共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
M. C. Mossing 《Protein science : a publication of the Protein Society》1998,7(4):983-993
The solution structure of a monomeric variant of the lambda Cro repressor has been determined by multidimensional NMR. Cro K56[DGEVK] differs from wild-type Cro by the insertion of five amino acids at the center of the dimer interface. 1H and 15N resonances for 70 of the 71 residues have been assigned. Thirty-two structures were calculated by hybrid distance geometry/simulated annealing methods using 463 NOE-distance restraints, 26 hydrogen-bond, and 39 dihedral-angle restraints. The root-mean-square deviation (RMSD) from the average structure for atoms in residues 3-60 is 1.03 +/- 0.44 A for the peptide backbone and 1.6 +/- 0.73 A for all nonhydrogen atoms. The overall structure conforms very well to the original design. Although the five inserted residues form a beta hairpin as expected, this engineered turn as well as other turns in the structure are not well defined by the NMR data. Dynamics studies of backbone amides reveal T1/T2 ratios of residues in the alpha2-alpha3, beta2-beta3, and engineered turn that are reflective of chemical exchange or internal motion. The solution structure and dynamics are discussed in light of the conformational variation that has been observed in other Cro structures, and the importance of flexibility in DNA recognition. 相似文献
3.
Here, we describe a structure-based approach to reduce the size of an antigen protein for a subunit vaccine. Our method consists of (i) determining the three-dimensional structure of an antigen, (ii) identifying protective epitopes, (iii) generation of an antigen fragment that contains the protective epitope, and (iv) rational design to compensate for destabilization caused by truncation. Using this approach we have successfully developed a second-generation Lyme disease vaccine. Outer surface protein A (OspA) from the Lyme disease spirochete Borrelia burgdorferi elicits protective immunity that blocks transmission of Borrelia from the tick vector to the vaccinated animal, and thus has been a focus of vaccine development. OspA has two globular domains that are connected via a unique single-layer beta-sheet. All anti-OspA monoclonal antibodies that block Borrelia transmission bind to conformational epitopes in the C-terminal domain of OspA, suggesting the possibility of using the C-terminal domain alone as a recombinant protein-based vaccine. The removal of ineffective parts from the OspA antigen may reduce side effects and lead to a safer vaccine. We prepared a C-terminal fragment of OspA by removing approximately 45% of residues from the N terminus. Although the fragment retained the native conformation and affinity to a protective antibody, its vaccine efficacy and conformational stability were significantly reduced with respect to full-length OspA. We successfully stabilized the fragment by replacing amino acid residues involved in buried salt-bridges with residues promoting hydrophobic interactions. The mutations promoted the vaccine efficacy of the redesigned fragment to a level comparable to that of the full-length protein, demonstrating the importance of the antigen stability for OspA's vaccine efficacy. Our strategy should be useful for further refining OspA-based vaccines and developing recombinant vaccines for other diseases. 相似文献
4.
5.
6.
Taylor Arhar Arielle Shkedi Cory M. Nadel Jason E. Gestwicki 《The Journal of biological chemistry》2021,297(5)
The major classes of molecular chaperones have highly variable sequences, sizes, and shapes, yet they all bind to unfolded proteins, limit their aggregation, and assist in their folding. Despite the central importance of this process to protein homeostasis, it has not been clear exactly how chaperones guide this process or whether the diverse families of chaperones use similar mechanisms. For the first time, recent advances in NMR spectroscopy have enabled detailed studies of how unfolded, “client” proteins interact with both ATP-dependent and ATP-independent classes of chaperones. Here, we review examples from four distinct chaperones, Spy, Trigger Factor, DnaK, and HscA-HscB, highlighting the similarities and differences between their mechanisms. One striking similarity is that the chaperones all bind weakly to their clients, such that the chaperone–client interactions are readily outcompeted by stronger, intra- and intermolecular contacts in the folded state. Thus, the relatively weak affinity of these interactions seems to provide directionality to the folding process. However, there are also key differences, especially in the details of how the chaperones release clients and how ATP cycling impacts that process. For example, Spy releases clients in a largely folded state, while clients seem to be unfolded upon release from Trigger Factor or DnaK. Together, these studies are beginning to uncover the similarities and differences in how chaperones use weak interactions to guide protein folding. 相似文献
7.
