首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Critical Assessment of PRedicted Interactions (CAPRI) has proven to be a catalyst for the development of docking algorithms. An essential step in docking is the scoring of predicted binding modes in order to identify stable complexes. In 2005, CAPRI introduced the scoring experiment, where upon completion of a prediction round, a larger set of models predicted by different groups and comprising both correct and incorrect binding modes, is made available to all participants for testing new scoring functions independently from docking calculations. Here we present an expanded benchmark data set for testing scoring functions, which comprises the consolidated ensemble of predicted complexes made available in the CAPRI scoring experiment since its inception. This consolidated scoring benchmark contains predicted complexes for 15 published CAPRI targets. These targets were subjected to 23 CAPRI assessments, due to existence of multiple binding modes for some targets. The benchmark contains more than 19,000 protein complexes. About 10% of the complexes represent docking predictions of acceptable quality or better, the remainder represent incorrect solutions (decoys). The benchmark set contains models predicted by 47 different predictor groups including web servers, which use different docking and scoring procedures, and is arguably as diverse as one may expect, representing the state of the art in protein docking. The data set is publicly available at the following URL: http://cb.iri.univ‐lille1.fr/Users/lensink/Score_set . Proteins 2014; 82:3163–3169. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
In CAPRI rounds 6-12, RosettaDock successfully predicted 2 of 5 unbound-unbound targets to medium accuracy. Improvement over the previous method was achieved with computational mutagenesis to select decoys that match the energetics of experimentally determined hot spots. In the case of Target 21, Orc1/Sir1, this resulted in a successful docking prediction where RosettaDock alone or with simple site constraints failed. Experimental information also helped limit the interacting region of TolB/Pal, producing a successful prediction of Target 26. In addition, we docked multiple loop conformations for Target 20, and we developed a novel flexible docking algorithm to simultaneously optimize backbone conformation and rigid-body orientation to generate a wide diversity of conformations for Target 24. Continued challenges included docking of homology targets that differ substantially from their template (sequence identity <50%) and accounting for large conformational changes upon binding. Despite a larger number of unbound-unbound and homology model binding targets, Rounds 6-12 reinforced that RosettaDock is a powerful algorithm for predicting bound complex structures, especially when combined with experimental data.  相似文献   

3.
4.
Structure prediction and quality assessment are crucial steps in modeling native protein conformations. Statistical potentials are widely used in related algorithms, with different parametrizations typically developed for different contexts such as folding protein monomers or docking protein complexes. Here, we describe BACH‐SixthSense, a single residue‐based statistical potential that can be successfully employed in both contexts. BACH‐SixthSense shares the same approach as BACH, a knowledge‐based potential originally developed to score monomeric protein structures. A term that penalizes steric clashes as well as the distinction between polar and apolar sidechain‐sidechain contacts are crucial novel features of BACH‐SixthSense. The performance of BACH‐SixthSense in discriminating correctly the native structure among a competing set of decoys is significantly higher than other state‐of‐the‐art scoring functions, that were specifically trained for a single context, for both monomeric proteins (QMEAN, Rosetta, RF_CB_SRS_OD, benchmarked on CASP targets) and protein dimers (IRAD, Rosetta, PIE*PISA, HADDOCK, FireDock, benchmarked on 14 CAPRI targets). The performance of BACH‐SixthSense in recognizing near‐native docking poses within CAPRI decoy sets is good as well. Proteins 2015; 83:621–630. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
We submitted predictions for all seven targets in the CAPRI experiment. For four targets, our submitted models included acceptable, medium accuracy predictions of the structures of the complexes, and for a fifth target we identified the location of the binding site of one of the molecules. We used a weighted-geometric docking algorithm in which contacts involving specified parts of the surfaces of either one or both molecules were up-weighted or down-weighted. The weights were based on available structural and biochemical data or on sequence analyses. The weighted-geometric docking proved very useful for five targets, improving the complementarity scores and the ranks of the nearly correct solutions, as well as their statistical significance. In addition, the weighted-geometric docking promoted formation of clusters of similar solutions, which include more accurate predictions.  相似文献   

