首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kyung S. Lee  Seung Jun Kim 《Proteins》2015,83(7):1201-1208
Polo‐like kinases (Plks) are the key regulators of cell cycle progression, the members of which share a kinase domain and a polo‐box domain (PBD) that serves as a protein‐binding module. While Plk1 is a promising target for antitumor therapy, Plk2 is regarded as a tumor suppressor even though the two Plks commonly recognize the S‐pS/T‐P motif through their PBD. Herein, we report the crystal structure of the PBD of Plk2 at 2.7 Å. Despite the overall structural similarity with that of Plk1 reflecting their high sequence homology, the crystal structure also contains its own features including the highly ordered loop connecting two subdomains and the absence of 310‐helices in the N‐terminal region unlike the PBD of Plk1. Based on the three‐dimensional structure, we furthermore could model its interaction with two types of phosphopeptides, one of which was previously screened as the optimal peptide for the PBD of Plk2. Proteins 2015; 83:1201–1208. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
3.
In this report, we describe the X‐ray crystal structures of two single domain camelid antibodies (VHH), F5 and F8, each in complex with ricin toxin's enzymatic subunit (RTA). F5 has potent toxin‐neutralizing activity, while F8 has weak neutralizing activity. F5 buried a total of 1760 Å2 in complex with RTA and made contact with three prominent secondary structural elements: α‐helix B (Residues 98–106), β‐strand h (Residues 113–117), and the C‐terminus of α‐helix D (Residues 154–156). F8 buried 1103 Å2 in complex with RTA that was centered primarily on β‐strand h. As such, the structural epitope of F8 is essentially nested within that of F5. All three of the F5 complementarity determining regions CDRs were involved in RTA contact, whereas F8 interactions were almost entirely mediated by CDR3, which essentially formed a seventh β‐strand within RTA's centrally located β‐sheet. A comparison of the two structures reported here to several previously reported (RTA‐VHH) structures identifies putative contact sites on RTA, particularly α‐helix B, associated with potent toxin‐neutralizing activity. This information has implications for rational design of RTA‐based subunit vaccines for biodefense. Proteins 2016; 84:1162–1172. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
In thermophilic bacteria, specific 2‐thiolation occurs on the conserved ribothymidine at position 54 (T54) in tRNAs, which is necessary for survival at high temperatures. T54 2‐thiolation is achieved by the tRNA thiouridine synthetase TtuA and sulfur‐carrier proteins. TtuA has five conserved CXXC/H motifs and the signature PP motif, and belongs to the TtcA family of tRNA 2‐thiolation enzymes, for which there is currently no structural information. In this study, we determined the crystal structure of a TtuA homolog from the hyperthermophilic archeon Pyrococcus horikoshii at 2.1 Å resolution. The P. horikoshii TtuA forms a homodimer, and each subunit contains a catalytic domain and unique N‐ and C‐terminal zinc fingers. The catalytic domain has much higher structural similarity to that of another tRNA modification enzyme, TilS (tRNAIle2 lysidine synthetase), than to the other type of tRNA 2‐thiolation enzyme, MnmA. Three conserved cysteine residues are clustered in the putative catalytic site, which is not present in TilS. An in vivo mutational analysis in the bacterium Thermus thermophilus demonstrated that the three conserved cysteine residues and the putative ATP‐binding residues in the catalytic domain are important for the TtuA activity. A positively charged surface that includes the catalytic site and the two zinc fingers is likely to provide the tRNA‐binding site. Proteins 2013; 81:1232–1244. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Calcium‐binding protein 1 (CaBP1), a neuron‐specific member of the calmodulin (CaM) superfamily, regulates the Ca2+‐dependent activity of inositol 1,4,5‐triphosphate receptors (InsP3Rs) and various voltage‐gated Ca2+ channels. Here, we present the NMR structure of full‐length CaBP1 with Ca2+ bound at the first, third, and fourth EF‐hands. A total of 1250 nuclear Overhauser effect distance measurements and 70 residual dipolar coupling restraints define the overall main chain structure with a root‐mean‐squared deviation of 0.54 Å (N‐domain) and 0.48 Å (C‐domain). The first 18 residues from the N‐terminus in CaBP1 (located upstream of the first EF‐hand) are structurally disordered and solvent exposed. The Ca2+‐saturated CaBP1 structure contains two independent domains separated by a flexible central linker similar to that in calmodulin and troponin C. The N‐domain structure of CaBP1 contains two EF‐hands (EF1 and EF2), both in a closed conformation [interhelical angles = 129° (EF1) and 142° (EF2)]. The C‐domain contains EF3 and EF4 in the familiar Ca2+‐bound open conformation [interhelical angles = 105° (EF3) and 91° (EF4)]. Surprisingly, the N‐domain adopts the same closed conformation in the presence or absence of Ca2+ bound at EF1. The Ca2+‐bound closed conformation of EF1 is reminiscent of Ca2+‐bound EF‐hands in a closed conformation found in cardiac troponin C and calpain. We propose that the Ca2+‐bound closed conformation of EF1 in CaBP1 might undergo an induced‐fit opening only in the presence of a specific target protein, and thus may help explain the highly specialized target binding by CaBP1.  相似文献   