Erin F. Reinhart Nicole A. Litt Sarah Katzenell Maria Pellegrini Ai Yamamoto Michael J. Ragusa 《Traffic (Copenhagen, Denmark)》2021,22(1-2):23-37
Autophagy‐linked FYVE protein (ALFY) is a large, multidomain protein involved in the degradation of protein aggregates by selective autophagy. The C‐terminal FYVE domain of ALFY has been shown to bind phosphatidylinositol 3‐phosphate (PI(3)P); however, ALFY only partially colocalizes with other FYVE domains in cells. Thus, we asked if the FYVE domain of ALFY has distinct membrane binding properties compared to other FYVE domains and whether these properties might affect its function in vivo. We found that the FYVE domain of ALFY binds weakly to PI(3)P containing membranes in vitro. This weak binding is the result of a highly conserved glutamic acid within the membrane insertion loop in the FYVE domain of ALFY that is not present in any other human FYVE domain. In addition, not only does this glutamic acid reduce binding to membranes in vitro and inhibits its targeting to membranes in vivo, but it is also important for the ability of ALFY to clear protein aggregates. 相似文献
8.
《Journal of molecular biology》2021,433(13):167010
Cardiac troponin (cTn) is made up of three subunits, cTnC, cTnI, and cTnT. The regulatory N-terminal domain of cTnC (cNTnC) controls cardiac muscle contraction in a calcium-dependent manner. We show that calcium-saturated cNTnC can adopt two different orientations, with the “active” orientation consistent with the 2020 cryo-EM structure of the activated cardiac thin filament by Yamada et al. Using solution NMR 15N R2 relaxation analysis, we demonstrate that the two domains of cTnC tumble independently (average R2 10 s−1), being connected by a flexible linker. However, upon addition of cTnI1-77, the complex tumbles as a rigid unit (R2 30 s−1). cTnI phosphomimetic mutants S22D/S23D, S41D/S43D and dilated cardiomyopathy- (DCM-)associated mutations cTnI K35Q, cTnC D75Y, and cTnC G159D destabilize the active orientation of cNTnC, with intermediate 15N R2 rates (R2 17–23 s−1). The active orientation of cNTnC is stabilized by the flexible tails of cTnI, cTnI1-37 and cTnI135-209. Surprisingly, when cTnC is incorporated into complexes lacking these tails (cTnC-cTnI38-134, cTnC-cTnT223-288, or cTnC-cTnI38-134-cTnT223-288), the cNTnC domain is still immobilized, revealing a new interaction between cNTnC and the IT-arm that stabilizes a “dormant” orientation. We propose that the calcium sensitivity of the cardiac troponin complex is regulated by an equilibrium between active and dormant orientations, which can be shifted through post-translational modifications or DCM-associated mutations. 相似文献
9.
10.
K M Brindle J Boyd I D Campbell R Porteous N Soffe 《Biochemical and biophysical research communications》1982,109(3):864-871
A heteronuclear spin echo experiment is described which allows detection of both 12C and 13C labelled species in a 1H spectrum. Fractional labelling of 13C labelled metabolites can thus be observed. The method is illustrated with a study of the exchange of 13C label between the methyl groups of alanine and pyruvate catalysed by the enzyme alanine aminotransferase (E.C. 2.6.1.2) both in the human erythrocyte and . 相似文献
11.
A study of the interactions among adenosine triphosphate, epinephrine, and magnesium ions 总被引:1,自引:0,他引:1
The interactions among adenosine triphosphate, Mg+2, and epinephrine at pH's below 7.0 have been studied by observing the effects of these interactions on the chemical shifts and line widths of their 1H and 31P nuclear magnetic resonance spectra. Mg+2 is tightly bound by the β- and γ-phosphate groups of adenosine triphosphate and there is a weak association between this chelate and epinephrine. In the ternary complex, the aromatic ring of epinephrine overlaps the purine ring of adenosine triphosphate and there appears to be an ionic interaction between the protonated amino group and the α-phosphate of adenosine triphosphate. It was also found that dichloroisoproterenol forms essentially the same type of ternary complex. 相似文献
12.
13.
14.
