首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 550 毫秒
1.
    
We report a novel affinity‐based purification method for proteins expressed in Escherichia coli that uses the coordination of a heme tag to an L ‐histidine‐immobilized sepharose (HIS) resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. We show that azurin and maltose binding protein are readily purified from cell lysate using the heme tag and HIS resin. Mild conditions are used; heme‐tagged proteins are bound to the HIS resin in phosphate buffer, pH 7.0, and eluted by adding 200–500 mM imidazole or binding buffer at pH 5 or 8. The HIS resin exhibits a low level of nonspecific binding of untagged cellular proteins for the systems studied here. An additional advantage of the heme tag‐HIS method for purification is that the heme tag can be used for protein quantification by using the pyridine hemochrome absorbance method for heme concentration determination.  相似文献   

2.
A robotic high‐throughput displacer screen was developed and employed to identify chemically selective displacers for several protein pairs in cation exchange chromatography. This automated screen enabled the evaluation of a wide range of experimental conditions in a relatively short period of time. Displacers were evaluated at multiple concentrations for these protein pairs, and DC‐50 plots were constructed. Selectivity pathway plots were also constructed and different regimes were established for selective and exclusive separations. Importantly, selective displacement was found to be conserved for multiple protein pairs, demonstrating the technique to be applicable for a range of protein systems. Although chemically selective displacers were able to separate protein pairs that had similar retention in ion exchange but different surface hydrophobicities, they were not able to distinguish protein pairs with similar surface hydrophobicities. This corroborates that displacer‐protein hydrophobic interactions play an important role for this class of selective displacers. Important functional group moieties were established and efficient displacers were identified. These results demonstrate that the design of chemically selective displacers requires a delicate balance between the abilities to displace proteins from the resin and to bind to a selected protein. The use of robotic screening of displacers will enable the extension of chemically selective displacement chromatography beyond hydrophobic displacer‐protein interactions to other secondary interactions and more selective displacement systems. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

3.
The emergence of monoclonal antibody (mAb) therapies has created a need for faster and more efficient bioprocess development strategies in order to meet timeline and material demands. In this work, a high‐throughput process development (HTPD) strategy implementing several high‐throughput chromatography purification techniques is described. Namely, batch incubations are used to scout feasible operating conditions, miniature columns are then used to determine separation of impurities, and, finally, a limited number of lab scale columns are tested to confirm the conditions identified using high‐throughput techniques and to provide a path toward large scale processing. This multistep approach builds upon previous HTPD work by combining, in a unique sequential fashion, the flexibility and throughput of batch incubations with the increased separation characteristics for the packed bed format of miniature columns. Additionally, in order to assess the applicability of using miniature columns in this workflow, transport considerations were compared with traditional lab scale columns, and performances were mapped for the two techniques. The high‐throughput strategy was utilized to determine optimal operating conditions with two different types of resins for a difficult separation of a mAb monomer from aggregates. Other more detailed prediction models are cited, but the intent of this work was to use high‐throughput strategies as a general guide for scaling and assessing operating space rather than as a precise model to exactly predict performance. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:626–635, 2014  相似文献   

4.
We have compared four different vectors for expression of proteins with N- or C-terminal hexahistidine (His6) tags in Escherichia coli by testing these on 20 human proteins. We looked at a total recombinant protein production levels per gram dry cell weight, solubility of the target proteins, and yield of soluble and total protein when purified by immobilized metal ion affinity purification. It was found that, in general, both N- and C-terminal His6 tags have a noticeable negative affect on protein solubility, but the effect is target protein specific. A solubilizing fusion tag was able to partly counteract this negative effect. Most target proteins could be purified under denaturing conditions and about half of the proteins could be purified under physiological conditions. The highest protein production levels and yield of purified protein were obtained from a construct with C-terminal His tag. We also observe a large variation in cell growth rate, which we determined to be partly caused by the expression vectors and partly by the targets. This variation was found to be independent of the production level, solubility and tertiary structure content of the target proteins.  相似文献   

