首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Computational prediction of protein structures is a difficult task, which involves fast and accurate evaluation of candidate model structures. We propose to enhance single‐model quality assessment with a functionality evaluation phase for proteins whose quantitative functional characteristics are known. In particular, this idea can be applied to evaluation of structural models of ion channels, whose main function ‐ conducting ions ‐ can be quantitatively measured with the patch‐clamp technique providing the current–voltage characteristics. The study was performed on a set of KcsA channel models obtained from complete and incomplete contact maps. A fast continuous electrodiffusion model was used for calculating the current–voltage characteristics of structural models. We found that the computed charge selectivity and total current were sensitive to structural and electrostatic quality of models. In practical terms, we show that evaluating predicted conductance values is an appropriate method to eliminate models with an occluded pore or with multiple erroneously created pores. Moreover, filtering models on the basis of their predicted charge selectivity results in a substantial enrichment of the candidate set in highly accurate models. Tests on three other ion channels indicate that, in addition to being a proof of the concept, our function‐oriented single‐model quality assessment method can be directly applied to evaluation of structural models of some classes of protein channels. Finally, our work raises an important question whether a computational validation of functionality should be included in the evaluation process of structural models, whenever possible. Proteins 2016; 84:217–231. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
The homopentameric ρ1 GABAC receptor is a ligand‐gated ion channel with a binding pocket for γ‐aminobutyric acid (GABA) at the interfaces of N‐terminal extracellular domains. We combined evolutionary analysis, structural modeling, and experimental testing to study determinants of GABAC receptor assembly and channel gating. We estimated the posterior probability of selection pressure at amino acid residue sites measured as ω‐values and built a comparative structural model, which identified several polar residues under strong selection pressure at the subunit interfaces that may form intersubunit hydrogen bonds or salt bridges. At three selected sites (R111, T151, and E55), mutations disrupting intersubunit interactions had strong effects on receptor folding, assembly, and function. We next examined the role of a predicted intersubunit salt bridge for residue pair R158–D204. The mutant R158D, where the positively charged residue is replaced by a negatively charged aspartate, yielded a partially degraded receptor and lacked membrane surface expression. The membrane surface expression was rescued by the double mutant R158D–D204R, where positive and negative charges are switched, although the mutant receptor was inactive. The single mutants R158A, D204R, and D204A exhibited diminished activities and altered kinetic profiles with fast recovery kinetics, suggesting that R158–D204 salt bridge perhaps stabilizes the open state of the GABAC receptor. Our results emphasize the functional importance of highly conserved polar residues at the protein–protein interfaces in GABAC ρ1 receptors and demonstrate how the integration of computational and experimental approaches can aid discovery of functionally important interactions.  相似文献   

3.
1,4‐Dihydropyridines (DHPs) have been developed to treat hypertension, angina, and nerve system disease. They are thought to mainly target the L‐type calcium channels, but low selectivity prompts them to block Cav1.2 and Cav3.1 channels simultaneously. Recently, some novel DHPs with different hydrophobic groups have been synthesized and among them M12 has a higher selectivity for Cav3.1. However, the structural information about Cav3.1‐DHPs complexes is not available in the experiment. Thus, we combined homology modeling, molecular docking, molecular dynamics simulations, and binding free energy calculations to quantitatively elucidate the inhibition mechanism of DHPs. The calculated results indicate that our model is in excellent agreement with experimental results. On the basis of conformational analysis, we identify the main interactions between DHPs and calcium channels and further elaborate on the different selectivity of ligands from the micro perspective. In conjunction with energy distribution, we propose that the binding sites of Cav3.1‐DHPs is characterized by several interspersed hydrophobic amino acid residues on the IIIS6 and IVS6 segments. We also speculate the favorable function groups on prospective DHPs. Besides, our model provides important information for further mutagenesis experiments.  相似文献   

4.
Protein–protein interactions (PPIs) in all the molecular aspects that take place both inside and outside cells. However, determining experimentally the structure and affinity of PPIs is expensive and time consuming. Therefore, the development of computational tools, as a complement to experimental methods, is fundamental. Here, we present a computational suite: MODPIN, to model and predict the changes of binding affinity of PPIs. In this approach we use homology modeling to derive the structures of PPIs and score them using state‐of‐the‐art scoring functions. We explore the conformational space of PPIs by generating not a single structural model but a collection of structural models with different conformations based on several templates. We apply the approach to predict the changes in free energy upon mutations and splicing variants of large datasets of PPIs to statistically quantify the quality and accuracy of the predictions. As an example, we use MODPIN to study the effect of mutations in the interaction between colicin endonuclease 9 and colicin endonuclease 2 immune protein from Escherichia coli. Finally, we have compared our results with other state‐of‐art methods.  相似文献   