介绍了Apo-CaM、Ca2+-CaM以及CaM与其靶肽及拮抗剂复合体的空间结构.钙调素(calmodulin, CaM)作为细胞多功能的Ca2+受体,在细胞信号转导过程中发挥重要作用.近几年对它的空间结构有了较清楚的了解,使人们能够更明确地认识CaM的Ca2+激活及CaM与其靶酶的作用机制. 相似文献
15.
We present two time-shared experiments that enable the characterization of all nOes in 1H–13C-ILV methyl-labelled proteins that are otherwise uniformly deuterated and 15N enriched and possibly selectively protonated for distinct residue types. A 3D experiment simultaneously provides the spectra
of a 3D NOESY-HN-TROSY and of a 3D NOESY-HC-PEP-HSQC. Thus, nOes from any protons to methyl or amide protons are dispersed
with respect to 15N and 13C chemical shifts, respectively. The single 4D experiment presented here yields simultaneously the four 4D experiments HC-HSQC-NOESY-HC-PEP-HSQC,
HC-HSQC-NOESY-HN-TROSY, HN-HSQC-NOESY-HN-TROSY and HN-HSQC-NOESY-HC-PEP-HSQC. This allows for the unambiguous determination
of all nOes involving amide and methyl protons. The method was applied to a (1H,13C)-ILV−(1H)-FY-(U−2H,15N) sample of a 37 kDa di-domain of the E. coli enterobactin synthetase module EntF. 相似文献
16.
The conformational preference of a peptide with three phenylalanine‐glycine (FG) repeats from the intrinsically disordered domain of nucleoporin 159 (nup159) from the yeast nucleopore complex is studied. Conformational states of this FG‐peptide in dimethyl sulfoxide (DMSO), a non‐native solvent, are first studied. A solvent exchange scheme is designed and performed to understand how the conformational preferences of the peptide are altered as the solvent shifts from DMSO to water. An ensemble of structures of a 19‐residue peptide is determined based on 13Cα, 1Hα, and 1HN chemical shifts and with inter‐proton distances. An experimental model is then presented where chemical shifts and amide‐proton temperature dependence is probed at changing DMSO to water ratios. These co‐solvent experiments provide evidence of a conformational change as the fraction of water increases by the stark change in the behavior of amide protons under varied temperature. This investigation provides a NMR based experimental method in the field of intrinsically disordered proteins to realize conformational transitions from a non‐native set of structures (in DMSO) to a native set of disordered conformers (in water). © 2013 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 102: 69–77, 2014. 相似文献
17.
Butterwick JA Palmer AG 《Protein science : a publication of the Protein Society》2006,15(12):2697-2707
Dynamic processes are inherent properties of proteins and are crucial for a wide range of biological functions. To address how changes in protein sequence and structure affect dynamic processes, a quantitative comparison of microsecond-to-microsecond time scale conformational changes, measured by solution NMR spectroscopy, within homologous mesophilic and thermophilic ribonuclease H (RNase H) enzymes is presented. Kinetic transitions between the observed major state (high population) and alternate (low population) conformational state(s) of the substrate-binding handle region in RNase H from the mesophile Escherichia coli (ecRNH) and thermophile Thermus thermophilus (ttRNH) occur with similar kinetic exchange rate constants, but the difference in stability between exchanging conformers is smaller in ttRNH compared to ecRNH. The altered thermodynamic equilibrium between kinetically exchanging conformers in the thermophile is recapitulated in ecRNH by the insertion of a Gly residue within a putative hinge between alpha-helices B and C. This Gly insertion is conserved among thermophilic RNases H, and allows the formation of additional intrahelical hydrogen bonds. A Gly residue inserted between alpha-helices B and C appears to relieve unfavorable interactions in the transition state and alternate conformer(s) and represents an important adaptation to adjust conformational changes within RNase H for activity at high temperatures. 相似文献
18.