6.
We report the performance of the protein docking prediction pipeline of our group and the results for Critical Assessment of Prediction of Interactions (CAPRI) rounds 38-46. The pipeline integrates programs developed in our group as well as other existing scoring functions. The core of the pipeline is the LZerD protein-protein docking algorithm. If templates of the target complex are not found in PDB, the first step of our docking prediction pipeline is to run LZerD for a query protein pair. Meanwhile, in the case of human group prediction, we survey the literature to find information that can guide the modeling, such as protein-protein interface information. In addition to any literature information and binding residue prediction, generated docking decoys were selected by a rank aggregation of statistical scoring functions. The top 10 decoys were relaxed by a short molecular dynamics simulation before submission to remove atom clashes and improve side-chain conformations. In these CAPRI rounds, our group, particularly the LZerD server, showed robust performance. On the other hand, there are failed cases where some other groups were successful. To understand weaknesses of our pipeline, we analyzed sources of errors for failed targets. Since we noted that structure refinement is a step that needs improvement, we newly performed a comparative study of several refinement approaches. Finally, we show several examples that illustrate successful and unsuccessful cases by our group.  相似文献   

7.
CAPRI Rounds 3, 4, and 5 are the first public test of the published RosettaDock algorithm. The targets cover a wide range of sizes and shapes. For most targets, published biological information indicated the region of the binding site on at least one docking partner. The RosettaDock algorithm produced high accuracy predictions for three targets, medium-accuracy predictions for two targets, and an acceptable prediction for one target. RosettaDock predicted all five targets with less than 450 residues to high or medium accuracy, but it predicted only one of seven targets with above 450 residues to acceptable accuracy. RosettaDock's high-accuracy predictions for small to moderately large targets reveal the predictive power and fidelity of the algorithm, especially the high-resolution refinement and scoring protocol. In addition, RosettaDock can predict complexes from at least one homology-modeled docking partner with comparable accuracy to unbound cases of similar size. Larger targets present a more intensive sampling problem, and some large targets present repulsive barriers to entering the binding site. Ongoing improvements to RosettaDock's low-resolution search may alleviate this problem. This first public test suggests that RosettaDock can be useful in a significant range of applications in biochemistry and cell biology.  相似文献   

8.
Protein-RNA complexes provide a wide range of essential functions in the cell. Their atomic experimental structure solving, despite essential to the understanding of these functions, is often difficult and expensive. Docking approaches that have been developed for proteins are often challenging to adapt for RNA because of its inherent flexibility and the structural data available being relatively scarce. In this study we adapted the RosettaDock protocol for protein-RNA complexes both at the nucleotide and atomic levels. Using a genetic algorithm-based strategy, and a non-redundant protein-RNA dataset, we derived a RosettaDock scoring scheme able not only to discriminate but also score efficiently docking decoys. The approach proved to be both efficient and robust for generating and identifying suitable structures when applied to two protein-RNA docking benchmarks in both bound and unbound settings. It also compares well to existing strategies. This is the first approach that currently offers a multi-level optimized scoring approach integrated in a full docking suite, leading the way to adaptive fully flexible strategies.  相似文献   

9.
Liang S  Liu S  Zhang C  Zhou Y 《Proteins》2007,69(2):244-253
Near-native selections from docking decoys have proved challenging especially when unbound proteins are used in the molecular docking. One reason is that significant atomic clashes in docking decoys lead to poor predictions of binding affinities of near native decoys. Atomic clashes can be removed by structural refinement through energy minimization. Such an energy minimization, however, will lead to an unrealistic bias toward docked structures with large interfaces. Here, we extend an empirical energy function developed for protein design to protein-protein docking selection by introducing a simple reference state that removes the unrealistic dependence of binding affinity of docking decoys on the buried solvent accessible surface area of interface. The energy function called EMPIRE (EMpirical Protein-InteRaction Energy), when coupled with a refinement strategy, is found to provide a significantly improved success rate in near native selections when applied to RosettaDock and refined ZDOCK docking decoys. Our work underlines the importance of removing nonspecific interactions from specific ones in near native selections from docking decoys.  相似文献   

