首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Distribution of AQP2 and AQP3 water channels in human tissue microarrays   总被引:5,自引:0,他引:5  
SummaryThe objective of this investigation was to use semi-quantitative immunohistochemistry to determine the distribution and expression levels of AQP2 and AQP3 proteins in normal human Tissue MicroArrays. Expression of the vasopressin regulated AQP2 was observed in a limited number of tissues. AQP2 was prominent in the apical and subapical plasma membranes of cortical and medullary renal collecting ducts. Surprisingly, weak AQP2 immunoreactivity was also noted in pancreatic islets, fallopian tubes and peripheral nerves. AQP2 was also localized to selected parts of the central nervous system (ependymal cell layer, subcortical white matter, hippocampus, spinal cord) and selected cells in the gastrointestinal system (antral and oxyntic gastric mucosa, small intestine and colon). These findings corroborate the restricted tissue distribution of AQP2. AQP3 was strongly expressed in many of the human tissues examined particularly in basolateral membranes of the distal nephron (medullary collecting ducts), distal colon, upper airway epithelia, transitional epithelium of the urinary bladder, tracheal, bronchial and nasopharyngeal epithelium, stratified squamous epithelial cells of the esophagus, and anus. AQP3 was moderately expressed in basolateral membranes of prostatic tubuloalveolar epithelium, pancreatic ducts, uterine endometrium, choroid plexus, articular chondrocytes, subchondral osteoblasts and synovium. Low AQP3 levels were also detected in skeletal muscle, cardiac muscle, gastric pits, seminiferous tubules, lymphoid vessels, salivary and endocrine glands, amniotic membranes, placenta and ovary. The abundance of basolateral AQP3 in epithelial tissues and its expression in many non-epithelial cells suggests that this aquaglyceroporin is a major participant in barrier hydration and water and osmolyte homeostasis in the human body.http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html, NCBI AceView, July 2003  相似文献   

2.
Structural properties of water inside bovine aquaporin-1 are investigated by molecular simulation. The calculations, which are based on the recently determined X-ray structure at 2.2 A resolution (Sui et al., Nature 2001;414:872-878), are carried out on one monomeric subunit immersed in a water-n-octane-water bilayer. Molecular dynamics (MD) simulations suggest that His182, a fully conserved residue in the channel pore, is protonated in the delta position. Furthermore, they reveal a highly ordered water structure in the channel, induced by the electrostatic properties of the protein. Multiple-steering MD simulations are used to calculate the free-energy of water diffusion. To the best of our knowledge, this represents the first free-energy calculation based on the new, high-resolution structure of the pore. The calculated barrier is 2.5 kcal/mol, and it is associated to water permeation through the Asn-Pro-Ala (NPA) region of the pore, where water molecules are only hydrogen-bonded with themselves. These findings are fully consistent with those based on the previous MD studies on the human protein (de Groot and Grubmüller, Science 2001;294:2353-2357).  相似文献   

3.
4.
Hu X  Jiang X  Lenz DE  Cerasoli DM  Wallqvist A 《Proteins》2009,75(2):486-498
Human paraoxonase (HuPON1) is a serum enzyme that exhibits a broad spectrum of hydrolytic activities, including the hydrolysis of various organophosphates, esters, and recently identified lactone substrates. Despite intensive site-directed mutagenesis and other biological studies, the structural basis for the specificity of substrate interactions of HuPON1 remains elusive. In this study, we apply homology modeling, docking, and molecular dynamic (MD) simulations to probe the binding interactions of HuPON1 with representative substrates. The results suggest that the active site of HuPON1 is characterized by two distinct binding regions: the hydrophobic binding site for arylesters/lactones, and the paraoxon binding site for phosphotriesters. The unique binding modes proposed for each type of substrate reveal a number of key residues governing substrate specificity. The polymorphic residue R/Q192 interacts with the leaving group of paraoxon, suggesting it plays an important role in the proper positioning of this substrate in the active site. MD simulations of the optimal binding complexes show that residue Y71 undergoes an "open-closed" conformational change upon ligand binding, and forms strong interactions with substrates. Further binding free energy calculations and residual decomposition give a more refined molecular view of the energetics and origin of HuPON1/substrate interactions. These studies provide a theoretical model of substrate binding and specificity associated with wild type and mutant forms of HuPON1, which can be applied in the rational design of HuPON1 variants as bioscavengers with enhanced catalytic activity.  相似文献   