6.
The Arabidopsis thaliana BON1 gene product is a member of the evolutionary conserved eukaryotic calcium‐dependent membrane‐binding protein family. The copine protein is composed of two C2 domains (C2A and C2B) followed by a vWA domain. The BON1 protein is localized on the plasma membrane, and is known to suppress the expression of immune receptor genes and to positively regulate stomatal closure. The first structure of this protein family has been determined to 2.5‐Å resolution and shows the structural features of the three conserved domains C2A, C2B and vWA. The structure reveals the third Ca2+‐binding region in C2A domain is longer than classical C2 domains and a novel Ca2+ binding site in the vWA domain. The structure of BON1 bound to Mn2+ is also presented. The binding of the C2 domains to phospholipid (PSF) has been modeled and provides an insight into the lipid‐binding mechanism of the copine proteins. Furthermore, the selectivity of the separate C2A and C2B domains and intact BON1 to bind to different phospholipids has been investigated, and we demonstrated that BON1 could mediate aggregation of liposomes in response to Ca2+. These studies have formed the basis of further investigations into the important role that the copine proteins play in vivo.  相似文献   

7.
The NLRP1 inflammasome responds to microbial challenges such as Bacillus anthracis infection and is implicated in autoimmune disease such as vitiligo. Human NLRP1 contains both an N‐terminal pyrin domain (PYD) and a C‐terminal caspase recruitment domain (CARD), with the latter being essential for its association with the downstream effector procaspase‐1. Here we report a 2.0 Å crystal structure of the human NLRP1 CARD as a fusion with the maltose‐binding protein. The structure reveals the six‐helix bundle fold of the NLRP1 CARD, typical of the death domain superfamily. The charge surface of the NLRP1 CARD structure and a procaspase‐1 CARD model suggests potential mechanisms for their association through electrostatic attraction. Proteins 2013; 81:1266–1270. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Overexpression of multiple copies in T‐cell lymphoma‐1 (MCT‐1) oncogene accompanies malignant phenotypic changes in human lymphoma cells. Specific disruption of MCT‐1 results in reduced tumorigenesis, suggesting a potential for MCT‐1‐targeted therapeutic strategy. MCT‐1 is known as a cap‐binding protein and has a putative RNA‐binding motif, the PUA‐domain, at its C‐terminus. We determined the crystal structure of apo MCT‐1 at 1.7 Å resolution using the surface entropy reduction method. Notwithstanding limited sequence identity to its homologs, the C‐terminus of MCT‐1 adopted a typical PUA‐domain fold that includes secondary structural elements essential for RNA recognition. The surface of the N‐terminal domain contained positively charged patches that are predicted to contribute to RNA‐binding. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
Sorting nexin 10 (SNX10), the unique member of the SNX family having vacuolation activity in cells, was shown to be involved in the development of autosomal recessive osteopetrosis (ARO) in recent genetic studies. However, the molecular mechanism of the disease‐related mutations affecting the biological function of SNX10 is unclear. Here, we report the crystal structure of human SNX10 to 2.6Å resolution. The structure reveals that SNX10 contains the extended phox‐homology domain we previously proposed. Our study provides the structural details of those disease‐related mutations. Combined with the vacuolation study of those mutations, we found that Tyr32 and Arg51 are important for the protein stability and both play a critical role in vacuolation activity, while Arg16Leu may affect the function of SNX10 in osteoclast through protein–protein interactions. Proteins 2014; 82:3483–3489. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
The Cu+‐ATPase CopA from Archaeoglobus fulgidus belongs to the P1B family of the P‐type ATPases. These integral membrane proteins couple the energy of ATP hydrolysis to heavy metal ion translocation across membranes. A defining feature of P1B‐1‐type ATPases is the presence of soluble metal binding domains at the N‐terminus (N‐MBDs). The N‐MBDs exhibit a conserved ferredoxin‐like fold, similar to that of soluble copper chaperones, and bind metal ions via a conserved CXXC motif. The N‐MBDs enable Cu+ regulation of turnover rates apparently through Cu‐sensitive interactions with catalytic domains. A. fulgidus CopA is unusual in that it contains both an N‐terminal MBD and a C‐terminal MBD (C‐MBD). The functional role of the unique C‐MBD has not been established. Here, we report the crystal structure of the apo, oxidized C‐MBD to 2.0 Å resolution. In the structure, two C‐MBD monomers form a domain‐swapped dimer, which has not been observed previously for similar domains. In addition, the interaction of the C‐MBD with the other cytoplasmic domains of CopA, the ATP binding domain (ATPBD) and actuator domain (A‐domain), has been investigated. Interestingly, the C‐MBD interacts specifically with both of these domains, independent of the presence of Cu+ or nucleotides. These data reinforce the uniqueness of the C‐MBD and suggest a distinct structural role for the C‐MBD in CopA transport. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Structural genomics projects require strategies for rapidly recognizing protein sequences appropriate for routine structure determination. For large proteins, this strategy includes the dissection of proteins into structural domains that form stable native structures. However, protein dissection essentially remains an empirical and often a tedious process. Here, we describe a simple strategy for rapidly identifying structural domains and assessing their structures. This approach combines the computational prediction of sequence regions corresponding to putative domains with an experimental assessment of their structures and stabilities by NMR and biochemical methods. We tested this approach with nine putative domains predicted from a set of 108 Thermus thermophilus HB8 sequences using PASS, a domain prediction program we previously reported. To facilitate the experimental assessment of the domain structures, we developed a generic 6-hour His-tag-based purification protocol, which enables the sample quality evaluation of a putative structural domain in a single day. As a result, we observed that half of the predicted structural domains were indeed natively folded, as judged by their HSQC spectra. Furthermore, two of the natively folded domains were novel, without related sequences classified in the Pfam and SMART databases, which is a significant result with regard to the ability of structural genomics projects to uniformly cover the protein fold space.  相似文献   