10.
Integration of template-based modeling, global sampling and precise scoring is crucial for the development of molecular docking programs with improved accuracy. We combined template-based modeling and ab-initio docking protocol as hybrid docking strategy called CoDock for the docking and scoring experiments of the seventh CAPRI edition. For CAPRI rounds 38-45, we obtained acceptable or better models in the top 10 submissions for eight out of the 16 evaluated targets as predictors, nine out of the 16 targets as scorers. Especially, we submitted acceptable models for all of the evaluated protein-oligosaccharide targets. For the CASP13-CAPRI experiment (round 46), we obtained acceptable or better models in the top 5 submissions for 10 out of the 20 evaluated targets as predictors, 11 out of the 20 targets as scorers. The failed cases for our group were mainly the difficult targets and the protein-peptide systems in CAPRI and CASP13-CAPRI experiments. In summary, this CAPRI edition showed that our hybrid docking strategy can be efficiently adapted to the increasing variety of challenges in the field of molecular interactions.  相似文献   

11.
Docking algorithms predict the structure of protein–protein interactions. They sample the orientation of two unbound proteins to produce various predictions about their interactions, followed by a scoring step to rank the predictions. We present a statistical assessment of scoring functions used to rank near‐native orientations, applying our statistical analysis to a benchmark dataset of decoys of protein–protein complexes and assessing the statistical significance of the outcome in the Critical Assessment of PRedicted Interactions (CAPRI) scoring experiment. A P value was assigned that depended on the number of near‐native structures in the sampling. We studied the effect of filtering out redundant structures and tested the use of pair‐potentials derived using ZDock and ZRank. Our results show that for many targets, it is not possible to determine when a successful reranking performed by scoring functions results merely from random choice. This analysis reveals that changes should be made in the design of the CAPRI scoring experiment. We propose including the statistical assessment in this experiment either at the preprocessing or the evaluation step. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Khashan R  Zheng W  Tropsha A 《Proteins》2012,80(9):2207-2217
Accurate prediction of the structure of protein-protein complexes in computational docking experiments remains a formidable challenge. It has been recognized that identifying native or native-like poses among multiple decoys is the major bottleneck of the current scoring functions used in docking. We have developed a novel multibody pose-scoring function that has no theoretical limit on the number of residues contributing to the individual interaction terms. We use a coarse-grain representation of a protein-protein complex where each residue is represented by its side chain centroid. We apply a computational geometry approach called Almost-Delaunay tessellation that transforms protein-protein complexes into a residue contact network, or an undirectional graph where vertex-residues are nodes connected by edges. This treatment forms a family of interfacial graphs representing a dataset of protein-protein complexes. We then employ frequent subgraph mining approach to identify common interfacial residue patterns that appear in at least a subset of native protein-protein interfaces. The geometrical parameters and frequency of occurrence of each "native" pattern in the training set are used to develop the new SPIDER scoring function. SPIDER was validated using standard "ZDOCK" benchmark dataset that was not used in the development of SPIDER. We demonstrate that SPIDER scoring function ranks native and native-like poses above geometrical decoys and that it exceeds in performance a popular ZRANK scoring function. SPIDER was ranked among the top scoring functions in a recent round of CAPRI (Critical Assessment of PRedicted Interactions) blind test of protein-protein docking methods.  相似文献   

13.
A major challenge of the protein docking problem is to define scoring functions that can distinguish near‐native protein complex geometries from a large number of non‐native geometries (decoys) generated with noncomplexed protein structures (unbound docking). In this study, we have constructed a neural network that employs the information from atom‐pair distance distributions of a large number of decoys to predict protein complex geometries. We found that docking prediction can be significantly improved using two different types of polar hydrogen atoms. To train the neural network, 2000 near‐native decoys of even distance distribution were used for each of the 185 considered protein complexes. The neural network normalizes the information from different protein complexes using an additional protein complex identity input neuron for each complex. The parameters of the neural network were determined such that they mimic a scoring funnel in the neighborhood of the native complex structure. The neural network approach avoids the reference state problem, which occurs in deriving knowledge‐based energy functions for scoring. We show that a distance‐dependent atom pair potential performs much better than a simple atom‐pair contact potential. We have compared the performance of our scoring function with other empirical and knowledge‐based scoring functions such as ZDOCK 3.0, ZRANK, ITScore‐PP, EMPIRE, and RosettaDock. In spite of the simplicity of the method and its functional form, our neural network‐based scoring function achieves a reasonable performance in rigid‐body unbound docking of proteins. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
A challenge in protein-protein docking is to account for the conformational changes in the monomers that occur upon binding. The RosettaDock method, which incorporates sidechain flexibility but keeps the backbone fixed, was found in previous CAPRI rounds (4 and 5) to generate docking models with atomic accuracy, provided that conformational changes were mainly restricted to protein sidechains. In the recent rounds of CAPRI (6-12), large backbone conformational changes occur upon binding for several target complexes. To address these challenges, we explicitly introduced backbone flexibility in our modeling procedures by combining rigid-body docking with protein structure prediction techniques such as modeling variable loops and building homology models. Encouragingly, using this approach we were able to correctly predict a significant backbone conformational change of an interface loop for Target 20 (12 A rmsd between those in the unbound monomer and complex structures), but accounting for backbone flexibility in protein-protein docking is still very challenging because of the significantly larger conformational space, which must be surveyed. Motivated by these CAPRI challenges, we have made progress in reformulating RosettaDock using a "fold-tree" representation, which provides a general framework for treating a wide variety of flexible-backbone docking problems.  相似文献   

