首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an ab initio molecular dynamics study of the roles of fluctuating hydrogen bonds and free ND modes in the dynamics of ND stretch frequency fluctuations in deuterated liquid ammonia. We have also looked at some of the other dynamical quantities such as diffusion and orientational relaxation and also structural quantities such as pair correlations and hydrogen bonding properties which are relevant in the current context. The time correlation function of ND stretch frequencies is found to decay with primarily two time scales: A short-time decay with a time scale of less than 100 fs arising from intermolecular motion of intact hydrogen bonds and also from fast hydrogen bond breaking and a longer time scale of about 500 fs which can be assigned to the lifetime of free ND modes. Unlike water, in liquid ammonia an ND mode is found to remain free for a longer period than it stays hydrogen bonded and this longer lifetime of free ND modes determines the long-time behaviour of frequency fluctuations. Our hole dynamics calculations produced results of vibrational spectral diffusion that are similar to the decay of frequency time correlation. Inclusion of dispersion corrections is found to make the dynamics slightly faster.  相似文献   

2.
Florent Calvo 《Chirality》2015,27(3):253-261
The nonlinear response and dissociation propensity of an isolated chiral molecule, camphor, to a circularly polarized infrared laser pulse was simulated by molecular dynamics as a function of the excitation wavelength. The results indicate similarities with linear absorption spectra, but also differences that are ascribable to dynamical anharmonic effects. Comparing the responses between left‐ and right‐circularly polarized pulses in terms of dissociation probabilities, or equivalently between R‐ and S‐camphor to a similarly polarized pulse, we find significant differences for the fingerprint C = O amide mode, with a sensitivity that could be sufficient to possibly enable vibrational circular dichroism as an action technique for probing molecular chirality and absolute conformations in the gas phase. Chirality 27:253–261, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
4.
The rotational strengths and the robustness values of amide‐I and amide‐II vibrational modes of For(AA)nNHMe (where AA is Val, Asn, Asp, or Cys, n = 1–5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α‐helix and β‐sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide‐I and amide‐II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems. Chirality 27:625–634, 2015 © 2015 Wiley Periodicals, Inc.  相似文献   

5.
BackgroundRecently, it has been revealed that tetragonal lysozyme crystals show a phase transition at 307 K upon heating. The underlying mechanisms of the phase transition are still not fully understood. Here we focus on the study of high-frequency vibrational modes arising from the protein and their temperature evolution in the vicinity of Tph as well as on the detailed study of crystalline water dynamics near Tph.MethodsRaman experiments have been performed at temperatures 295–323 K including Tph. The low-frequency modes and the modes of fingerprint region, CH- and OH-stretching regions have been analyzed.Results and conclusionsIn spite of the absence of noticeable rearrangements in protein structure, the high-frequency vibrational modes of lysozyme located in the fingerprint region have been found to exhibit the features of critical dynamics near Tph. Pronounced changes in the dynamics of α-helixes and Tyr residues exposed on the protein surface point to the important role of H-bond rearrangements at the phase transition. Additionally the study of temperature evolution of OH-stretching modes has shown an increase in distortions of tertahedral H-bond network of crystalline water above Tph. These changes in water dynamics could play a crucial role in the mechanisms of the phase transition.General significanceThe present results shed light on the mechanisms of the phase transition in lysozyme crystals.  相似文献   

6.
Molecular dynamics (MD) simulation combined with inelastic neutron scattering can provide information about the thermal dynamics of proteins, especially the low-frequency vibrational modes responsible for large movement of some parts of protein molecules. We performed several 30-ns MD simulations of cytochrome c (Cyt c) in a water box for temperatures ranging from 110 to 300 K and compared the results with those from experimental inelastic neutron scattering. The low-frequency vibrational modes were obtained via dynamic structure factors, S(Q, ω), obtained both from inelastic neutron scattering experiments and calculated from MD simulations for Cyt c in the same range of temperatures. The well known thermal transition in structural movements of Cyt c is clearly seen in MD simulations; it is, however, confined to unstructured fragments of loops Ω1 and Ω2; movement of structured loop Ω3 and both helical ends of the protein is resistant to thermal disturbance. Calculated and experimental S(Qω) plots are in qualitative agreement for low temperatures whereas above 200 K a boson peak vanishes from the calculated plots. This may be a result of loss of crystal structure by the protein–water system compared with the protein crystal.  相似文献   