13.
Prion diseases are progressive, infectious neurodegenerative disorders caused primarily by the misfolding of the cellular prion protein (PrPc) into an insoluble, protease‐resistant, aggregated isoform termed PrPsc. In native conditions, PrPc has a structured C‐terminal domain and a highly flexible N‐terminal domain. A part of this N‐terminal domain consists of 4–5 repeats of an unusual glycine‐rich, eight amino acids long peptide known as the octapeptide repeat (OR) domain. In this article, we successfully report the first crystal structure of an OR of PrPc bound to the Fab fragment of the POM2 antibody. The structure was solved at a resolution of 2.3 Å by molecular replacement. Although several studies have previously predicted a β‐turn‐like structure of the unbound ORs, our structure shows an extended conformation of the OR when bound to a molecule of the POM2 Fab indicating that the bound Fab disrupts any putative native β turn conformation of the ORs. Encouraging results from several recent studies have shown that administering small molecule ligands or antibodies targeting the OR domain of PrP result in arresting the progress of peripheral prion infections both in ex vivo and in in vivo models. This makes the structural study of the interactions of POM2 Fab with the OR domain very important as it would help us to design smaller and tighter binding OR ligands.  相似文献   

14.
Dengue is the leading cause of mosquito-borne viral infections and no vaccine is available now. Envelope protein domain III (ED3) is the major target for the binding of dengue virus neutralizing antibodies; however, the ED3-specifc T-cell response is less well understood. To investigate the T-cell responses to four serotypes of dengue virus (DENV-1 to 4), we immunized mice using either a tetravalent ED3-based DNA or protein vaccine, or combined both as a DNA prime-protein boost strategy (prime-boost). A significant serotype-dependent IFN-γ or IL-4 response was observed in mice immunized with either the DNA or protein vaccine. The IFN-γ response was dominant to DENV-1 to 3, whereas the IL-4 response was dominant to DENV-4. Although the similar IgG titers for the four serotypes were observed in mice immunized with the tetravalent vaccines, the neutralizing antibody titers varied and followed the order of 2 = 3>1>4. Interestingly, the lower IFN-γ response to DENV-4 is attributable to the immunodominance change between two CD4+ T-cell epitopes; one T-cell epitope located at E349-363 of DENV-1 to 3 was more immunogenic than the DENV-4 epitope E313-327. Despite DENV-4 specific IFN-γ responses were suppressed by immunodominance change, either DENV-4-specific IFN-γ or neutralizing antibody responses were still recalled after DENV-4 challenge and contributed to virus clearance. Immunization with the prime-boost elicited both IFN-γ and neutralizing antibody responses and provided better protection than either DNA or protein immunization. Our findings shed light on how ED3-based tetravalent dengue vaccines sharpen host CD4 T-cell responses and contribute to protection against dengue virus.  相似文献   