5.
A high‐cell‐density transient transfection system was recently developed in our laboratory based on a CHO‐GS‐KO cell line. This method yields monoclonal antibody titers up to 350 mg/L from a simple 7‐day process, in volumes ranging from 2 mL to 2 L. By performing transfections in 24‐deep‐well plates, a large number of mAbs can be expressed simultaneously. We coupled this new high‐throughput transfection process to a semiautomated protein A purification process. Using a Biomek FXp liquid handling robot, up to 72 unique mAbs can be simultaneously purified. Our primary goal was to obtain >0.25 mg of purified mAb at a concentration of >0.5 mg/mL, without any concentration or buffer‐exchange steps. We optimized both the batch‐binding and the batch elution steps. The length of the batch‐binding step was important to minimize mAb losses in the flowthrough fraction. The elution step proved to be challenging to simultaneously maximize protein recovery and protein concentration. We designed a variable volume elution strategy based on the average supernatant titer. Finally, we present two case studies. In the first study, we produced 56 affinity maturation mAb variants at an average yield of 0.33 ± 0.05 mg (average concentration of 0.65 ± 0.10 mg/mL). In a second study, we produced 42 unique mAbs, from an early‐stage discovery effort, at an average yield of 0.79 ± 0.31 mg (average concentration of 1.59 ± 0.63 mg/mL). The combination of parallel high‐yielding transient transfection and semiautomated high‐throughput protein A purification represents a valuable mAb drug discovery tool. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:239–247, 2015  相似文献   

6.
High throughput methods for recombinant protein production using E. coli typically involve the use of affinity tags for simple purification of the protein of interest. One drawback of these techniques is the occasional need for tag removal before study, which can be hard to predict. In this work, we demonstrate two high throughput purification methods for untagged protein targets based on simple and cost-effective self-cleaving intein tags. Two model proteins, E. coli beta-galactosidase (βGal) and superfolder green fluorescent protein (sfGFP), were purified using self-cleaving versions of the conventional chitin-binding domain (CBD) affinity tag and the nonchromatographic elastin-like-polypeptide (ELP) precipitation tag in a 96-well filter plate format. Initial tests with shake flask cultures confirmed that the intein purification scheme could be scaled down, with >90% pure product generated in a single step using both methods. The scheme was then validated in a high throughput expression platform using 24-well plate cultures followed by purification in 96-well plates. For both tags and with both target proteins, the purified product was consistently obtained in a single-step, with low well-to-well and plate-to-plate variability. This simple method thus allows the reproducible production of highly pure untagged recombinant proteins in a convenient microtiter plate format.  相似文献   

7.
A fundamental challenge in high-throughput (HT) expression screening is to rapidly identify the appropriate expression system for many targets in parallel. Known or unknown open reading frames (ORFs) are typically amplified by PCR and then cloned into a variety of vectors, producing recombinants used to direct target protein expression in Escherichia coli, insect cells, mammalian cells, or yeast. To facilitate rapid expression and purification in Spodoptera insect cells (Sf9), we developed transient expression vectors that include an enterokinase cleavage site immediately upstream of a ligation-independent cloning site (Ek/LIC). We also developed a high-efficiency insect cell transfection reagent, and automation-compatible fusion protein purification system for insect cells to facilitate expression screening and protein production. Positive clones identified from the small-scale screening were subjected to a larger scale production. Using this InsectDirectTM approach, we successfully expressed milligram quantities of different human proteins including heat shock proteins, phospholipases, and protein kinases.  相似文献   

8.
    
The ability to express heterologous proteins in microbial hosts is crucial for many areas of research and technology. In most cases, however, successful expression and purification of the desired protein require fusion to another protein. To date, all fusion partners have been chosen from natural sequences, which evolved for other purposes, and may not be optimal fusion partners. However, the rise of synthetic biology and protein design make it possible to design and optimize fusion proteins using novel sequences that did not arise in nature. Here, we describe a series of De novo Expression Enhancer Proteins (DEEPs) that facilitate high‐level expression and facile purification of heterologous proteins and peptides. To test the DEEP system, a de novo protein was fused to several target proteins covering a range of sizes and solubilities. In all cases, fusions to DEEP outperformed fusions to SUMO, a commonly used natural fusion partner. The availability of novel proteins that can be engineered for specific fusion applications could be beneficial to enhance the expression of a wide range of heterologous proteins.  相似文献   

9.
    
Ion-exchange (IEX) chromatography steps are widely applied in protein purification processes because of their high capacity, selectivity, robust operation, and well-understood principles. Optimization of IEX steps typically involves resin screening and selection of the pH and counterion concentrations of the load, wash, and elution steps. Time and material constraints associated with operating laboratory columns often preclude evaluating more than 20-50 conditions during early stages of process development. To overcome this limitation, a high-throughput screening (HTS) system employing a robotic liquid handling system and 96-well filterplates was used to evaluate various operating conditions for IEX steps for monoclonal antibody (mAb) purification. A screening study for an adsorptive cation-exchange step evaluated eight different resins. Sodium chloride concentrations defining the operating boundaries of product binding and elution were established at four different pH levels for each resin. Adsorption isotherms were measured for 24 different pH and salt combinations for a single resin. An anion-exchange flowthrough step was then examined, generating data on mAb adsorption for 48 different combinations of pH and counterion concentration for three different resins. The mAb partition coefficients were calculated and used to estimate the characteristic charge of the resin-protein interaction. Host cell protein and residual Protein A impurity levels were also measured, providing information on selectivity within this operating window. The HTS system shows promise for accelerating process development of IEX steps, enabling rapid acquisition of large datasets addressing the performance of the chromatography step under many different operating conditions.  相似文献   

10.
    
