首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin, a small peptide hormone, is crucial in maintaining blood glucose homeostasis. The stability and activity of the protein is directed by an intricate system involving disulfide bonds to stabilize the active monomeric species and by their non‐covalent oligomerization. All known insulin variants in vertebrates consist of two peptide chains and have six cysteine residues, which form three disulfide bonds, two of them link the two chains and a third is an intra‐chain bond in the A‐chain. This classical insulin fold appears to have been conserved over half a billion years of evolution. We addressed the question whether a human insulin variant with four disulfide bonds could exist and be fully functional. In this review, we give an overview of the road to engineering four‐disulfide bonded insulin analogs. During our journey, we discovered several active four disulfide bonded insulin analogs with markedly improved stability and gained insights into the instability of analogs with seven cysteine residues, importance of dimerization for stability, insulin fibril formation process, and the conformation of insulin binding to its receptor. Our results also open the way for new strategies in the development of insulin biopharmaceuticals. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Insulin and insulin-like growth factor 1 (IGF-1) share a homologous sequence, a similar three-dimensional structure and weakly overlapping biological activity, but IGF-1 folds into two thermodynamically stable disulfide isomers, while insulin folds into one unique stable tertiary structure. This is a very interesting phenomenon in which one amino acid sequence encodes two three-dimensional structures, and its molecular mechanism has remained unclear for a long time. In this study, the crystal structure of mini-IGF-1(2), a disulfide isomer of an artificial analog of IGF-1, was solved by the SAD/SIRAS method using our in-house X-ray source. Evidence was found in the structure showing that the intra-A-chain/domain disulfide bond of some molecules was broken; thus, it was proposed that disulfide isomerization begins with the breakdown of this disulfide bond. Furthermore, based on the structural comparison of IGF-1 and insulin, a new assumption was made that in insulin the several hydrogen bonds formed between the N-terminal region of the B-chain and the intra-A-chain disulfide region of the A-chain are the main reason for the stability of the intra-A-chain disulfide bond and for the prevention of disulfide isomerization, while Phe B1 and His B5 are very important for the formation of these hydrogen bonds. Moreover, the receptor binding property of IGF-1 was analyzed in detail based on the structural comparison of mini-IGF-1(2), native IGF-1, and small mini-IGF-1.  相似文献   

3.
Insulin and insulin-like growth factor 1 (IGF-1) share a homologous sequence, a similar three-dimensional structure and weakly overlapping biological activity, but IGF-1 folds into two thermodynamically stable disulfide isomers, while insulin folds into one unique stable tertiary structure. This is a very interesting phenomenon in which one amino acid sequence encodes two three-dimensional structures, and its molecular mechanism has remained unclear for a long time. In this study, the crystal structure of mini-IGF-1(2), a disulfide isomer of an artificial analog of IGF-1, was solved by the SAD/SIRAS method using our in-house X-ray source. Evidence was found in the structure showing that the intra-A-chain/domain disulfide bond of some molecules was broken; thus, it was proposed that disulfide isomerization begins with the breakdown of this disulfide bond. Furthermore, based on the structural comparison of IGF-1 and insulin, a new assumption was made that in insulin the several hydrogen bonds formed between the N-terminal region of the B-chain and the intra-A-chain disulfide region of the A-chain are the main reason for the stability of the intra-A-chain disulfide bond and for the prevention of disulfide isomerization, while Phe B1 and His B5 are very important for the formation of these hydrogen bonds. Moreover, the receptor binding property of IGF-1 was analyzed in detail based on the structural comparison of mini-IGF-1(2), native IGF-1, and small mini-IGF-1.  相似文献   