15.
Critical Assessment of PRediction of Interactions (CAPRI) rounds 37 through 45 introduced larger complexes, new macromolecules, and multistage assemblies. For these rounds, we used and expanded docking methods in Rosetta to model 23 target complexes. We successfully predicted 14 target complexes and recognized and refined near-native models generated by other groups for two further targets. Notably, for targets T110 and T136, we achieved the closest prediction of any CAPRI participant. We created several innovative approaches during these rounds. Since round 39 (target 122), we have used the new RosettaDock 4.0, which has a revamped coarse-grained energy function and the ability to perform conformer selection during docking with hundreds of pregenerated protein backbones. Ten of the complexes had some degree of symmetry in their interactions, so we tested Rosetta SymDock, realized its shortcomings, and developed the next-generation symmetric docking protocol, SymDock2, which includes docking of multiple backbones and induced-fit refinement. Since the last CAPRI assessment, we also developed methods for modeling and designing carbohydrates in Rosetta, and we used them to successfully model oligosaccharide-protein complexes in round 41. Although the results were broadly encouraging, they also highlighted the pressing need to invest in (a) flexible docking algorithms with the ability to model loop and linker motions and in (b) new sampling and scoring methods for oligosaccharide-protein interactions.  相似文献   

16.
The diverse selection of targets in the CAPRI experiments provides grounds for determining the limits of our rigid-body docking program MolFit, and for extending it. We find that the sensitivity of MolFit is high, enabling it to produce reasonably accurate docking solutions when the structures undergo moderate local conformation changes upon complex formation or when the docked molecules are modeled. Yet the ranks of these solutions are sometimes too low to meet the requirements of CAPRI assessment. This indicates that the selectivity of MolFit, which was optimized for docking of unbound X-ray structures, and which relies on the availability of external data from biochemical and bioinformatic sources, needs readjustment in order to meet the challenges presented by NMR or modeled structures. A different challenge is presented by large global conformation changes such as movements of domains. We show that such changes can be accommodated within the rigid-body approximation by employing rigid multibody multistage docking procedures. We also address the difficulty of ranking results from 2-body and multibody docking scans in cases in which there are no external data favoring one option over the other.  相似文献   

17.
RosettaDock has been increasingly used in protein docking and design strategies in order to predict the structure of protein-protein interfaces. Here we test capabilities of RosettaDock 3.2, part of the newly developed Rosetta v3.2 modeling suite, against Docking Benchmark 3.0, and compare it with RosettaDock v2.3, the latest version of the previous Rosetta software package. The benchmark contains a diverse set of 116 docking targets including 22 antibody-antigen complexes, 33 enzyme-inhibitor complexes, and 60 'other' complexes. These targets were further classified by expected docking difficulty into 84 rigid-body targets, 17 medium targets, and 14 difficult targets. We carried out local docking perturbations for each target, using the unbound structures when available, in both RosettaDock v2.3 and v3.2. Overall the performances of RosettaDock v2.3 and v3.2 were similar. RosettaDock v3.2 achieved 56 docking funnels, compared to 49 in v2.3. A breakdown of docking performance by protein complex type shows that RosettaDock v3.2 achieved docking funnels for 63% of antibody-antigen targets, 62% of enzyme-inhibitor targets, and 35% of 'other' targets. In terms of docking difficulty, RosettaDock v3.2 achieved funnels for 58% of rigid-body targets, 30% of medium targets, and 14% of difficult targets. For targets that failed, we carry out additional analyses to identify the cause of failure, which showed that binding-induced backbone conformation changes account for a majority of failures. We also present a bootstrap statistical analysis that quantifies the reliability of the stochastic docking results. Finally, we demonstrate the additional functionality available in RosettaDock v3.2 by incorporating small-molecules and non-protein co-factors in docking of a smaller target set. This study marks the most extensive benchmarking of the RosettaDock module to date and establishes a baseline for future research in protein interface modeling and structure prediction.  相似文献   

