review highlights some of the recent studies on proteasome regulation in plants.Key words: proteasome, cell division, ubiquitin-dependent proteolysis, ubiquitin-independent proteolysis, stress responses  相似文献   

18.
Proteasomes are multicatalytic cellular protease complexes that degrade intracellular proteins into smaller peptides. Proteasomal in vitro digests have revealed that the various peptide bonds of a given substrate are cleaved in a highly selective manner. Regarding the key role of proteasomes as the main supplier of antigenic peptides for MHC class I-mediated antigen presentation, it is important to know to what extent these preferences for specific peptide bonds may vary among proteasomes of different cellular origin and of different subunit composition. Here, we quantify such cleavage rates by means of a kinetic proteasome model that relates the time-dependent changes of the amount of any generated peptide to the rates with which this peptide can be either generated from longer precursor peptides or degraded into smaller successor peptides. Numerical values for these rates are estimated by minimizing the distance between simulated and measured time-courses. The proposed method is applied to kinetic data obtained by combining HPLC fractionation and mass spectrometry (MS) to trace the degradation of two model peptides (pp89-25mer and LLO-27mer) by either the constitutive (T2) or immunoproteasome (T2.27). To convert the intensity of the MS signals into the respective peptide amounts, we use two methods leading to similar results: experimental calibration curves and theoretically determined linear scaling functions based on a novel approach using mass conservation rules. Comparison of the cleavage probabilities and procession rates obtained for the two types of proteasomes reveals that the striking differences between the time-dependent peptide profiles can be accounted for mainly by a generally higher turnover rate of the immunoproteasome. For the pp89-25mer, there is no significant change of the cleavage probabilities for any of the ten observed cleavage sites. For the LLO-27mer, there appears to be a significant change in the cleavage probabilities for four of the nine observed cleavage sites when switching from the constitutive to the immunoproteasome.  相似文献   

19.
The 26S proteasome is a multi‐catalytic ATP‐dependent protease complex that recognizes and cleaves damaged or misfolded proteins to maintain cellular homeostasis. The 26S subunit consists of 20S core and 19S regulatory particles. 20S core particle consists of a stack of heptameric alpha and beta subunits. To elucidate the structure‐function relationship, we have dissected protein‐protein interfaces of 20S core particle and analyzed structural and physiochemical properties of intra‐alpha, intra‐beta, inter‐beta, and alpha‐beta interfaces. Furthermore, we have studied the evolutionary conservation of 20S core particle. We find the size of intra‐alpha interfaces is significantly larger and is more hydrophobic compared with other interfaces. Inter‐beta interfaces are well packed, more polar, and have higher salt‐bridge density than other interfaces. In proteasome assembly, residues in beta subunits are better conserved than alpha subunits, while multi‐interface residues are the most conserved. Among all the residues at the interfaces of both alpha and beta subunits, Gly is highly conserved. The largest size of intra‐alpha interfaces complies with the hypothesis that large interfaces form first during the 20S assembly. The tight packing of inter‐beta interfaces makes the core particle impenetrable from outer wall of the cylinder. Comparing the three domains, eukaryotes have large and well‐packed interfaces followed by archaea and bacteria. Our findings provide a structural basis of assembly of 20S core particle in all the three domains of life.  相似文献   

20.
We have previously reported on a gold(III) complex, namely [AuBr2(DMDT)] (N,N‐dimethyldithiocarbamate) showing potent in vitro and in vivo growth inhibitory activities toward human cancer cells and identifying the cellular proteasome as one of the major targets. However, the importance of the oxidation state of the gold center and the involved mechanism of action has yet to be established. Here we show that both gold(III)? and gold(I)–dithiocarbamato species, namely [AuBr2(ESDT)] (AUL12) and [Au(ESDT)]2 (AUL15), could inhibit the chymotrypsin‐like activity of purified 20S proteasome and 26S proteasome in human breast cancer MDA‐MB‐231 cells, resulting in accumulation of ubiquitinated proteins and proteasome target proteins, and induction of cell death, but at significantly different levels. Gold(I)‐ and gold(III)‐compound‐mediated proteasome inhibition and cell death induction were completely reversed by the addition of a reducing agent, dithiothreitol or N‐acetyl‐L ‐cysteine, suggesting the involvement of redox processes. Furthermore, treatment of MDA‐MB‐231 cells with gold(III) compound (AUL12), but not the gold(I) analog (AUL15), resulted in the production of significant levels of reactive oxygen species. Our study provides strong evidence that the cellular proteasome is an important target of both gold(I) and gold(III)–dithiocarbamates, but distinct cellular mechanisms of action are responsible for their different overall effect. J. Cell. Biochem. 109: 162–172, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号