4.
Insulin is one of the most important hormonal regulators of metabolism. Since the diabetes patients increase dramatically, the chemical properties, biological and physiological effects of insulin had been extensively studied. In last decade the development of NMR technique allowed us to determine the solution structures of insulin and its variety mutants in various conditions, so that the knowledge of folding, binding and stability of insulin in solution have been largely increased. The solution structure of insulin monomers is essentially identical to those of insulin monomers within the dimer and bexamer as determined by X-ray diffraction. The studies of insulin mutants at the putative residues for receptor binding explored the possible conformational change and fitting between insulin and its receptor. The systematical studies of disulfide paring coupled insulin folding intermediates revealed that in spite of the conformational variety of the intermediates, one structural feature is always remained: a “native-like B chain super-secondary structure“, which consists of B9-B19 helix with adjoining B23-B26 segment folded back against the central segment of B chain, an internal cystine A20-B19 disulfide bridge and a short a-helix at C-terminal of A chain linked. The “super-secondary structure“ might be the “folding nucleus“ in insulin folding mechanism. Cystine A20-B19 is the most important one among three disulfides to stabilize the nascent polypeptide in early stage of the folding. The NMR structure of C. elegans insulin-like peptide resembles that of human insulin and the peptide interacts with human insulin receptor. Other members of insulin superfamily adopt the “insulin fold“ mostly. The structural study of insulin-insulin receptor complex, that of C elegans and other invertebrate insulin-like peptide, insulin fibril study and protein disulfide isomerase (PDI) assistant proinsulin folding study will be new topics in future to get insight into folding, binding, stability, evolution and fibrillation of insulin in detail.  相似文献   

5.
Adrenomedullin (ADM) is a vasoactive peptide hormone of 52 amino acids and belongs to the calcitonin peptide superfamily. Its vasodilative effects are mediated by the interaction with the calcitonin receptor‐like receptor (CLR), a class B G protein‐coupled receptor (GPCR), associated with the receptor activity modifying protein 2 (RAMP2) and functionally described as AM‐1 receptor (AM1R). A disulfide‐bonded ring structure consisting of six amino acids between Cys16 and Cys21 has been shown to be a key motif for receptor activation. However, the specific structural requirements remain to be elucidated. To investigate the influence of ring size and position of additional functional groups that replace the native disulfide bond, we generated ADM analogs containing thioether, thioacetal, alkane, and lactam bonds between amino acids 16 and 21 by Fmoc/t‐Bu solid phase peptide synthesis. Activity studies of the ADM disulfide bond mimetics (DSBM) revealed a strong impact of structural parameters. Interestingly, an increased ring size was tolerated but the activity of lactam‐based mimetics depended on its position within the bridging structure. Furthermore, we found the thioacetal as well as the thioether‐based mimetics to be well accepted with full AM1R activity. While a reduced selectivity over the calcitonin gene‐related peptide receptor (CGRPR) was observed for the thioethers, the thioacetal was able to retain a wild–type‐like selectivity profile. The carbon analog in contrast displayed weak antagonistic properties. These results provide insight into the structural requirements for AM1R activation as well as new possibilities for the development of metabolically stabilized analogs for therapeutic applications of ADM.  相似文献   