18.
Accommodating backbone flexibility continues to be the most difficult challenge in computational docking of protein-protein complexes. Towards that end, we simulate four distinct biophysical models of protein binding in RosettaDock, a multiscale Monte-Carlo-based algorithm that uses a quasi-kinetic search process to emulate the diffusional encounter of two proteins and to identify low-energy complexes. The four binding models are as follows: (1) key-lock (KL) model, using rigid-backbone docking; (2) conformer selection (CS) model, using a novel ensemble docking algorithm; (3) induced fit (IF) model, using energy-gradient-based backbone minimization; and (4) combined conformer selection/induced fit (CS/IF) model. Backbone flexibility was limited to the smaller partner of the complex, structural ensembles were generated using Rosetta refinement methods, and docking consisted of local perturbations around the complexed conformation using unbound component crystal structures for a set of 21 target complexes. The lowest-energy structure contained > 30% of the native residue-residue contacts for 9, 13, 13, and 14 targets for KL, CS, IF, and CS/IF docking, respectively. When applied to 15 targets using nuclear magnetic resonance ensembles of the smaller protein, the lowest-energy structure recovered at least 30% native residue contacts in 3, 8, 4, and 8 targets for KL, CS, IF, and CS/IF docking, respectively. CS/IF docking of the nuclear magnetic resonance ensemble performed equally well or better than KL docking with the unbound crystal structure in 10 of 15 cases. The marked success of CS and CS/IF docking shows that ensemble docking can be a versatile and effective method for accommodating conformational plasticity in docking and serves as a demonstration for the CS theory—that binding-competent conformers exist in the unbound ensemble and can be selected based on their favorable binding energies.  相似文献   

19.
May A  Zacharias M 《Proteins》2007,69(4):774-780
A reduced protein model combined with a systematic docking approach has been employed to predict protein-protein complex structures in CAPRI rounds 6-11. The docking approach termed ATTRACT is based on energy minimization in translational and rotational degrees of freedom of one protein with respect to the second protein starting from many thousand initial protein partner placements. It also allows for approximate inclusion of global flexibility of protein partners during systematic docking by conformational relaxation of the partner proteins in precalculated soft collective backbone degrees of freedom. We have submitted models for six targets, achieved acceptable docking solutions for two targets, and predicted >20% correct contacts for five targets. Possible improvements of the docking approach in particular at the scoring and refinement steps are discussed.  相似文献   

20.
Ritchie DW 《Proteins》2003,52(1):98-106
This article describes and reviews our efforts using Hex 3.1 to predict the docking modes of the seven target protein-protein complexes presented in the CAPRI (Critical Assessment of Predicted Interactions) blind docking trial. For each target, the structure of at least one of the docking partners was given in its unbound form, and several of the targets involved large multimeric structures (e.g., Lactobacillus HPr kinase, hemagglutinin, bovine rotavirus VP6). Here we describe several enhancements to our original spherical polar Fourier docking correlation algorithm. For example, a novel surface sphere smothering algorithm is introduced to generate multiple local coordinate systems around the surface of a large receptor molecule, which may be used to define a small number of initial ligand-docking orientations distributed over the receptor surface. High-resolution spherical polar docking correlations are performed over the resulting receptor surface patches, and candidate docking solutions are refined by using a novel soft molecular mechanics energy minimization procedure. Overall, this approach identified two good solutions at rank 5 or less for two of the seven CAPRI complexes. Subsequent analysis of our results shows that Hex 3.1 is able to place good solutions within a list of 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号