5.
Human male germ cell-associated kinase (hMAK) is an androgen-inducible gene in prostate epithelial cells, and it acts as a coactivator of androgen receptor signaling in prostate cancer. The 3D structure of the hMAK kinase was modeled based on the crystal structure of CDK2 kinase using comparative modeling methods, and the ATP-binding site was characterized. We have collected five inhibitors of hMAK from the literature and docked into the ATP-binding site of the kinase domain. Solvated interaction energies (SIE) of inhibitor binding are calculated from the molecular dynamics simulations trajectories of protein–inhibitor complexes. The contribution from each active site residue in hMAK toward inhibitor binding revealed the nature and extent of interactions between inhibitors and individual residues. The main chain atoms of Met79 invariably form hydrogen bonds with all five inhibitors. The amino acids Leu7, Val15, and Leu129 stabilize the inhibitors via CH–pi interactions. The Asp140 in the active site and Glu77 in hinge region show characteristic hydrogen bonding interactions with inhibitors. From SIE, the residue-wise interactions revealed the nature of non-bonding contacts and modifications required to increase the inhibitor activity. Our work provides 3D model structure of hMAK and molecular basis for the mechanisms of hMAK inhibition at atomic level that aid in designing new potent inhibitors.  相似文献   

6.
Structural models have been generated for rat and human cholesterol esterases by molecular modeling. For rat cholesterol esterase, three separate models were generated according to the following procedure: (1) the cholesterol esterase sequence was aligned with those of three template enzymes: Torpedo californica acetylcholinesterase, Geotrichum candidum lipase and Candida rugosa lipase; (2) the X-ray structure coordinates of the three template enzymes were used to construct cholesterol esterase models by amino acid replacements of matched sequence positions and by making sequence insertions and deletions as required; (3) bad contracts in each of the cholesterol esterase models were relaxed by molecular dynamics and mechanics; (4) the three cholesterol esterase models were merged into one by arithmetic averaging of atomic coordinates; (5) Ramachandran analysis indicated that the model generated from the AChE template possessed the best set of phi/psi angles. Therefore, this model was subjected to molecular dynamics, with harmonic constraints imposed on the C(alpha) coordinates to drive them toward the coordinates of the averaged model. (6) Subsequent relaxation by molecular mechanics produced the final rat cholesterol esterase model. A model for human cholesterol esterase was produced by repeating steps 1-3 above, albeit with the rat cholesterol esterase model as the template. Hydrophobic and electrostatic analyses of the rat and human cholesterol esterase models suggest the structural origins of molecular recognition of hydrophobic substrates and interfaces, of charged interfaces, and of bile salt activators.  相似文献   

7.
8.
A polyglutamine expansion of the N-terminal region of huntingtin (Htt) causes Huntington’s disease, a severe neurodegenerative disorder. Htt huge multidomain structure, the presence of disordered regions, and the lack of sequence homologs of known structure, so far prevented structural studies of Htt, making the study of its structure-function relationships very difficult. In this work, the presence and location of five Htt ordered domains (named from Hunt1 to Hunt5) has been detected and the structure of these domains has been predicted for the first time using a combined threading/ab initio modeling approach. This work has led to the identification of a previously undetected HEAT repeats region in the Hunt3 domain. Furthermore, a putative function has been assigned to four out of the five domains. Hunt1 and Hunt5, displaying structural similarity with the regulatory subunit A of protein phosphatase 2A, are predicted to play a role in regulating the phosphorylation status of cellular proteins. Hunt2 and Hunt3 are predicted to be homologs of two yeast importins and to mediate vescicles transport and protein trafficking. Finally, a comprehensive analysis of the Htt interactome has been carried out and is discussed to provide a global picture of the Htt’s structure–function relationships.  相似文献   