15.
PhyR is a hybrid stress regulator conserved in α‐proteobacteria that contains an N‐terminal σ‐like (SL) domain and a C‐terminal receiver domain. Phosphorylation of the receiver domain is known to promote binding of the SL domain to an anti‐σ factor. PhyR thus functions as an anti‐anti‐σ factor in its phosphorylated state. We present genetic evidence that Caulobacter crescentus PhyR is a phosphorylation‐dependent stress regulator that functions in the same pathway as σT and its anti‐σ factor, NepR. Additionally, we report the X‐ray crystal structure of PhyR at 1.25 Å resolution, which provides insight into the mechanism of anti‐anti‐σ regulation. Direct intramolecular contact between the PhyR receiver and SL domains spans regions σ2 and σ4, likely serving to stabilize the SL domain in a closed conformation. The molecular surface of the receiver domain contacting the SL domain is the structural equivalent of α4‐β5‐α5, which is known to undergo dynamic conformational change upon phosphorylation in a diverse range of receiver proteins. We propose a structural model of PhyR regulation in which receiver phosphorylation destabilizes the intramolecular interaction between SL and receiver domains, thereby permitting regions σ2 and σ4 in the SL domain to open about a flexible connector loop and bind anti‐σ factor.  相似文献   

16.
We present here the 2.6Å resolution crystal structure of the pT26‐6p protein, which is encoded by an ORF of the plasmid pT26‐2, recently isolated from the hyperthermophilic archaeon, Thermococcus sp. 26,2. This large protein is present in all members of a new family of mobile elements that, beside pT26‐2 include several virus‐like elements integrated in the genomes of several Thermococcales and Methanococcales (phylum Euryarchaeota). Phylogenetic analysis suggested that this protein, together with its nearest neighbor (organized as an operon) have coevolved for a long time with the cellular hosts of the encoding mobile element. As the sequences of the N and C‐terminal regions suggested a possible membrane association, a deletion construct (739 amino acids) was used for structural analysis. The structure consists of two very similar β‐sheet domains with a new topology and a five helical bundle C‐terminal domain. Each of these domains corresponds to a unique fold that has presently not been found in cellular proteins. This result supports the idea that proteins encoded by plasmid and viruses that have no cellular homologues could be a reservoir of new folds for structural genomic studies.  相似文献   

17.
Enteropathogenic Yersinia expresses several invasins that are fundamental virulence factors required for adherence and colonization of tissues in the host. Within the invasin‐family of Yersinia adhesins, to date only Invasin has been extensively studied at both structural and functional levels. In this work, we structurally characterize the recently identified inverse autotransporter InvasinE from Yersinia pseudotuberculosis (formerly InvasinD from Yersinia pseudotuberculosis strain IP31758) that belongs to the invasin‐family of proteins. The sequence of the C‐terminal adhesion domain of InvasinE differs significantly from that of other members of the Yersinia invasin‐family and its detailed cellular and molecular function remains elusive. In this work, we present the 1.7 Å crystal structure of the adhesion domain of InvasinE along with two Immunoglobulin‐like domains. The structure reveals a rod shaped architecture, confirmed by small angle X‐ray scattering in solution. The adhesion domain exhibits strong structural similarities to the C‐type lectin‐like domain of Yersinia pseudotuberculosis Invasin and enteropathogenic/enterohemorrhagic E. coli Intimin. However, despite the overall structural similarity, the C‐type lectin‐like domain in InvasinE lacks motifs required for Ca2+/carbohydrate binding as well as sequence or structural features critical for Tir binding in Intimin and β1‐integrin binding in Invasin, suggesting that InvasinE targets a distinct, yet unidentified molecule on the host‐cell surface. Although the biological role and target molecule of InvasinE remain to be elucidated, our structural data provide novel insights into the architecture of invasin‐family proteins and a platform for further studies towards unraveling the function of InvasinE in the context of infection and host colonization.  相似文献   