The second‐harmonic generation (SHG) activity of protein crystals was found to be enhanced by up to ∼1000‐fold by the intercalation of SHG phores within the crystal lattice. Unlike the intercalation of fluorophores, the SHG phores produced no significant background SHG from solvated dye or from dye intercalated into amorphous aggregates. The polarization‐dependent SHG is consistent with the chromophores adopting the symmetry of the crystal lattice. In addition, the degree of enhancement for different symmetries of dyes is consistent with theoretical predictions based on the molecular nonlinear optical response. Kinetics studies indicate that intercalation arises over a timeframe of several minutes in lysozyme, with detectable enhancements within seconds. These results provide a potential means to increase the overall diversity of protein crystals and crystal sizes amenable to characterization by SHG microscopy.  相似文献   

11.
    
We have combined Invitrogen's Gateway cloning technology with self-cleaving purification tags to generate a new system for rapid production of recombinant protein products. To accomplish this, we engineered our previously reported DeltaI-CM cleaving intein to include a Gateway cloning recognition sequence, and demonstrated that the resulting Gateway-competent intein is unaffected. This intein can therefore be used in several previously reported purification methods, while at the same time being compatible with Gateway cloning. We have incorporated this intein into a set of Gateway vectors, which include self-cleaving elastin-like polypeptide (ELP), chitin binding domain (CBD), phasin (polyhydroxybutyrate-binding), or maltose binding domain (MBD) tags. These vectors were verified by Gateway cloning of TEM-1 beta-lactamase and Escherichia coli catalase genes, and the expressed target proteins were purified using the four methods encoded on the vectors. The purification methods were unaffected by replacing the DeltaI-CM intein with the Gateway intein. It was observed that some purification methods were more appropriate for each target than others, suggesting utility of this technology for rapid process identification and optimization. The modular design of the Gateway system and intein purification method suggests that any tag and promoter can be trivially added to this system for the development of additional expression vectors. This technology could greatly facilitate process optimization, allowing several targets and methods to be tested in a high-throughput manner.  相似文献   

12.
13.
    
Industrial plant biotechnology applications include the production of sustainable fuels, complex metabolites and recombinant proteins, but process development can be impaired by a lack of reliable and scalable screening methods. Here, we describe a rapid and versatile expression system which involves the infusion of Agrobacterium tumefaciens into three‐dimensional, porous plant cell aggregates deprived of cultivation medium, which we have termed plant cell packs (PCPs). This approach is compatible with different plant species such as Nicotiana tabacum BY2, Nicotiana benthamiana or Daucus carota and 10‐times more effective than transient expression in liquid plant cell culture. We found that the expression of several proteins was similar in PCPs and intact plants, for example, 47 and 55 mg/kg for antibody 2G12 expressed in BY2 PCPs and N. tabacum plants respectively. Additionally, the expression of specific enzymes can either increase the content of natural plant metabolites or be used to synthesize novel small molecules in the PCPs. The PCP method is currently scalable from a microtiter plate format suitable for high‐throughput screening to 150‐mL columns suitable for initial product preparation. It therefore combined the speed of transient expression in plants with the throughput of microbial screening systems. Plant cell packs therefore provide a convenient new platform for synthetic biology approaches, metabolic engineering and conventional recombinant protein expression techniques that require the multiplex analysis of several dozen up to hundreds of constructs for efficient product and process development.  相似文献   

14.
    
Multigene delivery and expression systems are emerging as key technologies for many applications in contemporary biology. We have developed new methods for multigene delivery and expression in eukaryotic hosts for a variety of applications, including production of protein complexes for structural biology and drug development, provision of multicomponent protein biologics, and cell-based assays. We implemented tandem recombineering to facilitate rapid generation of multicomponent gene expression constructs for efficient transformation of mammalian cells, resulting in homogenous cell populations. Analysis of multiple parameters in living cells may require co-expression of fluorescently tagged sensors simultaneously in a single cell, at defined and ideally controlled ratios. Our method enables such applications by overcoming currently limiting challenges. Here, we review recent multigene delivery and expression strategies and their exploitation in mammalian cells. We discuss applications in drug discovery assays, interaction studies, and biologics production, which may benefit in the future from our novel approach.  相似文献   

