首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of inflammasome complexes contributes inactivation of inflammatory caspases viz caspase 1, which is generally considered essential for the innate response. Three proteins constituted this inflammasome complex, such as Nod-like receptors (NLRP or AIM2), ASC possessing caspase-recruiting domain, and caspase-1. The ASC proteins comprise two domains, the N-terminal PYD domain responsible for the interaction of various proteins, including PYD only protein 3 (POP3), and the CARD domain for association with other proteins. The PYRIN Domain-Only Protein POP3 negatively regulates responses to DNA virus infection by preventing the ALR inflammasome formation. POP3 directly interacts with ASC, therefore inhibiting ASC recruitment to AIM2-like receptors (ALRs). In the current study, we designed various constructs of the PYRIN Domain-Only Protein 3 (POP3) and ASC PYD domain to find the best-overexpressed construct for biochemical characterization as well as our complex studies. We cloned, purified, and characterized the PYD domain of pyrin only protein 3 and ASC PYD domain under physiological conditions. Our in vitro study clearly shows that the ASC PYD domain of corresponding amino acid 1–96 aa with ease self-oligomerization in physiological buffer conditions, and complex formation of POP3 PYD (1–83 aa) was inhibited by ASC PYD domain. Besides, we purified the PYD of POP3 protein in low and high salt conditions and different pH values for their biochemical characterization. Our results showed that POP3 formed a dimer under normal physiological conditions and was stable under normal buffer conditions; however, the purification in extremely low pH (pH5.0) conditions shows unstable behavior, the high salt conditions (500 mM NaCl) influence the protein aggregation. SDS PAGE arbitrated the homogeneity of the PYD domain of pyrin only protein 3 and ASC PYD domain of corresponding amino acids 1–83 and 1–96, respectively. Furthermore, our native PAGE shows the PYD domain of pyrin; only protein 3 did not form a complex with ASC PYD domain because of oligomerization mediated by the PYD domain.  相似文献   

2.
ASC is an essential adaptor of the inflammasome, a micrometer-size multiprotein complex that processes proinflammatory cytokines. Inflammasome formation depends on ASC self-association into large assemblies via homotypic interactions of its two death domains, PYD and CARD. ASCb, an alternative splicing isoform, activates the inflammasome to a lesser extent compared with ASC. Thus, it has been postulated that adaptor isoforms differentially regulate inflammasome function. At the amino acid level, ASC and ASCb differ only in the length of the linker connecting the two death domains. To understand inflammasome regulation at the molecular level, we investigated the self-association properties of ASC and ASCb using real-time NMR, dynamic light scattering (DLS), size-exclusion chromatography, and transmission electron microscopy (TEM). The NMR data indicate that ASC self-association is faster than that of ASCb; a kinetic model for this oligomerization results in differing values for both the reaction order and the rate constants. Furthermore, DLS analysis indicates that ASC self-associates into more compact macrostructures compared with ASCb. Finally, TEM data show that ASCb has a reduced tendency to form densely packed filaments relative to ASC. Overall, these differences can only be explained by an effect of the linker length, as the NMR results show structural equivalence of the PYD and CARD in both proteins. The effect of linker length was corroborated by molecular docking with the procaspase-1 CARD domain. Altogether, our results indicate that ASC’s faster and less polydisperse polymerization is more efficient, plausibly explaining inflammasome activation differences by ASC isoforms at the molecular level.  相似文献   

3.
Apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD) (ASC) is a 22 kDa protein that functions as the central adaptor for inflammasome assembly. ASC forms insoluble specks in monocytes undergoing pyroptosis, and the polymerization of ASC provides a template of CARDs that leads to proximity-mediated autoactivation of caspase-1 in canonical inflammasomes. However, specks are insoluble protein complexes, and solubility is typically important for protein function. Therefore, we sought to define whether ASC specks comprise active inflammasome complexes or are simply the end stage of exhausted ASC polymers. Using a THP-1 cell–lysing model of caspase-1 activation that is ASC dependent, we compared caspase-1 activation induced by preassembled insoluble ASC specks and soluble monomeric forms of ASC. Unexpectedly, after controlling for the concentration dependence of ASC oligomerization, we found that only insoluble forms of ASC promoted caspase-1 autocatalysis. This link to insolubility was recapitulated with recombinant ASC. We show that purified recombinant ASC spontaneously precipitated and was functional, whereas the maltose-binding protein–ASC fusion to ASC (promoting enhanced solubility) was inactive until induced to insolubility by binding to amylose beads. This functional link to insolubility also held true for the Y146A mutation of the CARD of ASC, which avoids insolubility and caspase-1 activation. Thus, we conclude that the role of ASC insolubility in inflammasome function is inextricably linked to its pyrin domain–mediated and CARD-mediated polymerizations. These findings will support future studies into the molecular mechanisms controlling ASC solubility.  相似文献   

