首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In insulin-resistant states (obesity, pre-diabetes, and type 2 diabetes), hepatic production of glucose and lipid synthesis are heightened in concert, implying that insulin deficiency and insulin excess coexists in this setting. The fact that insulin may be inadequate or excessive at any one point in differing organs and tissues has many biologic ramifications. In this context the concept of metabolic compartmentalization in the liver is offered herein as one perspective of this paradox. In particular, we focus on the hypothesis that insulin resistance accentuates differences in periportal and perivenous hepatocytes, namely periportal glucose production and perivenous lipid synthesis. Subsequently, excessive production of glucose and accumulation of lipids could be expected in the livers of patients with obesity and insulin resistance. Overall, in this review, we provide our integrative perspective regarding how excessive production of glucose in periportal hepatocytes and accumulation of lipids in perivenous hepatocytes interact in insulin resistant states.  相似文献   

3.
4.
Obesity is accompanied by the development of chronic low-grade inflammation in adipose tissue. The presence of chronic inflammatory response along with metabolically harmful factors released by adipose tissue into the circulation is associated with several metabolic complications of obesity such as type 2 diabetes mellitus or accelerated atherosclerosis. The present review is focused on macrophages and lymphocytes and their possible role in low-grade inflammation in fat. Both macrophages and lymphocytes respond to obesity-induced adipocyte hypertrophy by their migration into adipose tissue. After activation and differentiation, they contribute to the development of local inflammatory response and modulation of endocrine function of adipose tissue. Despite intensive research, the exact role of lymphocytes and macrophages within adipose tissue is only partially clarified and various data obtained by different approaches bring ambiguous information with respect to their polarization and cytokine production. Compared to immunocompetent cells, the role of adipocytes in the obesity-related adipose tissue inflammation is often underestimated despite their abundant production of factors with immunomodulatory actions such as cytokines or adipokines such as leptin, adiponektin, and others. In summary, conflicting evidence together with only partial correlation of in vitro findings with true in vivo situation due to great heterogeneity and molecular complexity of tissue environment calls for intensive research in this rapidly evolving and important area.  相似文献   

5.
Reproductive isolation is pivotal to maintain species separation and it can be achieved through a plethora of mechanisms. In addition, the development of barriers to gamete interaction may drive speciation. Such barriers to interspecific gamete interaction can be prezygotic or postzygotic. Considering the great diversity in animal species, it is easy to assume that regulation of the early steps of fertilization is critical to maintain species identity. One prezygotic mechanism that is often mentioned in the literature is that gamete interaction is limited to gametes of the same species. But do gametes of all animals interact in a species‐specific way? Are gamete interactions completely species‐specific or perhaps just species‐restricted? In species in which species‐restrictions have been described, is the interspecies barrier at one major step in the fertilization process or is it a combination of partially restricted steps that together lead to a block in interspecific fertilization? Are the mechanisms used to avoid interspecific crosses different between free‐spawning organisms and those with internal fertilization? This review will address these questions, focusing on prezygotic barriers, and will describe what is known about the molecular biology that may account for species‐limited gamete recognition and fertilization. Mol. Reprod. Dev. 73: 1422–1429, 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

6.
As cellular sodium pumping is an energy consuming process and differences in the obese may account for their energetic efficiency, leucocyte sodium-22 efflux was studied in obese and normal volunteers both in the fasting state and after a test meal or infusion of glucose and insulin intravenously. The 22Na ouabain sensitive efflux rate constant was significantly higher in obese subjects than normal (mean (1 SD) 2.69 (0.40)/h v 2.35 (0.49)/h). Two hours after a 4.2 MJ (1000 kcal) meal there was an increase in the efflux rate constant from its fasting value in normal weight subjects (2.39 (0.33)/h to 2.71 (0.40)/h) but not in obese subjects (2.65 (0.54)/h to 2.61 (0.58)/h). The rise in ouabain sensitive efflux rates was significantly higher in normal than obese subjects. Both groups showed a rise in intracellular sodium concentrations. The euglycaemic clamp produced similar results. Feeding or infusion of insulin increases sodium pump activity more in normal than obese subjects. This difference may contribute to any defective dietary thermogenesis in obesity, which may lead to energetic efficiency and a tendency to gain weight.  相似文献   