9.
The fucosterol has been reported numerous biological activities. In this study, the activity in vitro of the fucosterol from Sargassum horridum as potential human acetylcholinesterase inhibitor was evaluated. The structural identification was obtained by nuclear magnetic resonance (NMR) spectroscopy and based on experimental data, we combined docking and molecular dynamics simulations coupled to the molecular-mechanics-generalized-born-surface-area approach to evaluating the structural and energetic basis for the molecular recognition of fucosterol and neostigmine at the binding site of acetylcholinesterase (AChE). In addition, the Lineweaver–Burk plot showed the nature of a non-competitive inhibition. The maximum velocity (Vmax) and the constant of Michaelis–Menten (Km) estimated for fucosterol (0.006 µM) were 0.015 1/VoA/h and 6.399 1/[ACh] mM?1, respectively. While, for neostigmine (0.14 µM), the Vmax was 0.022 1/VoA/h) and Km of 6.726 1/[ACh] mM?1, these results showed a more effective inhibition by fucosterol respect to neostigmine. Structural analysis revealed that neostigmine reaches the AChE binding site reported elsewhere, whereas fucosterol can act as a no-competitive and competitive acetylcholinesterase inhibitor, in agree with kinetic enzymatic experiments. Binding free energy calculations revealed that fucosterol reaches the acetylcholinesterase binding site with higher affinity than neostigmine, which is according to experimental results. Whereas the per-residue decomposition free energy analysis let us identify crucial residues involved in the molecular recognition of ligands by AChE. Results corroborate the ability of theoretical methods to provide crucial information at the atomic level about energetic and structural differences in the binding interaction and affinity from fucosterol with AChE.

Communicated by Ramaswamy H. Sarma  相似文献   


10.
In invertebrates, the prophenoloxidase (proPO) pathway is involved in the phenol‐like antioxidant production against invading pathogens. Overproduction of melanin and phenolic substances leads to the disruption of hemocytes (own host cells); therefore, there is a prerequisite to regulate the antioxidant production, which is performed by the proteases and proPO‐associated cell adhesion protein peroxinectin (PX). PX is a macromolecular structure consisting of protein involved in the proPO pathway, which is a potential target in the regulatory mechanism in crustaceans. In the proPO cascade, pattern recognition proteins initiate the proPO cascade by the consequent reaction, and PX is involved in the key step in the regulatory mechanism of phenoloxidase enzyme synthesis. In the present study, Indian white shrimp Fenneropenaeus indicus PX (Fein‐PX) gene sequence was used. Upregulation of Fein‐PX was determined using immunostimulants β‐glucan (agonists) and examined its expression by quantitative RT‐PCR. To find the downregulation or negative regulation of Fein‐PX, inhibitors were screened, and its 3D model provides molecular insights into the rationale inhibitor design for developing an effective molecule against Fein‐PX. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The rational design of high-affinity inhibitors of poly-ADP-ribose polymerase-1 (PARP-1) is at the heart of modern anti-cancer drug design. While relevance of enzyme to DNA repair processes in cellular environment is firmly established, the structural and functional understanding of the main determinants for high-affinity ligands controlling PARP-1 activity is still lacking. The conserved active site of PARP-1 represents an ideal target for inhibitors and may offer a novel target at the treatment of breast cancer. To fill the gap in the structural knowledge, we report on the combination of molecular dynamics (MD) simulations, principal component analysis (PCA), and conformational analysis that analyzes in great details novel binding mode for a number of inhibitors at the PARP-1. While optimization of the binding affinity for original target is an important goal in the drug design, many of the promising molecules for treatment of the breast cancer are plagued by significant cardiotoxicity. One of the most common side-effects reported for a number of polymerase inhibitors is its off-target interactions with cardiac ion channels and hERG1 channel, in particular. Thus, selected candidate PARP-1 inhibitors were also screened in silico at the central cavities of hERG1 potassium ion channel.  相似文献   