4.
Single-molecule fluorescence has the unique ability to quantify small oligomers and track conformational changes at a single-protein level. Here we tackled one of the most extreme protein behaviors, found recently in an inflammation pathway. Upon danger recognition in the cytosol, NLRP3 recruits its signaling adaptor, ASC. ASC start polymerizing in a prion-like manner and the system goes in “overdrive” by producing a single micron-sized “speck.” By precisely controlling protein expression levels in an in vitro translation system, we could trigger the polymerization of ASC and mimic formation of specks in the absence of inflammasome nucleators. We utilized single-molecule spectroscopy to fully characterize prion-like behaviors and self-propagation of ASC fibrils. We next used our controlled system to monitor the conformational changes of ASC upon fibrillation. Indeed, ASC consists of a PYD and CARD domains, separated by a flexible linker. Individually, both domains have been found to form fibrils, but the structure of the polymers formed by the full-length ASC proteins remains elusive. For the first time, using single-molecule Förster resonance energy transfer, we studied the relative positions of the CARD and PYD domains of full-length ASC. An unexpectedly large conformational change occurred upon ASC fibrillation, suggesting that the CARD domain folds back onto the PYD domain. However, contradicting current models, the “prion-like” conformer was not initiated by binding of ASC to the NLRP3 platform. Rather, using a new method, hybrid between Photon Counting Histogram and Number and Brightness analysis, we showed that NLRP3 forms hexamers with self-binding affinities around 300 nM. Overall our data suggest a new mechanism, where NLRP3 can initiate ASC polymerization simply by increasing the local concentration of ASC above a supercritical level.  相似文献   

5.
ASC was first identified as a caspase recruitment domain (CARD)-containing proapoptotic molecule that forms insoluble aggregates during apoptosis. Here, we report both the pyrin N-terminal homology domain (PYD) and CARD domains are involved in the aggregation of ASC. Preliminary experiments indicated that overexpression of ASC formed filament-like aggregates in COS-7 cells. Expression experiments using green fluorescent protein (GFP) constructs showed that not only the GFP-ASC-CARD but also the GFP-ASC-PYD formed filament-like aggregates in COS-7 cells. We confirmed these filament-like aggregates of both the ASC-PYD and the ASC-CARD due to homophilic interaction by immunoprecipitation method. We also demonstrated that the ASC-PYD associated with the ASC-CARD by heterophilic interaction. These observations suggest that the dimerization of the PYD as well as the CARD plays an important role in the oligomerization of ASC as an adaptor molecule.  相似文献   

6.
Protein-fusion constructs have been used with great success for enhancing expression of soluble recombinant protein and as tags for affinity purification. Unfortunately the most popular tags, such as GST and MBP, are large, which hinders direct NMR studies of the fusion proteins. Cleavage of the fusion proteins often re-introduces problems with solubility and stability. Here we describe the use of N-terminally fused protein G (B1 domain) as a non-cleavable solubility-enhancement tag (SET) for structure determination of a dimeric protein complex. The SET enhances the solubility and stability of the fusion product dramatically while not interacting directly with the protein of interest. This approach can be used for structural characterization of poorly behaving protein systems, and would be especially useful for structural genomics studies.  相似文献   