7.
Klotho-induced insulin resistance: a blessing in disguise?   总被引:2,自引:0,他引:2  
  相似文献   

8.
Objectives : Despite the increasing availability of low‐ and reduced‐fat foods, Americans continue to consume more fat than recommended, which may be a contributing factor to the obesity epidemic. This investigation examined relationships between liking and household availability of high‐ and low‐fat foods and their association with dietary fat intake. Research Methods and Procedures : A food frequency questionnaire assessed percent calories from fat consumed over the past year in 85 men and 80 women. Participants reported their degree of liking 22 “high‐fat foods” (>45% calories from fat) and 22 “low‐fat foods” (<18% calories from fat), and the number and percentage (number of high‐ or low‐fat foods/total number of foods × 100) of these high‐ and low‐fat foods in their homes. Results : Hierarchical regression analyses examined the ability of liking and household availability of low‐ and high‐fat foods to predict percent dietary fat intake. After controlling for age, sex, and BMI, liking ratings for high‐ and low‐fat foods and the interaction of liking for low‐fat foods by the percentage of low‐fat foods in the household were significant predictors of percent dietary fat consumed. Greater liking of high‐fat foods and lower liking of low‐fat foods, both alone and combined with a lower percentage of low‐fat foods in the home, were predictive of higher dietary fat intake. Discussion : Interventions designed to reduce dietary fat intake should target both decreasing liking for high‐fat foods and increasing liking for low‐fat foods, along with increasing the proportion of low‐fat foods in the household.  相似文献   

9.
《Free radical research》2013,47(11):854-868
Abstract

Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of the metabolic syndrome and refers to a spectrum of disorders ranging from steatosis to steatohepatitis, a disease stage characterized by inflammation, fibrosis, cell death and insulin resistance (IR). Due to its association with obesity and IR the impact of NAFLD is growing worldwide. Consistent with the role of mitochondria in fatty acid (FA) metabolism, impaired mitochondrial function is thought to contribute to NAFLD and IR. Indeed, mitochondrial dysfunction and impaired mitochondrial respiratory chain have been described in patients with non-alcoholic steatohepatitis and skeletal muscle of obese patients. However, recent data have provided evidence that pharmacological and genetic models of mitochondrial impairment with reduced electron transport stimulate insulin sensitivity and protect against diet-induced obesity, hepatosteatosis and IR. These beneficial metabolic effects of impaired mitochondrial oxidative phosphorylation may be related not only to the reduction of reactive oxygen species production that regulate insulin signaling but also to decreased mitochondrial FA overload that generate specific metabolites derived from incomplete FA oxidation (FAO) in the TCA cycle. In line with the Randle cycle, reduced mitochondrial FAO rates may alleviate the repression on glucose metabolism in obesity. In addition, the redox paradox in insulin signaling and the delicate mitochondrial antioxidant balance in steatohepatitis add another level of complexity to the role of mitochondria in NAFLD and IR. Thus, better understanding the role of mitochondria in FA metabolism and glucose homeostasis may provide novel strategies for the treatment of NAFLD and IR.  相似文献   

10.
11.
It is commonly thought that temporal fluctuations in demographic parameters should be selected against because of the deleterious impacts variation can have on fitness. A critical underpinning of this prediction is the assumption that changes in environmental conditions map linearly into changes in demographic parameters over time. We detail why this assumption may often break down and why selection should not always favor buffering of demographic parameters against environmental stochasticity. To the contrary, nonlinear relationships between the environment and demographic performance can produce asymmetric temporal variation in demographic parameters that actually enhances fitness. We extend this result to structured populations using simulation and show that 'demographic lability' rather than 'buffering' may be adaptive, particularly in organisms with low juvenile or adult survival. Finally, we review previous ecological work, and indicate cases where 'demographic lability' may be adaptive, then conclude by identifying research that is needed to develop a theory of life-history evolution that encompasses both demographic buffering and lability.  相似文献   

12.
The article explores the challenges of ensuring voluntary and informed consent which is obtained from potential research subjects in the north‐eastern part of Romania. This study is one of the first empirical papers of this nature in Romania. The study used a quantitative survey design using the adapted Quality of Informed Consent (QuIC) questionnaire. The target population consisted of 100 adult persons who voluntarily enrolled in clinical trials. The informed consent form must contain details regarding the potential risks and benefits, the aim of the clinical trial, study design, confidentiality, insurance and contact details in case of additional questions. Our study confirmed that although all required information was included in the ICF, few clinical trial participants truly understood it. We also found that the most important predictive factor for a good subjective and objective understanding of the clinical trial was the level of education. Our study suggests that researchers should consider putting more effort in order to help clinical trials participants achieve a better understanding of the informed consent. In this way they will ensure that participants’ decision‐making is meaningful and that their interests are protected.  相似文献   

13.
The term lipotoxicity elicits visions of steatotic liver, fat laden skeletal muscles and engorged lipid droplets that spawn a number of potentially harmful intermediates that can wreak havoc on signal transduction and organ function. Prominent among these so-called lipotoxic mediators are signaling molecules such as long chain acyl-CoAs, ceramides and diacyglycerols; each of which is thought to engage serine kinases that disrupt the insulin signaling cascade, thereby causing insulin resistance. Defects in skeletal muscle fat oxidation have been implicated as a driving factor contributing to systemic lipid imbalance, whereas exercise-induced enhancement of oxidative potential is considered protective. The past decade of diabetes research has focused heavily on the foregoing scenario, and indeed the model is grounded in strong experimental evidence, albeit largely correlative. This review centers on mechanisms that connect lipid surplus to insulin resistance in skeletal muscle, as well as those that underlie the antilipotoxic actions of exercise. Emphasis is placed on recent studies that challenge accepted paradigms.  相似文献   