6.
Nakagawa SH  Zhao M  Hua QX  Hu SQ  Wan ZL  Jia W  Weiss MA 《Biochemistry》2005,44(13):4984-4999
How insulin binds to its receptor is unknown despite decades of investigation. Here, we employ chiral mutagenesis-comparison of corresponding d and l amino acid substitutions in the hormone-to define a structural switch between folding-competent and active conformations. Our strategy is motivated by the T --> R transition, an allosteric feature of zinc-hexamer assembly in which an invariant glycine in the B chain changes conformations. In the classical T state, Gly(B8) lies within a beta-turn and exhibits a positive phi angle (like a d amino acid); in the alternative R state, Gly(B8) is part of an alpha-helix and exhibits a negative phi angle (like an l amino acid). Respective B chain libraries containing mixtures of d or l substitutions at B8 exhibit a stereospecific perturbation of insulin chain combination: l amino acids impede native disulfide pairing, whereas diverse d substitutions are well-tolerated. Strikingly, d substitutions at B8 enhance both synthetic yield and thermodynamic stability but markedly impair biological activity. The NMR structure of such an inactive analogue (as an engineered T-like monomer) is essentially identical to that of native insulin. By contrast, l analogues exhibit impaired folding and stability. Although synthetic yields are very low, such analogues can be highly active. Despite the profound differences between the foldabilities of d and l analogues, crystallization trials suggest that on protein assembly substitutions of either class can be accommodated within classical T or R states. Comparison between such diastereomeric analogues thus implies that the T state represents an inactive but folding-competent conformation. We propose that within folding intermediates the sign of the B8 phi angle exerts kinetic control in a rugged landscape to distinguish between trajectories associated with productive disulfide pairing (positive T-like values) or off-pathway events (negative R-like values). We further propose that the crystallographic T -->R transition in part recapitulates how the conformation of an insulin monomer changes on receptor binding. At the very least the ostensibly unrelated processes of disulfide pairing, allosteric assembly, and receptor binding appear to utilize the same residue as a structural switch; an "ambidextrous" glycine unhindered by the chiral restrictions of the Ramachandran plane. We speculate that this switch operates to protect insulin-and the beta-cell-from protein misfolding.  相似文献   

7.
[A6-Ala,A11-Ala]-人胰岛素突变体的构建及其生物活性   总被引:1,自引:0,他引:1  
利用 PCR技术 ,将胰岛素原基因中 A6和 A1 1的 Cys序列突变成 Ala序列 ,以去除 A链的链内二硫键 .突变基因连接到质粒 p BV2 2 0 ,构建了表达质粒 p JG40 3,并且在大肠肝菌中得到表达 .经过 Sephadex G- 50层析可得到纯化的突变人胰岛素原 ( Mut- HPI- Ala) .纯化产物用胰蛋白酶和羧肽酶处理 ,并经 Resource Q阴离子交换柱层析可进一步获得纯化的突变人胰岛素 ( Mut- HI- Ala) .Native- PAGE分析表明 Mut- HI- Ala的结构松散 .Mut- HPI- Ala的放射免疫活性和胰岛素受体结合活性是非突变人胰岛素原 ( Met- HPI)的 4.6%和 2 .4% .Mut- HI- Ala的放射免疫活性和胰岛素受体结合活性是非突变人胰岛素 ( Met- HI)的 4.3%和 4.6% .实验结果表明 ,胰岛素 A链内的二硫键对胰岛素的生物活性起着重要的作用  相似文献   

8.
An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic β-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization to form the structural equivalent of the classical hexamer. The covalently linked dimer neither bound to the insulin receptor, nor induced a metabolic response in vitro. However, it was extremely thermodynamically stable and did not form amyloid fibrils when subjected to mechanical stress, underlining the importance of oligomerization for insulin stability.  相似文献   

9.
A distinguishing feature of camel (Camelus dromedarius) VHH domains are noncanonical disulfide bonds between CDR1 and CDR3. The disulfide bond may provide an evolutionary advantage, as one of the cysteines in the bond is germline encoded. It has been hypothesized that this additional disulfide bond may play a role in binding affinity by reducing the entropic penalty associated with immobilization of a long CDR3 loop upon antigen binding. To examine the role of a noncanonical disulfide bond on antigen binding and the biophysical properties of a VHH domain, we have used the VHH R303, which binds the Listeria virulence factor InlB as a model. Using site directed mutagenesis, we produced a double mutant of R303 (C33A/C102A) to remove the extra disulfide bond of the VHH R303. Antigen binding was not affected by loss of the disulfide bond, however the mutant VHH displayed reduced thermal stability (Tm = 12°C lower than wild‐type), and a loss of the ability to fold reversibly due to heat induced aggregation. X‐ray structures of the mutant alone and in complex with InlB showed no major changes in the structure. B‐factor analysis of the structures suggested that the loss of the disulfide bond elicited no major change on the flexibility of the CDR loops, and revealed no evidence of loop immobilization upon antigen binding. These results suggest that the noncanonical disulfide bond found in camel VHH may have evolved to stabilize the biophysical properties of the domain, rather than playing a significant role in antigen binding.  相似文献   