7.
Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)/target of methylation-induced silencing/PYCARD represents one of only two proteins encoded in the human genome that contains a caspase recruitment domain (CARD) together with a pyrin, AIM, ASC, and death domain-like (PAAD)/PYRIN/DAPIN domain. CARDs regulate caspase family proteases. We show here that ASC binds by its CARD to procaspase-1 and to adapter proteins involved in caspase-1 activation, thereby regulating cytokine pro-IL-1beta activation by this protease in THP-1 monocytes. ASC enhances IL-1beta secretion into the cell culture supernatants, at low concentrations, while suppressing at high concentrations. When expressed in HEK293 cells, ASC interferes with Cardiak/Rip2/Rick-mediated oligomerization of procaspase-1 and suppresses activation this protease, as measured by protease activity assays. Moreover, ASC also recruits procaspase-1 into ASC-formed cytosolic specks, separating it from Cardiak. We also show that expression of the PAAD/PYRIN family proteins pyrin or cryopyrin/PYPAF1/NALP3 individually inhibits IL-1beta secretion but that coexpression of ASC with these proteins results in enhanced IL-1beta secretion. However, expression of ASC uniformly interferes with caspase-1 activation and IL-1beta secretion induced by proinflammatory stimuli such as LPS and TNF, suggesting pathway competition. Moreover, LPS and TNF induce increases in ASC mRNA and protein expression in cells of myeloid/monocytic origin, revealing another level of cross-talk of cytokine-signaling pathways with the ASC-controlled pathway. Thus, our results suggest a complex interplay of the bipartite adapter protein ASC with PAAD/PYRIN family proteins, LPS (Toll family receptors), and TNF in the regulation of procaspase-1 activation, cytokine production, and control of inflammatory responses.  相似文献   

8.
We have compared four different vectors for expression of proteins with N- or C-terminal hexahistidine (His6) tags in Escherichia coli by testing these on 20 human proteins. We looked at a total recombinant protein production levels per gram dry cell weight, solubility of the target proteins, and yield of soluble and total protein when purified by immobilized metal ion affinity purification. It was found that, in general, both N- and C-terminal His6 tags have a noticeable negative affect on protein solubility, but the effect is target protein specific. A solubilizing fusion tag was able to partly counteract this negative effect. Most target proteins could be purified under denaturing conditions and about half of the proteins could be purified under physiological conditions. The highest protein production levels and yield of purified protein were obtained from a construct with C-terminal His tag. We also observe a large variation in cell growth rate, which we determined to be partly caused by the expression vectors and partly by the targets. This variation was found to be independent of the production level, solubility and tertiary structure content of the target proteins.  相似文献   

9.
The PYRIN-CARD protein ASC is an activating adaptor for caspase-1   总被引:19,自引:0,他引:19  
The PYRIN and CARD domains are members of the six-helix bundle death domain-fold superfamily that mediates assembly of large signaling complexes in the apoptotic and inflammatory signaling pathways. Here we show that the PYRIN-CARD protein ASC functions as a caspase-1-activating adaptor. ASC interacted specifically with procaspase-1 via CARD-CARD interactions and induced its oligomerization. Consistent with these results ectopic expression of full-length ASC, but not its isolated CARD or PYRIN domain, with procaspase-1 induced activation of procaspase-1 and processing of pro-interleukin-1beta in transfected cells. Substitution of the PYRIN domain of ASC with an inducible FKBP12 oligomerization domain produced a molecule that can induce caspase-1 activation in response to stimulation with the oligomerization drug AP20187, suggesting that the PYRIN domain functions as an oligomerization domain, whereas the CARD domain functions as the effector domain in the caspase-1 activation pathway. Furthermore stable expression of an isolated CARD of ASC in THP-1 cells diminished interleukin-1beta generation in response to pro-inflammatory cytokines. These results indicate that ASC is involved in the caspase-1 signaling pathway by mediating the assembly of a caspase-1-inflammasome signaling complex in response to pro-inflammatory cytokine stimulation.  相似文献   

10.
Phage T4 lysozyme is a well folded and highly soluble protein that is widely used as an insertion tag to improve solubility and crystallization properties of poorly behaved recombinant proteins. It has been used in the fusion protein strategy to facilitate crystallization of various proteins including multiple G protein‐coupled receptors, lipid kinases, or sterol binding proteins. Here, we present a structural and biochemical characterization of its novel, metal ions‐binding mutant (mbT4L). We demonstrate that mbT4L can be used as a purification tag in the immobilized‐metal affinity chromatography and that, in many respects, it is superior to the conventional hexahistidine tag. In addition, structural characterization of mbT4L suggests that mbT4L can be used as a purification tag compatible with X‐ray crystallography.  相似文献   

11.
凋亡相关斑点样蛋白的研究进展   总被引:1,自引:0,他引:1  
凋亡相关斑点样蛋白(apoptosis-associated speck-like protein containing a CARD,ASC)是一种含有N端热蛋白样结构域和C端胱天氨酸募集结构域的接头分子。ASC可以通过它含有的同源蛋白互作结构域PYD和CARD的寡聚化来募集上下游与其含有同源结构域的其他蛋白,从而参与多条信号转导途径,在炎症反应、肿瘤发生、细胞凋亡和NF-κB信号通路的调节方面发挥重要的生物学作用。  相似文献   