15.
Production of knob and hole dual light chain bispecific antibodies poses several unique challenges for development of a feasible industrial scale manufacturing process. We developed an efficient process for the assembly and purification of knob and hole dual light chain bispecific antibodies. Two distinct half‐antibodies targeting two different antigens were expressed separately in Escherichia coli cells and captured independently using Protein A chromatography. When combined, the knob and hole mutations in the CH3 domains promoted heterodimer formation. The hinge region disulfides were reduced and reoxidized to form the disulfide bridge between the two complementary half antibodies. Unreacted half antibodies, noncovalently linked homodimers, covalently linked homodimers, and noncovalently linked heterodimers are impurities closely related to the product of interest and are challenging to remove by standard processes. Characterization of the molecular properties of the half antibodies and high‐throughput screening predicted column chromatography performance and allowed for rapid development of downstream purification steps for removal of unique product‐related and process‐related impurities. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:397–404, 2018  相似文献   

16.
17.
    
This study describes an efficient multiparallel automated workflow of cloning, expression, purification, and crystallization of a large set of construct variants for isolated protein domains aimed at structure determination by X-ray crystallography. This methodology is applied to MAPKAP kinase 2, a key enzyme in the inflammation pathway and thus an attractive drug target. The study reveals a distinct subset of truncation variants with improved crystallization properties. These constructs distinguish themselves by increased solubility and stability during a parallel automated multistep purification process including removal of the recombinant tag. High-throughput protein melting point analysis characterizes this subset of constructs as particularly thermostable. Both parallel purification screening and melting point determination clearly identify residue 364 as the optimal C terminus for the kinase domain. Moreover, all three constructs that ultimately crystallized feature this C terminus. At the N terminus, only three amino acids differentiate a noncrystallizing from a crystallizing construct. This study addresses the very common issues associated with difficult to crystallize proteins, those of solubility and stability, and the crucial importance of particular residues in the formation of crystal contacts. A methodology is suggested that includes biophysical measurements to efficiently identify and produce construct variants of isolated protein domains which exhibit higher crystallization propensity.  相似文献   

18.
    
X‐ray transparent crystallization plates based upon a novel drop‐pinning technology provide a flexible, simple and inexpensive approach to protein crystallization and screening. The plates consist of open cells sealed top and bottom by thin optically, UV and X‐ray transparent films. The plates do not need wells or depressions to contain liquids. Instead, protein drops and reservoir solution are held in place by rings with micrometre dimensions that are patterned onto the bottom film. These rings strongly pin the liquid contact lines, thereby improving drop shape and position uniformity, and thus crystallization reproducibility, and simplifying automated image analysis of drop contents. The same rings effectively pin solutions containing salts, proteins, cryoprotectants, oils, alcohols and detergents. Strong pinning by rings allows the plates to be rotated without liquid mixing to 90° for X‐ray data collection or to be inverted for hanging‐drop crystallization. The plates have the standard SBS format and are compatible with standard liquid‐handling robots.  相似文献   

19.
    
Methods development in chromatographic purification processes is a complex operation and has traditionally relied on trial and error approaches. The availability of a large number of commercial media, choice of different modes of chromatography, and diverse operating conditions contribute to the challenging task of accelerating methods development. In this paper, we describe a novel microtiter-plate based screening method to identify the appropriate sequence of chromatographic steps that result in high purities of bioproducts from their respective culture broths. Protein mixtures containing the bioproduct were loaded on aliquots of different chromatographic media in microtiter plates. Serial step elution of the proteins, in concert with bioproduct-specific assays, resulted in the identification of \"active fractions\" containing the bioproduct. The identification of a successful chromatographic step was based on the purity of the active fractions, which were then pooled and used as starting material for screening the next chromatographic dimension. This procedure was repeated across subsequent dimensions until single band purities of the protein were obtained. The sequence of chromatographic steps and the corresponding operating conditions identified from the screen were validated under scaled-up conditions. Various modes of chromatography including hydrophobic interaction, ion exchange (cation and anion exchange) and hydrophobic charge-induction chromatography (HCIC), and different operating conditions (pH, salt concentration and type, etc.) were employed in the screen. This approach was employed to determine the sequence of chromatographic steps for the purification of recombinant alpha-amylase from its cell-free culture broth. Recommendations from the screen resulted in single-band purity of the protein under scaled-up conditions. Similar results were observed for an scFv-beta-lactamase fusion protein. The use of a miniaturized screen enables the parallel screening of a wide variety of actual bioprocess media and conditions and represents a novel paradigm approach for the high-throughput process development of recombinant proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号