5.
Voltage-gated sodium channels are targets for many drugs and toxins. However, the rational design of medically relevant channel modulators is hampered by the lack of x-ray structures of eukaryotic channels. Here, we used a homology model based on the x-ray structure of the NavAb prokaryotic sodium channel together with published experimental data to analyze interactions of the μ-conotoxins GIIIA, PIIIA, and KIIIA with the Nav1.4 eukaryotic channel. Using Monte Carlo energy minimizations and published experimentally defined pairwise contacts as distance constraints, we developed a model in which specific contacts between GIIIA and Nav1.4 were readily reproduced without deformation of the channel or toxin backbones. Computed energies of specific interactions between individual residues of GIIIA and the channel correlated with experimental estimates. The predicted complexes of PIIIA and KIIIA with Nav1.4 are consistent with a large body of experimental data. In particular, a model of Nav1.4 interactions with KIIIA and tetrodotoxin (TTX) indicated that TTX can pass between Nav1.4 and channel-bound KIIIA to reach its binding site at the selectivity filter. Our models also allowed us to explain experimental data that currently lack structural interpretations. For instance, consistent with the incomplete block observed with KIIIA and some GIIIA and PIIIA mutants, our computations predict an uninterrupted pathway for sodium ions between the extracellular space and the selectivity filter if at least one of the four outer carboxylates is not bound to the toxin. We found a good correlation between computational and experimental data on complete and incomplete channel block by native and mutant toxins. Thus, our study suggests similar folding of the outer pore region in eukaryotic and prokaryotic sodium channels.  相似文献   

6.
KAT1‐type channels mediate K+ influx into guard cells that enables stomatal opening. In this study, a KAT1‐type channel AmKAT1 was cloned from the xerophyte Ammopiptanthus mongolicus. In contrast to most KAT1‐type channels, its activation is strongly dependent on external K+ concentration, so it can be used as a model to explore the mechanism for the K+‐dependent gating of KAT1‐type channels. Domain swapping between AmKAT1 and KAT1 reveals that the S5–pore–S6 region controls the K+ dependence of AmKAT1, and residue substitutions show that multiple residues within the S5–Pore linker and Pore are involved in its K+‐dependent gating. Importantly, complex interactions occur among these residues, and it is these interactions that determine its K+ dependence. Finally, we analyzed the potential mechanism for the K+ dependence of AmKAT1, which could originate from the requirement of K+ occupancy in the selectivity filter to maintain its conductive conformation. These results provide new insights into the molecular basis of the K+‐dependent gating of KAT1‐type channels.  相似文献   

7.
Voltage‐gated sodium (Nav) channels are responsible for generation and propagation of action potentials throughout the nervous system. Their malfunction causes several disorders and chronic conditions including neuropathic pain. Potent subtype specific ligands are essential for deciphering the molecular mechanisms of Nav channel function and development of effective therapeutics. µ‐Conotoxin SIIIA is a potent mammalian Nav1.2 channel blocker that exhibits analgesic activity in rodents. We undertook to reengineer loop 1 through a strategy involving charge alterations and truncations which led to the development of µ‐SIIIA mimetics with novel selectivity profiles. A novel [N5K/D15A]SIIIA(3–20) mutant with enhanced net positive charge showed a dramatic increase in its Nav1.2 potency (IC50 of 0.5 nM vs. 9.6 nM for native SIIIA) though further truncations led to loss of potency. Unexpectedly, it appears that SIIIA loop 1 significantly influences its Nav channel interactions despite loop 2 and 3 residues constituting the pharmacophore. This minimal functional conotoxin scaffold may allow further development of selective NaV blockers. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 347–354, 2014.  相似文献   

8.
Thermal degradation in perovskite solar cells is still an unsettled issue that limits its further development. In this study, 2‐(1H‐pyrazol‐1‐yl)pyridine is introduced into lead halide 3D perovskites, which allows 1D–3D hybrid perovskite materials to be obtained. The heterostructural 1D–3D perovskites are proved to be capable of remarkably prolonging the photoluminescence decay lifetime and suppressing charge carrier recombination in comparison to conventional 3D perovskites. The intrinsic properties of thermodynamically stable yet kinetically labile 1D materials allow the system to alleviate the lattice mismatch and passivate the interface traps of heterojunction region of 1D–3D hybrid perovskites that may occur during the crystal growth process. Importantly, the as‐fabricated 1D–3D perovskite solar cells display a thermodynamic self‐healing ability, which is induced through blocking the ion‐migration channels of A‐site ions by the flexible 1D perovskite with less densely close‐packed structure. Particularly, the power conversion efficiency of as‐fabricated unencapsulated 1D–3D perovskite solar cells is demonstrated to be reversible under temperature cycling (25–85 °C) at 55% relative humidity, which largely outperforms the pure 3D perovskite solar cell. The present study provides a facile approach to fabricate 1D–3D perovskite solar cells with high efficiency and long‐term stability.  相似文献   