12.
Molecular modelling methods were previously applied to obtain information regarding the disassembly of the first generation quercetin-targeted dendrimers potentially leishmanicide. Dendrimers containing one to three branches were designed, and their three-dimensional molecular models were built up. They were constituted by myo-inositol (core and directing group), d-mannose (directing group), l-malic acid (spacer) and quercetin (bioactive agent). Physicochemical properties, such as spatial hindrance, electrostatic potential mapping and the lowest unoccupied molecular orbital energy, were evaluated. Hence, the main purpose of this study was to identify which carbonyl group was the most vulnerable to undergo chemical or enzymatic action. The carbonyl groups were named according to their positions in dendrimer systems as follows: C1, close to the core group; C2, near the directing group; C3 in the l-malic acid; and, C4 nearby the bioactive agent. C4 seemed to be the most promising carbonyl group to suffer hydrolysis. However, regarding larger molecular systems, such as targeted dendrimers with three branches, C4 carbonyl group is the most sterically hindered impairing any enzymatic approximation. For this kind of molecular systems, C1 has presented more spatial accessibility as well as lower electronic density distribution, which are features needed to dendrimer enzymatic disassembly, though.  相似文献   

13.
14.
Interests in Acinetobacter haemolyticus lipases are showing an increasing trend concomitant with growth of the enzyme industry and the widening search for novel enzymes and applications. Here, we present a structural model that reveals the key catalytic residues of lipase KV1 from A. haemolyticus. Homology modeling of the lipase structure was based on the structure of a carboxylesterase from the archaeon Archaeoglobus fulgidus as the template, which has a sequence that is 58% identical to that of lipase KV1. The lipase KV1 model is comprised of a single compact domain consisting of seven parallel and one anti-parallel β-strand surrounded by nine α-helices. Three structurally conserved active-site residues, Ser165, Asp259, and His289, and a tunnel through which substrates access the binding site were identified. Docking of the substrates tributyrin and palmitic acid into the pH 8 modeled lipase KV1 active sites revealed an aromatic platform responsible for the substrate recognition and preference toward tributyrin. The resulting binding modes from the docking simulation correlated well with the experimentally determined hydrolysis pattern, for which pH 8 and tributyrin being the optimum pH and preferred substrate. The results reported herein provide useful insights into future structure-based tailoring of lipase KV1 to modulate its catalytic activity.  相似文献   

15.
Aquaporins (AQPs) are water channels that allow cells to rapidly alter their membrane water permeability. A convenient model for studying AQP expression and activity regulation is Black Mexican Sweet (BMS) maize cultured cells. In an attempt to correlate membrane osmotic water permeability coefficient (Pf) with AQP gene expression, we first examined the expression pattern of 33 AQP genes using macro-array hybridization. We detected the expression of 18 different isoforms representing the four AQP subfamilies, i.e. eight plasma membrane (PIP), five tonoplast (TIP), three small basic (SIP) and two NOD26-like (NIP) AQPs. While the expression of most of these genes was constant throughout all growth phases, mRNA levels of ZmPIP1;3 , ZmPIP2;1 , ZmPIP2;2, ZmPIP2;4 and ZmPIP2;6 increased significantly during the logarithmic growth phase and the beginning of the stationary phase. The use of specific anti-ZmPIP antisera showed that the protein expression pattern correlated well with mRNA levels. Cell pressure probe and protoplast swelling measurements were then performed to determine the Pf. Interestingly, we found that the Pf were significantly increased at the end of the logarithmic growth phase and during the steady-state phase compared to the lag phase, demonstrating a positive correlation between AQP abundance in the plasma membrane and the cell Pf.  相似文献   

16.
Emergence of multi-drug resistant strains of Acinetobacter baumannii has caused significant health problems and is responsible for high morbidity and mortality. Overexpression of AdeABC efflux system is one of the major mechanisms. In this study, we have focused on overcoming the drug resistance by identifying inhibitors that can effectively bind and inhibit integral membrane protein, AdeB of this efflux pump. We performed homology modeling to generate structure of AdeB using MODELLER v9.16 followed by model refinement using 3D-Refine tool and validated using PSVS, ProsaWeb, ERRAT, etc. The energy minimization of modeled protein was done using Protein preparation wizard application included in Schrodinger suite. High-throughput virtual screening of 159,868 medicinal compounds against AdeB was performed using three sequential docking modes (i.e. HTVS, SP and XP). Furthermore, absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis was done using QIKPROP. The selected 123 compounds were further analyzed for binding free energy by molecular mechanics (using prime MM-GBSA). We have also performed enrichment study (ROC curve analysis) to validate our docking results. The selected molecule and its interaction with AdeB were validated by molecular dynamics simulation (MDS) using GROMACS v5.1.4. In silico high-throughput virtual screening and MDS validation identified ZINC01155930 ((4R)-3-(cycloheptoxycarbonyl)-4-(4-etochromen-3-yl)-2-methyl-4,6,7,8-tetrahydroquinolin-5-olate) as a possible inhibitor for AdeB. Hence, it might be a suitable efflux pump inhibitor worthy of further investigation in order to be used for controlling infections caused by Acinetobacter baumannii.  相似文献   