14.
Barbara Hellriegel 《Oikos》2000,88(2):239-249
Data on the different stages of complex life cycles are often rather unbalanced, especially those concerning the effects of density. How does this affect our understanding of a species’ population dynamics? Two discrete three‐stage models with overlapping generations and delayed maturation are constructed to address this question. They assume that survival or emigration in any life stage and/or reproduction can be density dependent. A typical pond‐breeding amphibian species with a well‐studied larval stage serves as an example. Numerical results show that the population dynamics resulting from density dependence at a single (e.g. the larval) stage can be decisively and unpredictably modified by density dependence in additional stages. Superposition of density‐dependent processes could thus be one reason for the difficulties in identifying density dependence in the field. Moreover, in a simulated source‐refuge system with habitat‐specific density‐dependent dispersal of juveniles density dependence in multiple stages can stabilize or destabilize the dynamics and produce misleading age structures. From an applied perspective this model shows that excluding multistage regulation prematurely clearly affects our ability to predict consequences of human impacts.  相似文献   

15.
Clathrin‐Dependent or Not: Is It Still the Question?   总被引:6,自引:1,他引:6  
Whether the endocytic uptake of a given molecule is mediated through clathrin-coated pits or not is a classical criterion used to characterize its endocytic pathway(s). Hence, clathrin-dependent endocytosis has been associated with highly selective and efficient uptake, whereas clathrin-independent endocytosis appeared to be confined to bulk uptake of fluid-phase markers. This scholastic view has recently been challenged using newly developed molecular tools that allow for the first time a functional and mechanistic analysis of these less well-characterized clathrin-independent pathways, including caveolar uptake and macropinocytosis. Furthermore, several studies point to a critical role of lateral lipid asymmetry – lipid rafts/microdomains – in membrane sorting. We will discuss the potential role of these structures in endocytosis and the possibility that differential sorting at the plasma membrane predisposes the ensuing intracellular fate of a given molecule as well as its physiological function.  相似文献   

16.
Estrogens have preventative effects on weight gain and associated comorbidities, but the tissue-specific targets remain unknown. Here, Xu et al. (2011) demonstrate that ablation of estrogen signaling in two populations of hypothalamic neurons leads to weight gain and subsequent metabolic dysregulation and could be important target sites of estrogen actions.  相似文献   

17.
The sodium salt of glutamate (monosodium glutamate; MSG) imparts a savory/meaty taste to foods, and has been used as a flavoring agent for millennia. Past research on MSG/glutamate has evaluated its physiologic, metabolic and behavioral actions, and its safety. Ingested MSG has been found to be safe, and to produce no remarkable effects, except on taste. However, some recent epidemiologic and animal studies have associated MSG use with obesity and aberrations in fat metabolism. Reported effects are usually attributed to direct actions of ingested MSG in brain. As these observations conflict with past MSG research findings, a symposium was convened at the 13th International Congress on Amino Acids, Peptides and Proteins to discuss them. The principal conclusions were: (1) the proposed link between MSG intake and weight gain is likely explained by co-varying environmental factors (e.g., diet, physical activity) linked to the “nutrition transition” in developing Asian countries. (2) Controlled intervention studies adding MSG to the diet of animals and humans show no effect on body weight. (3) Hypotheses positing dietary MSG effects on body weight involve results from rodent MSG injection studies that link MSG to actions in brain not applicable to MSG ingestion studies. The fundamental reason is that glutamate is metabolically compartmentalized in the body, and generally does not passively cross biologic membranes. Hence, almost no ingested glutamate/MSG passes from gut into blood, and essentially none transits placenta from maternal to fetal circulation, or crosses the blood–brain barrier. Dietary MSG, therefore, does not gain access to brain. Overall, it appears that normal dietary MSG use is unlikely to influence energy intake, body weight or fat metabolism.  相似文献   