9.
In this work, we propose a fractional Poisson–Nernst–Planck model to describe ion permeation in gated ion channels. Due to the intrinsic conformational changes, crowdedness in narrow channel pores, binding and trapping introduced by functioning units of channel proteins, ionic transport in the channel exhibits a power-law-like anomalous diffusion dynamics. We start from continuous-time random walk model for a single ion and use a long-tailed density distribution function for the particle jump waiting time, to derive the fractional Fokker–Planck equation. Then, it is generalized to the macroscopic fractional Poisson–Nernst–Planck model for ionic concentrations. Necessary computational algorithms are designed to implement numerical simulations for the proposed model, and the dynamics of gating current is investigated. Numerical simulations show that the fractional PNP model provides a more qualitatively reasonable match to the profile of gating currents from experimental observations. Meanwhile, the proposed model motivates new challenges in terms of mathematical modeling and computations.  相似文献   

10.
During the 7th Critical Assessment of Protein Structure Prediction (CASP7) experiment, it was suggested that the real value of predicted residue–residue contacts might lie in the scoring of 3D model structures. Here, we have carried out a detailed reassessment of the contact predictions made during the recent CASP8 experiment to determine whether predicted contacts might aid in the selection of close‐to‐native structures or be a useful tool for scoring 3D structural models. We used the contacts predicted by the CASP8 residue–residue contact prediction groups to select models for each target domain submitted to the experiment. We found that the information contained in the predicted residue–residue contacts would probably have helped in the selection of 3D models in the free modeling regime and over the harder comparative modeling targets. Indeed, in many cases, the models selected using just the predicted contacts had better GDT‐TS scores than all but the best 3D prediction groups. Despite the well‐known low accuracy of residue–residue contact predictions, it is clear that the predictive power of contacts can be useful in 3D model prediction strategies. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The use of selenium as a cathode in rechargeable sodium–selenium batteries is hampered by low Se loading, inferior electrode kinetics, and polyselenide shuttling between the cathode and anode. Here a high‐performance sodium–selenium cell is presented by coupling a binder‐free, self‐interwoven carbon nanofiber–selenium cathode with a light‐weight carbon‐coated bifunctional separator. With this strategy, electrodes with a high Se mass loading (4.4 mg cm?2) render high reversible capacities of 599 mA h g?1 at 0.1C rate and 382 mA h g?1 at 5C rate. In addition, this novel cell offers good shelf‐life with a low self‐discharge, retaining 93.4% of its initial capacity even after resting for six months. As evidenced by experimental and density functional theory analysis, the remarkable dynamic (cycle life) and static (shelf‐life) stabilities originate from the high electrical conductivity, improved Na‐ion accessibility through the 3D interconnected open channels, and highly restrained polyselenide shuttle. The results demonstrate the viability of high‐performance sodium–selenium batteries with high selenium loading.  相似文献   

12.
Understanding the functional roles of all the molecules in cells is an ultimate goal of modern biology. An important facet is to understand the functional contributions from intermolecular interactions, both within a class of molecules (e.g. protein–protein) or between classes (e.g. protein‐DNA). While the technologies for analyzing protein–protein and protein–DNA interactions are well established, the field of protein–lipid interactions is still relatively nascent. Here, we review the current status of the experimental and computational approaches for detecting and analyzing protein–lipid interactions. Experimental technologies fall into two principal categories, namely solution‐based and array‐based methods. Computational methods include large–scale data‐driven analyses and predictions/dynamic simulations based on prior knowledge of experimentally identified interactions. Advances in the experimental technologies have led to improved computational analyses and vice versa, thereby furthering our understanding of protein–lipid interactions and their importance in biological systems.  相似文献   