7.
The dynamics of lysozyme in the picosecond timescale has been studied when it is in dry and hydrated powder form and when it is embedded in glycerol, glycerol–water, glucose and glucose–water matrices. The investigation has been undertaken through elastic neutron scattering technique on the backscattering spectrometer IN13. The dynamics of dry powder and embedded-in-glucose lysozyme can be considered purely vibrational up to 100 K, where the onset of an anharmonic contribution takes place. This contribution can be attributed to the activation of methyl group reorientations and is described with an Arrhenius trend. An additional source of anharmonic dynamics appears at higher temperatures for lysozyme in hydrated powders and embedded in glycerol, glycerol–water and glucose–water matrices. This second process, also represented with an Arrhenius trend, corresponds to the so-called protein dynamical transition. Both the temperature where such a transition takes place and the magnitude of the protein mean square displacements depend on the environment. The dynamical response of the protein to temperature is put in relationship with its thermal stability.  相似文献   

8.
Vibrational excitations of low-frequency collective modes are essential for functionally important conformational transitions in proteins. We carried out an analysis of the low-frequency modes in the G protein coupled receptors (GPCR) family of cone opsins based on both normal-mode analysis and molecular dynamics (MD) simulations. Power spectra obtained by MD can be compared directly with normal modes. In agreement with existing experimental evidence related to transmembrane proteins, cone opsins have functionally important transitions that correspond to approximately 950 modes and are found below 80 cm−1. This is in contrast to bacteriorhodopsin and rhodopsin, where the important low-frequency transition modes are below 50 cm−1. We find that the density of states (DOS) profile of blue opsin in a solvent (e.g. water) has increased populations in the very lowest frequency modes (<15 cm−1); this is indicative of the increased thermostability of blue opsin. From our work we found that, although light absorption behaves differently in blue, green and red opsins, their low-frequency vibrational motions are similar. The similarities and differences in the domain motions of blue, red and green opsins are discussed for several representative modes. In addition, the influence of the presence of a solvent is reported and compared with vacuum spectra. We thus demonstrate that terahertz spectroscopy of low-frequency modes might be relevant for identifying those vibrational degrees of freedom that correlate to known conformational changes in opsins. An erratum to this article can be found at  相似文献   

9.
2H NMR spin-lattice relaxation and line-shape analyses are performed to study the temperature-dependent dynamics of water in the hydration shells of myoglobin, elastin, and collagen. The results show that the dynamical behaviors of the hydration waters are similar for these proteins when using comparable hydration levels of h = 0.25–0.43. Since water dynamics is characterized by strongly nonexponential correlation functions, we use a Cole–Cole spectral density for spin-lattice relaxation analysis, leading to correlation times, which are in nice agreement with results for the main dielectric relaxation process observed for various proteins in the literature. The temperature dependence can roughly be described by an Arrhenius law, with the possibility of a weak crossover in the vicinity of 220 K. Near ambient temperatures, the results substantially depend on the exact shape of the spectral density so that deviations from an Arrhenius behavior cannot be excluded in the high-temperature regime. However, for the studied proteins, the data give no evidence for the existence of a sharp fragile-to-strong transition reported for lysozyme at about 220 K. Line-shape analysis reveals that the mechanism for the rotational motion of hydration waters changes in the vicinity of 220 K. For myoglobin, we observe an isotropic motion at high temperatures and an anisotropic large-amplitude motion at low temperatures. Both mechanisms coexist in the vicinity of 220 K. 13C CP MAS spectra show that hydration results in enhanced elastin dynamics at ambient temperatures, where the enhancement varies among different amino acids. Upon cooling, the enhanced mobility decreases. Comparison of 2H and 13C NMR data reveals that the observed protein dynamics is slower than the water dynamics.  相似文献   