10.
Backbone cyclic insulin was designed and prepared by reverse proteolysis in partial organic solvent of a single‐chain precursor expressed in yeast. The precursor contains two loops to bridge the two chains of native insulin. The cyclisation method uses Achromobacter lyticus protease and should be generally applicable to proteins with C‐terminal lysine and proximal N‐terminal. The presence of the ring‐closing bond and the native insulin disulfide patterns were documented by LC–MS peptide maps. The cyclic insulin was shown to be inert towards degradation by CPY, but was somewhat labile towards chymotrypsin. Intravenous administration of the cyclic insulin to Wistar rats showed the compounds to be equipotent to HI despite much lower insulin receptor affinity. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
The G protein-coupled vasopressin V2 receptor (V2 receptor) contains a pair of conserved cysteine residues (C112 and C192) which are thought to form a disulfide bond between the first and second extracellular loops. The conserved cysteine residues were found to be important for the correct formation of the ligand binding domain of some G protein-coupled receptors. Here we have assessed the properties of the V2 receptor after site-directed mutagenesis of its conserved cysteine residues in transiently transfected human embryonic kidney (HEK 293) cells. Mutant receptors (C112S, C112A and C192S, C192A) were non-functional and located mostly in the cell's interior. The conserved cysteine residues of the V2 receptor are thus not only important for the structure of the ligand binding domain but also for efficient intracellular receptor transport. In addition to the functional significance of the conserved cysteine residues, we have also analyzed the defects of two mutant V2 receptors which cause X-linked nephrogenic diabetes insipidus (NDI) by the introduction of additional cysteine residues into the second extracellular loop (mutants G185C, R202C). These mutations are assumed to impair normal disulfide bond formation. Mutant receptor G185C and R202C were efficiently transported to the plasma membrane but were defective in ligand binding. Only in the case of the mutant receptor R202C, the more sensitive adenylyl cyclase activity assay revealed vasopressin-stimulated cAMP formation with a 35-fold increased EC(50) value and with a reduced EC(max), indicating that ligand binding is not completely abolished. Taking the unaffected intracellular transport of both NDI-causing mutant receptors into account, our results indicate that the observed impairment of ligand binding by the additional cysteine residues is not due to the prevention of disulfide bond formation between the conserved cysteine residues.  相似文献   

12.
Glial cell line-derived neurotrophic factor (GDNF) is a member of the TGF-beta superfamily of proteins. It exists as a covalent dimer in solution, with the 15 kDa monomers linked by an interchain disulfide bond through the Cys101 residues. Sedimentation equilibrium and velocity experiments demonstrated that, after removal of the interchain disulfide bond, GDNF remains as a non-covalent dimer and is stable at pH 7.0. To investigate the effect of the intermolecular disulfide on the structure and stability of GDNF, we compared the solution structures of the wild-type protein and a cysteine-101 to alanine (C101A) mutant using Fourier transform infrared (FTIR), FT-Raman and circular dichroism (CD) spectroscopy and sedimentation analysis. The elimination of the intermolecular disulfide bond causes only minor changes (approximately 4%) in the secondary structures of GDNF. The far- and near-UV CD spectra demonstrated that the secondary and tertiary structures were similar for both wild-type and C101A GDNF. Heparin binding and sedimentation velocity experiments also indicated that the folded structure of the wild-type and C101A GDNF are indistinguishable. The thermal stability of GDNF does not appear to be affected by the absence of the interchain disulfide bond and the biological activity of the C101A mutant is identical with that of the wild-type protein. However, small but significant changes in side chain conformations of tyrosine and aliphatic residues were observed by FT-Raman spectroscopy upon removal of the intermolecular disulfide bond, which may reflect structural changes in the area of dimeric contact. By comparing the Raman spectrum of wild-type GDNF with that of the C101A analog, we identified the conformation of the intermolecular disulfide as trans-gauche-trans geometry. These results indicate that GDNF is an active, properly folded molecule in the absence of the interchain disulfide bond.  相似文献   