13.
Even though tremendous achievement has been made experimentally in the performance of lithium–sulfur (Li–S) battery, theoretical studies in this area are lagging behind due to the complexity of the Li–S systems and the effects of solvent. For this purpose, a new methodology is developed for investigating the 2D hexaaminobenzene‐based coordination polymers (2D‐HAB‐CPs) as cathode candidate materials for Li–S batteries via density functional theory calculations in combination with an in‐house developed charge polarized solvent model and a genetic algorithm structure global search code. With high ratios of transition metal atoms and two‐coordinated nitrogen atoms, excellent electric conductivity, and structural porosity, the 2D‐HAB‐CP is able to address all of the three main challenges facing Li–S batteries: confining the lithium polysulfides from dissolution, facilitating the electron conductivity and buffering the volumetric expansion during the lithiation process. In addition, the theoretical energy density of this system is as high as 1395 Wh kg?1. These results demonstrate that the 2D‐HAB‐CP is a promising cathode material for Li–S batteries. The proposed computational framework not only opens a new avenue for understanding the key role played by solution and liquid electrolytes in Li–S batteries, but also can be generally applied to other processes with liquids involved.  相似文献   

14.
Inwardly rectifying K(+) (Kir) channels have a wide range of functions including the control of neuronal signalling, heart rate, blood flow and insulin release. Because of the physiological importance of these channels, considerable effort has been invested in understanding the structural basis of their physiology. In this review, we use two recent, high-resolution structures as foundations for examining our current understanding of the fundamental functions that are shared by all K(+) channels, such as K(+) selectivity and channel gating, as well as characteristic features of Kir channel family members, such as inward rectification and their regulation by intracellular factors.  相似文献   

15.
Structural changes ensuing from the non‐covalent absorption of bovine beta‐lactoglobulin (BLG) on the surface of polystyrene nanoparticles were investigated by using spectroscopic approaches, by assessing the reactivity of specific residues, and by limited proteolysis/mass spectrometry. Also, the immunoreactivity of absorbed and free BLG was compared. All these approaches indicated substantial rearrangements of the protein structure in the absorbed state, in spite of the reported structural rigidity of BLG. Changes made evident by experimental measurements were confirmed by computational approaches. These indicate that adsorption‐related changes are most marked in the area between the main C‐terminal alpha helix and the beta‐barrel, and lead to full exposure of the thiol on Cys121, consistent with experimental measurements. In the computational model of bound BLG, both Trp61 and Trp19 also move away from their neighboring quenchers and become solvent‐exposed, as indicated by fluorescence measurement. Upon binding, the beta‐barrel also loosens, with a substantial increase in immunoreactivity and with noticeable changes in the trypsinolytic pattern. The possible general significance of the structural changes reported here for non‐covalently adsorbed BLG is discussed with respect to recognition events involving surface‐bound proteins, as are aspects related to the carrier function(s) of BLG, and to its use as a common ingredient in many food systems. Proteins 2014; 82:1272–1282. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Striking structural differences between voltage-gated sodium (Nav) channels from prokaryotes (homotetramers) and eukaryotes (asymmetric, four-domain proteins) suggest the likelihood of different molecular mechanisms for common functions. For these two channel families, our data show similar selectivity sequences among alkali cations (relative permeability, Pion/PNa) and asymmetric, bi-ionic reversal potentials when the Na/K gradient is reversed. We performed coordinated experimental and computational studies, respectively, on the prokaryotic Nav channels NaChBac and NavAb. NaChBac shows an “anomalous,” nonmonotonic mole-fraction dependence in the presence of certain sodium–potassium mixtures; to our knowledge, no comparable observation has been reported for eukaryotic Nav channels. NaChBac’s preferential selectivity for sodium is reduced either by partial titration of its highly charged selectivity filter, when extracellular pH is lowered from 7.4 to 5.8, or by perturbation—likely steric—associated with a nominally electro-neutral substitution in the selectivity filter (E191D). Although no single molecular feature or energetic parameter appears to dominate, our atomistic simulations, based on the published NavAb crystal structure, revealed factors that may contribute to the normally observed selectivity for Na over K. These include: (a) a thermodynamic penalty to exchange one K+ for one Na+ in the wild-type (WT) channel, increasing the relative likelihood of Na+ occupying the binding site; (b) a small tendency toward weaker ion binding to the selectivity filter in Na–K mixtures, consistent with the higher conductance observed with both sodium and potassium present; and (c) integrated 1-D potentials of mean force for sodium or potassium movement that show less separation for the less selective E/D mutant than for WT. Overall, tight binding of a single favored ion to the selectivity filter, together with crucial inter-ion interactions within the pore, suggests that prokaryotic Nav channels use a selective strategy more akin to those of eukaryotic calcium and potassium channels than that of eukaryotic Nav channels.  相似文献   