17.
We propose two models of the human S-arrestin/rhodopsin complex in the inactive dark adapted rhodopsin and meta rhodopsin II form, obtained by homology modeling and knowledge based docking. First, a homology model for the human S-arrestin was built and validated by molecular dynamics, showing an average root mean square deviation difference from the pattern behavior of 0.76 A. Then, combining the human S-arrestin model and the modeled structure of the two human rhodopsin forms, we propose two models of interaction for the human S-arrestin/rhodopsin complex. The models involve two S-arrestin regions related to the N domain (residues 68-78; 170-182) and a third constituent of the C domain (248-253), with the rhodopsin C terminus (330-348). Of the 22 single point mutations related to retinitis pigmentosa and congenital night blindness located in the cytoplasmatic portion of rhodopsin or in S-arrestin, our models locate 16 in the interaction region and relate two others to possible dimer formation. Our calculations also predict that the light activated complex is more stable than the dark adapted rhodopsin and, therefore, of higher affinity to S-arrestin.  相似文献   

18.
We present here in silico studies on antiviral drug resistance due to a novel mutation of influenza A/H1N1 neuraminidase (NA) protein. Influenza A/H1N1 virus was responsible for a recent pandemic and is currently circulating among the seasonal influenza strains. M2 and NA are the two major viral proteins related to pathogenesis in humans and have been targeted for drug designing. Among them, NA is preferred because the ligand-binding site of NA is highly conserved between different strains of influenza virus. Different mutations of the NA active site residues leading to drug resistance or susceptibility of the virus were studied earlier. We report here a novel mutation (S247R) in the NA protein that was sequenced earlier from the nasopharyngeal swab from Sri Lanka and Thailand in the year 2009 and 2011, respectively. Another mutation (S247N) was already known to confer resistance to oseltamivir. We did a comparative study of these two mutations vis-a-vis the drug-sensitive wild type NA to understand the mechanism of drug resistance of S247N and to predict the probability of the novel S247R mutation to become resistant to the currently available drugs, oseltamivir and zanamivir. We performed molecular docking- and molecular dynamics-based analysis of both the mutant proteins and showed that mutation of S247R affects drug binding to the protein by positional displacement due to altered active site cavity architecture, which in turn reduces the affinity of the drug molecules to the NA active site. Our analysis shows that S247R may have high probability of being resistant.  相似文献   

19.
The drug–serum albumin interaction plays a dominant role in drug efficacy and disposition. The glycation of serum albumin that occurs during diabetes may affect its drug‐binding properties in vivo. In order to evaluate the interactivity characteristics of cyanidin‐3‐O‐glucoside (C3G) with human serum albumin (HSA) and glycated human serum albumin (gHSA), this study was undertaken using multiple spectroscopic techniques and molecular modeling analysis. Time‐resolved fluorescence and the thermodynamic parameters indicated that the quenching mechanism was static quenching, and hydrogen bonding and Van der Waals force were the main forces. The protein fluorescence could be quenched by C3G, whereas the polarity of the fluorophore was not obviously changed. C3G significantly altered the secondary structure of the proteins. Furthermore, the interaction force that existed in the HSA–C3G system was greater than that in the gHSA–C3G system. Fluorescence excitation emission matrix spectra, red edge excitation shift, Fourier transform infrared spectroscopy and circular dichroism spectra provided further evidence that glycation could inhibit the binding between C3G and proteins. In addition, molecular modeling analysis supported the experimental results. The results provided more details for the application of C3G in the treatment of diabetes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号