13.
Mutations in the gene of the G protein-coupled vasopressin V2 receptor (V2 receptor) cause X-linked nephrogenic diabetes insipidus (NDI). Most of the missense mutations on the extracellular face of the receptor introduce additional cysteine residues. Several groups have proposed that these residues might disrupt the conserved disulfide bond of the V2 receptor. To test this hypothesis, we first calculated a structure model of the extracellular receptor domains. The model suggests that the additional cysteine residues may form a second disulfide bond with the free, nonconserved extracellular cysteine residue Cys-195 rather than impairing the conserved bond. To address this question experimentally, we used the NDI-causing mutant receptors G185C and R202C. Their Cys-195 residues were replaced by alanine to eliminate the hypothetical second disulfide bonds. This second site mutation led to functional rescue of both NDI-causing mutant receptors, strongly suggesting that the second disulfide bonds are indeed formed. Furthermore we show that residue Cys-195, which is sensitive to "additional cysteine" mutations, is not conserved among the V2 receptors of other species and that the presence of an uneven number of extracellular cysteine residues, as in the human V2 receptor, is rare among class I G protein-coupled receptors.  相似文献   

14.
RNase HI from the hyperthermophile Sulfolobus tokodaii (Sto-RNase HI) is stabilized by its C-terminal residues. In this work, the stabilization effect of the Sto-RNase HI C-terminal residues was investigated in detail by thermodynamic measurements of the stability of variants lacking the disulfide bond (C58/145A), or the six C-terminal residues (ΔC6) and by structural analysis of ΔC6. The results showed that the C-terminal does not affect overall structure and stabilization is caused by local interactions of the C-terminal, suggesting that the C-terminal residues could be used as a "stabilization tag." The Sto-RNase HI C-terminal residues (-IGCIILT) were introduced as a tag on three proteins. Each chimeric protein was more stable than its wild-type protein. These results suggested the possibility of a simple stabilization technique using a stabilization tag such as Sto-RNase HI C-terminal residues.  相似文献   

15.
Insulin contains two inter-chain disulfide bonds between the A and B chains (A7-B7 and A20-B19), and one intra-chain linkage in the A chain (A6-A11). To investigate the role of each disulfide bond in the structure, function and stability of the molecule, three des mutants of human insulin, each lacking one of the three disulfide bonds, were prepared by enzymatic conversion of refolded mini-proinsulins. Structural and biological studies of the three des mutants revealed that all three disulfide bonds are essential for the receptor binding activity of insulin, whereas the different disulfide bonds make different contributions to the overall structure of insulin. Deletion of the A20-B19 disulfide bond had the most substantial influence on the structure as indicated by loss of ordered secondary structure, increased susceptibility to proteolysis, and markedly reduced compactness. Deletion of the A6-A11 disulfide bond caused the least perturbation to the structure. In addition, different refolding efficiencies between the three des mutants suggest that the disulfide bonds are formed sequentially in the order A20-B19, A7-B7 and A6-A11 in the folding pathway of proinsulin.  相似文献   