12.
Sample solubility is essential for structural studies of proteins by solution NMR. Attachment of a solubility enhancement tag, such as GB1, MBP and thioredoxin, to a target protein has been used for this purpose. However, signal overlap of the tag with the target protein often made the spectral analysis difficult. Here we report a sortase-mediated protein ligation method to eliminate NMR signals arising from the tag by preparing the isotopically labeled target protein attached with the non-labeled GB1 tag at the C-terminus. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The CED4/Apaf-1 family of proteins functions as critical regulators of apoptosis and NF-kappaB signaling pathways. A novel human member of this family, called CARD12, was identified that induces apoptosis when expressed in cells. CARD12 is most similar in structure to the CED4/Apaf-1 family member CARD4, and is comprised of an N-terminal caspase recruitment domain (CARD), a central nucleotide-binding site (NBS), and a C-terminal domain of leucine-rich repeats (LRR). The CARD domain of CARD12 interacts selectively with the CARD domain of ASC, a recently identified proapoptotic protein. In addition, CARD12 coprecipitates caspase-1, a caspase that participates in both apoptotic signaling and cytokine processing. CARD12 may assemble with proapoptotic CARD proteins to coordinate the activation of downstream apoptotic and inflammatory signaling pathways.  相似文献   

14.
The human protein ASC is a key mediator in apoptosis and inflammation. Through its two death domains (pyrin and CARD) ASC interacts with cell death executioners, acts as an essential adapter for inflammasome integrity, and oligomerizes into functional supramolecular assemblies. However, these functions are not understood at the structural-dynamic level. This study reports the solution structure and interdomain dynamics of full-length ASC. The pyrin and CARD domains are structurally independent six-helix bundle motifs connected by a 23-residue linker. The CARD structure reveals two distinctive characteristics; helix 1 is not fragmented as in all other known CARDs, and its electrostatic surface shows a uniform distribution of positive and negative charges, whereas these are commonly separated into two areas in other death domains. The linker adopts residual structure resulting in a back-to-back orientation of the domains, which avoids steric interference of each domain with the binding site of the other. NMR relaxation experiments show that the linker is flexible despite the residual structure. This flexibility could help expand the relative volume occupied by each domain, thus increasing the capture radius for effectors. Based on the ASC structure, a tentative model is proposed to illustrate how ASC oligomerizes via CARD and pyrin homophilic interactions. Moreover, ASC oligomers have been analyzed by atomic force microscopy, showing a predominant species of disk-like particles of ∼12-nm diameter and ∼1-nm height. Taken together, these results provide structural insight into the behavior of ASC as an adapter molecule.  相似文献   

15.
Kono T  Sakai T  Sakai M 《Gene》2003,309(1):57-64
A novel caspase recruitment domain protein (CARD) was isolated from common carp Cyprinus carpio L. by expressed sequence tag analysis. This gene consist of a 2016 bp open reading frame and untranslated regions, which is putatively translated to a protein of 535 amino acid residues. The gene harbors domains (CARD and Coiled-coil domain), which are conserved in proteins of CARD family. The CARD domain have carp was similar to human CARD9 with 72.4% identity. Expression analysis revealed that CARD gene of carp (carp-CARD) expressed in normal tissues of head kidney, spleen, liver, heart and brain. Here we demonstrated that the expression of carp-CARD increased by cortisol treatment in all the tissues and had a high and long lasting expression in cortisol treated spleen.  相似文献   

16.
A novel chaperonin-encapsulation system for NMR measurements has been designed. The single-ring variant SR398 with an ATPase deficient mutation of GroEL, also known as chaperonin, bound co-chaperonin GroES irreversibly, forming a stable cage to encapsulate a target protein. A small GroEL-binding tag made it possible to perform all steps of the encapsulation under near physiological conditions while retaining the native conformation of the target protein. About half of the SR398/GroES cages encapsulated target protein molecules. As binding only depends on the 12-residue tag sequence, this encapsulation method is applicable to a large number of proteins. Isolation of the target proteins in the molecular cage of chaperonin will allow the study of highly aggregation-prone proteins by solution NMR.  相似文献   