18.
We tested the hypothesis that high fat (HF) feeding results in endothelial dysfunction in resistance arteries of epididymal white adipose tissue (eWAT) and is mediated by adipose tissue inflammation. When compared with normal chow (NC)-fed mice (n = 17), HF-fed male B6D2F1 mice were glucose intolerant and insulin resistant as assessed by glucose tolerance test (area under the curve; HF, 18,174 ± 1,889 vs. NC, 15,814 ± 666 mg·dl(-1)·min(-1); P < 0.05) and the homeostatic model assessment (HF, 64.1 ± 4.3 vs. NC, 85.7 ± 6.4; P = 0.05). HF diet-induced metabolic dysfunction was concomitant with a proinflammatory eWAT phenotype characterized by greater macrophage infiltration (HF, 3.9 ± 0.8 vs. NC, 0.8 ± 0.4%; P = 0.01) and TNF-α (HF, 22.6 ± 4.3 vs. NC, 11.4 ± 2.5 pg/dl; P < 0.05) and was associated with resistance artery dysfunction, evidenced by impaired endothelium-dependent dilation (EDD) (maximal dilation; HF, 49.2 ± 10.7 vs. NC, 92.4 ± 1.4%; P < 0.01). Inhibition of nitric oxide (NO) synthase by N(ω)-nitro-l-arginine methyl ester (l-NAME) reduced dilation in NC (28.9 ± 6.3%; P < 0.01)- and tended to reduce dilation in HF (29.8 ± 9.9%; P = 0.07)-fed mice, eliminating the differences in eWAT artery EDD between NC- and HF-fed mice, indicative of reduced NO bioavailability in eWAT resistance arteries after HF feeding. In vitro treatment of excised eWAT arteries with recombinant TNF-α (rTNF) impaired EDD (P < 0.01) in NC (59.7 ± 10.9%)- but not HF (59.0 ± 9.3%)-fed mice. l-NAME reduced EDD in rTNF-treated arteries from both NC (21.9 ± 6.4%)- and HF (29.1 ± 9.2%)-fed mice (both P < 0.01). In vitro treatment of arteries with a neutralizing antibody against TNF-α (abTNF) improved EDD in HF (88.2 ± 4.6%; P = 0.05)-fed mice but was without effect on maximal dilation in NC (89.0 ± 5.1%)-fed mice. l-NAME reduced EDD in abTNF-treated arteries from both NC (25.4 ± 7.5%)- and HF (27.1 ± 16.8%)-fed mice (both P < 0.01). These results demonstrate that inflammation in the visceral adipose tissue resulting from diet-induced obesity impairs endothelial function and NO bioavailability in the associated resistance arteries. This dysfunction may have important implications for adipose tissue blood flow and appropriate tissue function.  相似文献   

19.
We aimed to analyze lipid parameters and determine the need for a 2-hour oral glucose tolerance test (OGTT) for the identification of IR and impaired glucose tolerance test (IGT) in subclinical hypothyroidism (SCH) women with and without polycystic ovary syndrome (PCOS). 20 patients with PCOS and SCH consisted of Group I and 39 patients with PCOS and normal thyroid function consisted of Group II and 53 healthy women with normal thyroid function consisted of Group III. Triglyceride levels were 143.26?±?99.86?mg/dL in group 1 and 88.56?±?37.56?mg/dL in group 2 and 83.71?±?31.94?mg/dL in group 3 which were statistically significant. Total cholesterol, HDL- cholesterol, LDL-cholesterol were found similar between the groups. Fasting insulin levels were 12.45?±?8.62 μU/mL in group 1 and 8.60?±?5.35 μU/mL in group 2 and 7.04?±?3.55 μU/mL in group 3 which were statistically significant (P?=?0.027). HOMA-IR were 2.92?±?2.34 in group 1 and 1.95?±?1.52 in group 2 and 1.60?±?0.86 in group 3 which were statistically significant (P?=?0.046). This study showed that women with PCOS and subclinical hypothyroidism should be evaluated for dyslipidemia and Insulin resistance.  相似文献   

20.
The ability of animals to find and consume hoarded seeds (i.e. seed recovery) is a key stage within the seed dispersal process. However, the ecology of seed recovery is still poorly understood. Here, we analyze the factors controlling seed recovery by scatter‐hoarding rodents in an oak‐dominated temperate forest. We examined the relative importance of intrinsic seed traits (i.e. plant‐driven) and extrinsic seed factors (i.e. animal‐driven) on the probability of seed recovery. We found that seed recovery is mainly driven by extrinsic seed factors, mostly related to animal behavior (pilfering frequency, microsite preference, predation risk, burial depth and cache size). Important intrinsic traits such as seed size, seed quality and seed‐drop timing were, on average, of lower significance in the probability of seed recovery (2.8‐times less important than extrinsic factors); only seed quality was an important intrinsic trait. On the other hand, larger and nutritionally more valuable seeds showed a removal–recovery tradeoff as they enhance seed removal and hoarding (increasing dispersal quality) but also favour seed recovery (increasing predation). We find that other mechanisms beyond seed traits (e.g. masting) are needed to decrease seed recovery and, thus, increase seed survival. We conclude that, as seed recovery is mostly driven by animal behavioural factors, it substantially differs from other previous stages of the seed dispersal process that are more dependent on seed traits. We argue that seed recovery needs further attention to advance our understanding of the ecology of seed dispersal and the role of secondary dispersers as a selective force for seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号