18.
Dengue fever is the most important vector‐borne viral disease. Four serotypes of dengue virus, DENV1 to DENV4, coexist. Secondary infection by a different serotype is a risk factor for severe dengue. Monoclonal antibody mAb4E11 neutralizes the four serotypes of DENV with varying efficacies by recognizing an epitope located within domain‐III (ED3) of the viral envelope (E) protein. To better understand the cross‐reactivities between mAb4E11 and the four serotypes of DENV, we constructed mutations in both Fab4E11 fragment and ED3, and we searched for indirect interactions in the crystal structures of the four complexes. According to the serotype, 7 to 12 interactions are mediated by one water molecule, 1 to 10 by two water molecules, and several of these interactions are conserved between serotypes. Most interfacial water molecules make hydrogen bonds with both antibody and antigen. Some residues or atomic groups are engaged in both direct and water‐mediated interactions. The doubly‐indirect interactions are more numerous in the complex of lowest affinity. The third complementarity determining region of the light chain (L‐CDR3) of mAb4E11 does not contact ED3. The structures and double‐mutant thermodynamic cycles showed that the effects of (hyper)‐mutations in L‐CDR3 on affinity were caused by conformational changes and indirect interactions with ED3 through other CDRs. Exchanges of residues between ED3 serotypes showed that their effects on affinity were context dependent. Thus, conformational changes, structural context, and indirect interactions should be included when studying cross‐reactivity between antibodies and different serotypes of viral antigens for a better design of diagnostics, vaccine, and therapeutic tools against DENV and other Flaviviruses. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Neurotrypsin (NT) is a multi‐domain serine protease of the nervous system with only one known substrate: the large proteoglycan Agrin. NT has seen to be involved in the maintenance/turnover of neuromuscular junctions and in processes of synaptic plasticity in the central nervous system. Roles which have been tied to its enzymatic activity, localized in the C‐terminal serine‐protease (SP) domain. However the purpose of NT's remaining 3–4 scavenger receptor cysteine‐rich (SRCR) domains is still unclear. We have determined the crystal structure of the third SRCR domain of murine NT (mmNT‐SRCR3), immediately preceding the SP domain and performed a comparative structural analysis using homologous SRCR structures. Our data and the elevated degree of structural conservation with homologous domains highlight possible functional roles for NT SRCRs. Computational and experimental analyses suggest the identification of a putative binding region for Ca2+ ions, known to regulate NT enzymatic activity. Furthermore, sequence and structure comparisons allow to single out regions of interest that, in future studies, might be implicated in Agrin recognition/binding or in interactions with as of yet undiscovered NT partners.  相似文献   

20.
Integrative structural biology attempts to model the structures of protein complexes that are challenging or intractable by classical structural methods (due to size, dynamics, or heterogeneity) by combining computational structural modeling with data from experimental methods. One such experimental method is chemical crosslinking mass spectrometry (XL‐MS), in which protein complexes are crosslinked and characterized using liquid chromatography‐mass spectrometry to pinpoint specific amino acid residues in close structural proximity. The commonly used lysine‐reactive N‐hydroxysuccinimide ester reagents disuccinimidylsuberate (DSS) and bis(sulfosuccinimidyl)suberate (BS3) have a linker arm that is 11.4 Å long when fully extended, allowing Cα (alpha carbon of protein backbone) atoms of crosslinked lysine residues to be up to ~24 Å apart. However, XL‐MS studies on proteins of known structure frequently report crosslinks that exceed this distance. Typically, a tolerance of ~3 Å is added to the theoretical maximum to account for this observation, with limited justification for the chosen value. We used the Dynameomics database, a repository of high‐quality molecular dynamics simulations of 807 proteins representative of diverse protein folds, to investigate the relationship between lysine–lysine distances in experimental starting structures and in simulation ensembles. We conclude that for DSS/BS3, a distance constraint of 26–30 Å between Cα atoms is appropriate. This analysis provides a theoretical basis for the widespread practice of adding a tolerance to the crosslinker length when comparing XL‐MS results to structures or in modeling. We also discuss the comparison of XL‐MS results to MD simulations and known structures as a means to test and validate experimental XL‐MS methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号