17.
原核生物作为宿主细胞被广泛应用于异源蛋白质的重组表达,并且为生物活性蛋白质的制备提供了一种高效、经济的方法,因而在分子生物学中得到普遍的应用。然而,病毒蛋白在使用原核重组表达系统进行重组表达时,会出现病毒蛋白溶解性差和表达量低等问题。因此,通过使用各种融合标签以增加目的重组蛋白的表达量和溶解性成为有效的方法。本研究通过使用3种融合标签(EDA标签、MBP标签和GST标签)以获得表达量高的可溶性重组表达猪圆环病毒2型壳蛋白;并比较3种融合标签对该蛋白表达量、溶解性和稳定性的影响。研究结果表明,EDA标签可以显著提高重组表达的猪圆环病毒2型壳蛋白表达量,并且能够增强该蛋白的稳定性;MBP标签可增强重组表达的猪圆环病毒2型壳蛋白表达量,但是不能改善该蛋白的稳定性;GST标签能够增强该重组表达蛋白的表达量,但是不能增强该蛋白的溶解性和稳定性。本研究将EDA作为PCV2-CP蛋白的融合标签,显著提高PCV2-CP-EDA重组蛋白的表达量和增强该重组蛋白的稳定性,为病毒蛋白的可溶性重组表达提供了一种新的融合标签。  相似文献   

18.
Dalal K  Pio F 《FEBS letters》2006,580(13):3083-3090
The PAAD domain is a conserved domain recently identified in more than 35 human proteins that are involved in apoptosis and inflammatory signaling pathways. Structural studies have confirmed that this domain belongs to the death domain superfamily which includes PAAD/CARD/DED/DD families. Recently, the 3D structures determined by NMR of NALP1 and ASC PAAD domain, members of the PAAD family, have shown that it is composed of a 6 helix bundle as with other death domain family members. However, helix-3 in the solved structures is unordered in solution. In this study we compare the thermodynamic, folding and stability properties of different members of the PAAD and CARD families and investigate structural conformational changes induced by the helix inducers trifluoroethanol and SDS on the PAAD domain of IFI16 and on the CARD domain of RAIDD. We show that inside the PAAD and CARD families, members have similar thermodynamic properties, however, the DeltaG of folding for PAAD and CARD members are, respectively, -1.4 and -5.5 kcal mol(-1). This difference is attributed to less alpha helical content for PAAD due to the unfolding of helix-3 that lowers bonded energy and increases disorder when compared to CARD members. Despite identical fold between PAAD and CARD families but limited sequence identity, there are striking differences in the thermodynamics of both families.  相似文献   

19.
The death domain (DD) superfamily comprising the death domain (DD) subfamily, the death effector domain (DED) subfamily, the caspase recruitment domain (CARD) subfamily and the pyrin domains (PYD) subfamily is one of the largest classes of protein interaction modules and plays a pivotal role in the apoptosis, inflammation, and immune cell signaling pathways. Despite the biological importance of the death domain superfamily, structural and in vitro biochemical studies have been limited because these domains are prone to aggregate under physiological conditions. Here, we describe a generalized method, termed semi-refolding, that is particularly applicable for purification of the functional death domain superfamily. The recombinant proteins Caspase-1 CARD, AIM2 PYD, NALP3 PYD, and RIP1 DD from inclusion bodies were successfully purified using this method.  相似文献   

20.
The expression of peptides and proteins as fusions to the B1 domain of streptococcal protein G (GB1) is very popular since GB1 often improves the solubility of the target protein and because the first purification step using IgG affinity chromatography is simple and efficient. However, the following protease digest is not always complete or can result in a digest of the target protein. In addition, a further purification step such as RP-HPLC has to be used to get rid of the GB1 tag and undigested fusion protein. Because the protease digest and the following purification step are not only time-consuming but generally also expensive, we tested if GB1 fusion proteins can directly be used for NMR interaction studies using lipids or membrane-mimetics. Based on NMR binding studies using only the GB1 part, this fusion tag does not significantly interact with different membrane-mimetics such as micelles, bicelles, or liposomes. Thus spectral changes observed using GB1-fusion proteins indicate lipid- and membrane interactions of the target protein. The method was initially established to probe membrane interactions of a large number of mutants of the FATC domain of the ser/thr kinase TOR. To demonstrate the usefulness of the approach, we show NMR binding data for the wild type protein and a leucine to alanine mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号