By lyophilization from 40% acetic acid solutions, bovine pancreatic ribonuclease A forms several three-dimensional (3D) domain-swapped oligomers: dimers, trimers, tetramers, pentamers, hexamers, and traces of high-order oligomers, purifiable by cation-exchange chromatography. Each oligomeric species consists of at least two conformers displaying different basicity density, and/or exposure of positive charges. The structures of the two dimers and one trimer have been solved. Plausible models have been proposed for a second RNase A trimer and four tetramers, but not all the models are certainly assignable to the tetramers purified. Further studies have also been made on the pentameric and hexameric species, again without reaching structurally clear-cut results. This work is focused on the detailed modeling of the tetrameric RNase A species, using four different approaches to possibly clarify unknown structural aspects. The results obtained do not confirm the validity of one tetrameric model previously proposed, but allow the proposal of a novel tetrameric structure displaying new interfaces that are absent in the other known conformers. New details concerning other tetrameric structures are also described. RNase A multimers larger than tetramers, i.e., pentamers, hexamers, octamers, nonamers, up to dodecamers, are also modeled, with the proposal of novel domain-swapped structures, and the confirmation of what had previously been inferred. Finally, the propensity of RNase A to possibly form high-order supramolecular multimers is analyzed starting from the large number of domain-swapped RNase A conformers modeled. 相似文献
19.
Muralidharan Chandrakesan Debanjan Bhowmik Bidyut Sarkar Rajiv Abhyankar Harwinder Singh Mamata Kallianpur Sucheta P. Dandekar Perunthiruthy K. Madhu Sudipta Maiti Venus Singh Mithu 《The Journal of biological chemistry》2015,290(50):30099-30107
Aβ self-assembles into parallel cross-β fibrillar aggregates, which is associated with Alzheimer''s disease pathology. A central hairpin turn around residues 23–29 is a defining characteristic of Aβ in its aggregated state. Major biophysical properties of Aβ, including this turn, remain unaltered in the central fragment Aβ18–35. Here, we synthesize a single deletion mutant, ΔG25, with the aim of sterically hindering the hairpin turn in Aβ18–35. We find that the solubility of the peptide goes up by more than 20-fold. Although some oligomeric structures do form, solution state NMR spectroscopy shows that they have mostly random coil conformations. Fibrils ultimately form at a much higher concentration but have widths approximately twice that of Aβ18–35, suggesting an opening of the hairpin bend. Surprisingly, two-dimensional solid state NMR shows that the contact between Phe19 and Leu34 residues, observed in full-length Aβ and Aβ18–35, is still intact in these fibrils. This is possible if the monomers in the fibril are arranged in an antiparallel β-sheet conformation. Indeed, IR measurements, supported by tyrosine cross-linking experiments, provide a characteristic signature of the antiparallel β-sheet. We conclude that the self-assembly of Aβ is critically dependent on the hairpin turn and on the contact between the Phe19 and Leu34 regions, making them potentially sensitive targets for Alzheimer''s therapeutics. Our results show the importance of specific conformations in an aggregation process thought to be primarily driven by nonspecific hydrophobic interactions. 相似文献
20.
《Journal of molecular biology》2022,434(5):167407
Intrinsically disordered proteins (IDPs) are an important class of proteins which lack tertiary structure elements. Their dynamic properties can depend on reversible post-translational modifications and the complex cellular milieu, which provides a crowded environment. Both influences the thermodynamic stability and folding of globular proteins as well as the conformational plasticity of IDPs. Here we investigate the intrinsically disordered C-terminal region (amino acids 613–694) of human Grb2-associated binding protein 1 (Gab1), which binds to the disease-relevant Src homolog region 2 (SH2) domain-containing protein tyrosine phosphatase SHP2 (PTPN11). This binding is mediated by phosphorylation at Tyr 627 and Tyr 659 in Gab1. We characterize induced structure in Gab1613–694 and binding to SHP2 by NMR, CD and ITC under non-crowding and crowding conditions, employing chemical and biological crowding agents and compare the results of the non-phosphorylated and tyrosine phosphorylated C-terminal Gab1 fragment. Our results show that under crowding conditions pre-structured motifs in two distinct regions of Gab1 are formed whereas phosphorylation has no impact on the dynamics and IDP character. These structured regions are identical to the binding regions towards SHP2. Therefore, biological crowders could induce some SHP2 binding capacity. Our results therefore indicate that high concentrations of macromolecules stabilize the preformed or excited binding state in the C-terminal Gab1 region and foster the binding to the SH2 tandem motif of SHP2, even in the absence of tyrosine phosphorylation. 相似文献