10.
The local dynamics of a double‐stranded DNA d(TpCpGpCpG)2 is obtained to second order in the mode‐coupling expansion of the Smoluchowski diffusion theory. The time correlation functions of bond variables are derived and the 13C‐nmr spin–lattice relaxation times T1 of different 13C along the chains are calculated and compared to experimental data from the literature at three frequencies. The DNA is considered as a fluctuating three‐dimensional structure undergoing rotational diffusion. The fluctuations are evaluated using molecular dynamics simulations, with the ensemble averages approximated by time averages along a trajectory of length 1 ns. Any technique for sampling the configurational space can be used as an alternative. For a fluctuating three‐dimensional (3D) structure using the three first‐order vector modes of lower rates, higher order basis sets of second‐rank tensor are built to give the required mode coupling dynamics. Second‐ and even first‐order theories are found to be in close agreement with the experimental results, especially at high frequency, where the differences in T1 for 13C in the base pairs, sugar, and backbone are well described. These atomistic calculations are of general application for studying, on a molecular basis, the local dynamics of fluctuating 3D structures such as double‐helix DNA fragments, proteins, and protein–DNA complexes. © 1999 John Wiley & Sons, Inc. Biopoly 50: 613–629, 1999  相似文献   

11.
Relevance of mode coupling to energy/information transfer during protein function, particularly in the context of allosteric interactions is widely accepted. However, existing evidence in favor of this hypothesis comes essentially from model systems. We here report a novel formal analysis of the near‐native dynamics of myosin II, which allows us to explore the impact of the interaction between possibly non‐Gaussian vibrational modes on fluctutational dynamics. We show that an information‐theoretic measure based on mode coupling alone yields a ranking of residues with a statistically significant bias favoring the functionally critical locations identified by experiments on myosin II. Proteins 2014; 82:1777–1786. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
The introduction of the C10‐stereocenter of (ox‐)anthrones by plant organisms is not stereospecific. Consequently, often, both (10S)‐ and (10R)‐diastereomers can be found in the same plant. Motivated by the importance of a correct assignment of the configuration at C10, this study revisits the nuclear magnetic resonance and electronic circular dichroism‐based empirical rules for the determination of the absolute configuration by molecular dynamic simulations and electronic circular dichroism spectrum calculations. Furthermore, a vibrational circular dichroism spectroscopic characterization of these large and conformationally very flexible molecules reveals spectral signatures, which can be used to specifically distinguish the C10 stereochemistry. A detailed analysis of the underlying vibrational modes suggests that the observed spectral pattern of the investigated cascarosides may be generally characteristic for the C10‐stereocenter of (ox‐)anthrones and that they can be used for empirical spectra‐structure correlations.  相似文献   

13.
The deuteration of the lattice molecules in clathrate hydrates is a widely used experimental technique to clearly separate the vibrational modes. However, the effect of the deuteration on the vibrational spectra and molecular motions is not fully understood. Since the guest–host coupling may change the vibrational spectra, a detailed analysis of the vibrational spectra of deuterated clathrate hydrate is significant in the understanding of the mechanism of the vibrational shift. In this study, the vibrational spectra of the deuterated methane hydrates were calculated by ab initio molecular dynamics simulation. The intramolecular vibrational frequency of the methane in D2O lattice and deuterated methane in H2O lattice was calculated and compared with the pure methane hydrate. The bending, rocking and overtone of the bending mode was also reported. The effect of coupling of the rattling motions of guest and host molecules on the vibrational spectra was revealed.  相似文献   