16.
The sweet protein brazzein, a member of the Csβα fold family, contains four disulfide bonds that lend a high degree of thermal and pH stability to its structure. Nevertheless, a variable temperature study has revealed that the protein undergoes a local, reversible conformational change between 37 and 3°C with a midpoint about 27°C that changes the orientations and side‐chain hydrogen bond partners of Tyr8 and Tyr11. To test the functional significance of this effect, we used NMR saturation transfer to investigate the interaction between brazzein and the amino terminal domain of the sweet receptor subunit T1R2; the results showed a stronger interaction at 7°C than at 37°C. Thus the low temperature conformation, which alters the orientations of two loops known to be critical for the sweetness of brazzein, may represent the bound state of brazzein in the complex with the human sweet receptor. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   

17.
To search for the essential regions responsible for the beta2-microglobulin (beta2-m) amyloid fibril formation, we synthesized six peptides corresponding to six of the seven beta-sheets in the native structure of beta2-m, and examined their amyloidogenicity. Among the peptides examined, peptide (21-31) (strand B) and the mixture of peptide (21-31) and (78-86) (strand F) showed fibril formation at both pH 2.5 and 7.5. Peptide (21-31) is the N-terminal half of the previously reported proteolytic fragment of beta2-m, Ser21-Lys41 (K3), suggesting that this region may be the essential core. Interestingly, the dimer formation of peptide (21-31) by the disulfide bond substantially facilitated the fibril formation, indicating that the disulfide bond is important for the structural stability of the fibrils.  相似文献   

18.
The integrity of antibody structure, stability, and biophysical characterization are becoming increasingly important as antibodies receive increasing scrutiny from regulatory authorities. We altered the disulfide bond arrangement of an IgG4 molecule by mutation of the Cys at the N terminus of the heavy chain constant domain 1 (C(H)1) (Kabat position 127) to a Ser and introduction of a Cys at a variety of positions (positions 227-230) at the C terminus of C(H)1. An inter-LC-C(H)1 disulfide bond is thus formed, which mimics the disulfide bond arrangement found in an IgG1 molecule. The antibody species present in the supernatant following transient expression in Chinese hamster ovary cells were analyzed by immunoblot to investigate product homogeneity, and purified product was analyzed by a thermofluor assay to determine thermal stability. We show that the light chain can form an inter-LC-C(H)1 disulfide bond with a Cys when present at several positions on the upper hinge (positions 227-230) and that such engineered disulfide bonds can consequently increase the Fab domain thermal stability between 3 and 6.8 °C. The IgG4 disulfide mutants displaying the greatest increase in Fab thermal stability were also the most homogeneous in terms of disulfide bond arrangement and antibody species present. Importantly, mutations did not affect the affinity for antigen of the resultant molecules. In combination with the previously described S241P mutation, we present an IgG4 molecule with increased Fab thermal stability and reduced product heterogeneity that potentially offers advantages for the production of IgG4 molecules.  相似文献   

19.
The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin''s B-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had to be increased in many instances and single X-ray structures as well as structures from MD simulations had to be used. The analogues that were identified by the algorithm without extensive adjustments of the prediction parameters were more thermally stable as assessed by DSC and CD and expressed in higher yields in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus activity and fibrillation propensity did not correlate with the results from the prediction algorithm.  相似文献   

20.
beta(2)-Microglobulin (beta2M), the light chain of the type I major histocompatibility complex, is a major component of dialysis-related amyloid fibrils. beta2M in the native state has a typical immunoglobulin fold with a buried intrachain disulfide bond. The conformation and stability of recombinant beta2M in which the intrachain disulfide bond was reduced were studied by CD, tryptophan fluorescence, and one-dimensional NMR. The conformation of the reduced beta2M in the absence of denaturant at pH 8.5 was similar to that of the intact protein unless the thiol groups were modified. However, reduction of the disulfide bond decreased the stability as measured by denaturation in guanidine hydrochloride. Intact beta2M formed amyloid fibrils at pH 2.5 by extension reaction using sonicated amyloid fibrils as seeds. Under the same conditions, reduced beta2M did not form typical amyloid fibrils, although it inhibited fibril extension competitively, suggesting that the conformation defined by the disulfide bond is important for amyloid fibril formation of beta2M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号