17.
A continuum model, based on the Poisson–Nernst–Planck (PNP) theory, is applied to simulate steady-state ion flux through protein channels. The PNP equations are modified to explicitly account (1) for the desolvation of mobile ions in the membrane pore and (2) for effects related to ion sizes. The proposed algorithm for a three-dimensional self-consistent solution of PNP equations, in which final results are refined by a focusing technique, is shown to be suitable for arbitrary channel geometry and arbitrary protein charge distribution. The role of the pore shape and protein charge distribution in formation of basic electrodiffusion properties, such as channel conductivity and selectivity, as well as concentration distributions of mobile ions in the pore region, are illustrated by simulations on model channels. The influence of the ionic strength in the bulk solution and of the externally applied electric field on channel properties are also discussed.  相似文献   

18.
Inward rectifier K+ channels are important in regulating membrane excitability in many cell types. The physiological functions of these channels are related to their unique inward rectification, which has been attributed to voltage-dependent block. Here, we show that inward rectification can also be induced by neutral and positively charged residues at site 224 in the internal vestibule of tetrameric Kir2.1 channels. The order of extent of inward rectification is E224K mutant > E224G mutant > wild type in the absence of internal blockers. Mutating the glycines at the equivalent sites to lysines also rendered weak inward rectifier Kir1.1 channels more inwardly rectifying. Also, conjugating positively charged methanethiosulfonate to the cysteines at site 224 induced strong inward rectification, whereas negatively charged methanethiosulfonate alleviated inward rectification in the E224C mutant. These results suggest that charges at site 224 may control inward rectification in the Kir2.1 channel. In a D172N mutant, spermine interacting with E224 and E299 induced channel inhibition during depolarization but did not occlude the pore, further suggesting that a mechanism other than channel block is involved in the inward rectification of the Kir2.1 channel. In this and our previous studies we showed that the M2 bundle crossing and selectivity filter were not involved in the inward rectification induced by spermine interacting with E224 and E299. We propose that neutral and positively charged residues at site 224 increase a local energy barrier, which reduces K+ efflux more than K+ influx, thereby producing inward rectification.  相似文献   

19.
Using both Brownian and molecular dynamics, we replicate many of the salient features of Kv1.2, including the current-voltage-concentration profiles and the binding affinity and binding mechanisms of charybdotoxin, a scorpion venom. We also elucidate how structural differences in the inner vestibule can give rise to significant differences in its permeation characteristics. Current-voltage-concentration profiles are constructed using Brownian dynamics simulations, based on the crystal structure 2A79. The results are compatible with experimental data, showing similar conductance, rectification, and saturation with current. Unlike KcsA, for example, the inner pore of Kv1.2 is mainly hydrophobic and neutral, and to explore the consequences of this, we investigate the effect of mutating neutral proline residues at the mouth of the inner vestibule to charged aspartate residues. We find an increased conductance, less inward rectification, and quicker saturation of the current-voltage profile. Our simulations use modifications to our Brownian dynamics program that extend the range of channels that can be usefully modeled. Using molecular dynamics, we investigate the binding of the charybdotoxin scorpion venom to the outer vestibule of the channel. A potential of mean force is derived using umbrella sampling, giving a dissociation constant within a factor of ∼2 to experimentally derived constants. The residues involved in the toxin binding are in agreement with experimental mutagenesis studies. We thus show that the experimental observations on the voltage-gated channel, including the toxin-channel interaction, can reliably be replicated by using the two widely used computational tools.  相似文献   

20.
Ryanodine receptors (RyRs) are ion channels that regulate muscle contraction by releasing calcium ions from intracellular stores into the cytoplasm. Mutations in skeletal muscle RyR (RyR1) give rise to congenital diseases such as central core disease. The absence of high-resolution structures of RyR1 has limited our understanding of channel function and disease mechanisms at the molecular level. Here, we report a structural model of the pore-forming region of RyR1. Molecular dynamics simulations show high ion binding to putative pore residues D4899, E4900, D4938, and D4945, which are experimentally known to be critical for channel conductance and selectivity. We also observe preferential localization of Ca2+ over K+ in the selectivity filter of RyR1. Simulations of RyR1-D4899Q mutant show a loss of preference to Ca2+ in the selectivity filter as seen experimentally. Electrophysiological experiments on a central core disease mutant, RyR1-G4898R, show constitutively open channels that conduct K+ but not Ca2+. Our simulations with G4898R likewise show a decrease in the preference of Ca2+ over K+ in the selectivity filter. Together, the computational and experimental results shed light on ion conductance and selectivity of RyR1 at an atomistic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号