14.
Nonlinear effects in protein dynamics are expected to play role in function, particularly of allosteric nature, by facilitating energy transfer between vibrational modes. A recently proposed method focusing on the non‐Gaussian shape of the configurational population near equilibrium projects this information onto real space in order to identify the aminoacids relevant to function. We here apply this method to three ancestral proteins in glucocorticoid receptor (GR) family and show that the mutations that restrict functional activity during GR evolution correlate significantly with locations that are highlighted by the nonlinear contribution to the near‐native configurational distribution. Our findings demonstrate that the analysis of nonlinear effects in protein dynamics can be harnessed into a predictive tool for functional site determination. Proteins 2016; 84:655–665. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
It is known that bacteria contain inhibitors of lysozyme activity. The recently discovered Escherichia coli inhibitor of vertebrate lysozyme (Ivy) and its potential interactions with several goose-type (g-type) lysozymes from fish were studied using functional enzyme assays, comparative homology modelling, protein–protein docking, and molecular dynamics simulations. Enzyme assays carried out on salmon g-type lysozyme revealed a lack of inhibition by Ivy. Detailed analysis of the complexes formed between Ivy and both hen egg white lysozyme (HEWL) and goose egg white lysozyme (GEWL) suggests that electrostatic interactions make a dominant contribution to inhibition. Comparison of three dimensional models of aquatic g-type lysozymes revealed important insertions in the β domain, and specific sequence substitutions yielding altered electrostatic surface properties and surface curvature at the protein–protein interface. Thus, based on structural homology models, we propose that Ivy is not effective against any of the known fish g-type lysozymes. Docking studies suggest a weaker binding mode between Ivy and GEWL compared to that with HEWL, and our models explain the mechanistic necessity for conservation of a set of residues in g-type lysozymes as a prerequisite for inhibition by Ivy.  相似文献   

16.
The effects of a static electric field on the dynamics of lysozyme and its hydration water are investigated by means of incoherent quasi-elastic neutron scattering (QENS). Measurements were performed on lysozyme samples, hydrated respectively with heavy water (D 2O) to capture the protein dynamics and with light water (H 2O), to probe the dynamics of the hydration shell, in the temperature range from 210 < T < 260 K. The hydration fraction in both cases was about ~ 0.38 gram of water per gram of dry protein. The field strengths investigated were respectively 0 kV/mm and 2 kV/mm ( ~2 × 10 6 V/m) for the protein hydrated with D 2O and 0 kV and 1 kV/mm for the H 2O-hydrated counterpart. While the overall internal protons dynamics of the protein appears to be unaffected by the application of an electric field up to 2 kV/mm, likely due to the stronger intra-molecular interactions, there is also no appreciable quantitative enhancement of the diffusive dynamics of the hydration water, as would be anticipated based on our recent observations in water confined in silica pores under field values of 2.5 kV/mm. This may be due to the difference in surface interactions between water and the two adsorption hosts (silica and protein), or to the existence of a critical threshold field value E c ~2–3 kV/mm for increased molecular diffusion, for which electrical breakdown is a limitation for our sample.  相似文献   

17.
Wael Karain 《Proteins》2016,84(10):1549-1557
The dynamics of a protein and the water surrounding it are coupled via nonbonded energy interactions. This coupling can exhibit a complex, nonlinear, and nonstationary nature. The THz frequency spectrum for this interaction energy characterizes both the vibration spectrum of the water hydrogen bond network, and the frequency range of large amplitude modes of proteins. We use a Recurrence Plot based Wiener–Khinchin method RPWK to calculate this spectrum, and the results are compared to those determined using the classical auto‐covariance‐based Wiener–Khinchin method WK. The frequency spectra for the total nonbonded interaction energy extracted from molecular dynamics simulations between the β‐Lactamase Inhibitory Protein BLIP, and water molecules within a 10 Å distance from the protein surface, are calculated at 150, 200, 250, and 310 K, respectively. Similar calculations are also performed for the nonbonded interaction energy between the residues 49ASP, 53TYR, and 142PHE in BLIP, with water molecules within 10 Å from each residue respectively at 150, 200, 250, and 310 K. A comparison of the results shows that RPWK performs better than WK, and is able to detect some frequency data points that WK fails to detect. This points to the importance of using methods capable of taking the complex nature of the protein–solvent energy landscape into consideration, and not to rely on standard linear methods. In general, RPWK can be a valuable addition to the analysis tools for protein molecular dynamics simulations. Proteins 2016; 84:1549–1557. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Abstract

Inelastic neutron scattering spectroscopy is used to investigate dynamic changes in lysozyme powder at two different low D,0 hydrations (0.07g D2,O/g protein and 0,20 g D2,O/g protein). In the higher hydration sample, the inelastic scattering between 0.8 and 4.0 cm?1 energy transfer is increased and the elastic scattering is decreased. The decreased elastic scattering suggests increased atomic amplitudes of motion and the increased 0.8 to 4.0 cm?1 scattering suggests increased motions in this frequency range. Comparison with normal mode models of lysozyme dynamics shows that the inelastic difference occurs in the frequency region predicted for the lowest frequency, largest amplitude, global modes of the molccule[M. Levitt, C. Sanderand P. S. Stern, J. Mol. Biol. 181. 423 (1985). B.Brooks and M.Karplus.Prot. Natl Acad. Sci (U.S.A) 82. 4995 (1985), R.E. Bruccoleri, M. Karplus and J.A. McCammon, Biopolymers 25 1767 (1986)]. Our results are consistent with a model in which an increased number of low frequency global modes are present in the higher hydrated sample.  相似文献   

19.
Plant‐insect herbivore‐entomopathogen interactions are one of the hot topics in biological control and humoral immunity, and biochemical metabolism are important responses of herbivores to pathogen infection. Entomopathogens are key biocontrol agents of caterpillars, but how plants affect the responses of caterpillars to these organisms is not well understood. We studied hormonal immunity (lysozyme and phenoloxidase activities) and biochemical metabolism (total protein and lipid contents) of Beauveria bassiana‐infected beet armyworm (Spodoptera exigua) larvae that feed on five different host plants (soya bean, Chinese cabbage, edible amaranth, water convolvulus and pepper). Results indicated that plant species differentially affected lysozyme and phenoloxidase activity and lipid content, but had no effect on protein content of pathogen‐infected caterpillars. Both lysozyme and phenoloxidase activities were generally higher in entomopathogen‐infected larvae that feed on edible amaranth or water convolvulus compared with the other three plants from days 1 to 5 after treatment. Plant species did not affect in regular changes during the 5 days in the lipid content of infected or non‐infected caterpillars. Our study reveals that plants fail to affect the biochemical metabolism but plants can mediate the humoral immunity of caterpillars to defend against pathogens. This study provides insight into plant‐mediated effects on the response of herbivores to pathogens.  相似文献   

20.
In this contribution, we study the effect of confinement on the ultrafast electron transfer (ET) dynamics of riboflavin binding protein (RBP) to the bound cofactor riboflavin (Rf, vitamin B2), an important metabolic process, in anionic sodium bis(2‐ethylhexyl) sulfosuccinate reverse micelles (AOT‐RMs) of various hydration levels. Notably, in addition to excluded volume effect, various nonspecific interactions like ionic charge of the confining surface can influence the biochemical reactions in the confined environment of the cell. To this end, we have also studied the ET dynamics of RBP–Rf complex under the confinement of a cationic hexadecyltrimethylammonium bromide (CTAB) RMs with similar water pool size to the anionic AOT‐RMs towards simulating equal restricted volume effect. It has been found that the spatial confinement of RBP in the AOT‐RM of w0 = 10 leads to the loss of its tertiary structure and hence vitamin binding capacity. Although, RBP regains its binding capacity and tertiary structure in AOT‐RMs of w0 ≥20 due to its complete hydration, the ultrafast ET from RBP to Rf merely occurs in such systems. However, to our surprise, the ET process is found to occur in cationic CTAB‐RMs of similar volume restriction. It is found that under the spatial confinement of anionic AOT‐RM, the isoalloxazine ring of Rf is improperly placed in the protein nanospace so that ET between RBP and Rf is not permitted. This anomaly in the binding behaviour of Rf to RBP in AOT‐RMs is believed to be the influence of repulsive potential of the anionic AOT‐RM surface to the protein. Our finding thus suggests that under similar size restriction, both the hydration and surface charge of the confining volume could have major implication in the intraprotein ET dynamics in real cellular environments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号