首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
It has been recently reported that CD38 was highly expressed in adipose tissues from obese people and CD38‐deficient mice were resistant to high‐fat diet (HFD)‐induced obesity. However, the role of CD38 in the regulation of adipogenesis and lipogenesis is unknown. In this study, to explore the roles of CD38 in adipogenesis and lipogenesis in vivo and in vitro, obesity models were generated with male CD38?/? and WT mice fed with HFD. The adipocyte differentiations were induced with MEFs from WT and CD38?/? mice, 3T3‐L1 and C3H10T1/2 cells in vitro. The lipid accumulations and the alternations of CD38 and the genes involved in adipogenesis and lipogenesis were determined with the adipose tissues from the HFD‐fed mice or the MEFs, 3T3‐L1 and C3H10T1/2 cells during induction of adipocyte differentiation. The results showed that CD38?/? male mice were significantly resistant to HFD‐induced obesity. CD38 expressions in adipocytes were significantly increased in WT mice fed with HFD, and the similar results were obtained from WT MEFs, 3T3‐L1 and C3H10T1/2 during induction of adipocyte differentiation. The expressions of PPARγ, AP2 and C/EBPα were markedly attenuated in adipocytes from HFD‐fed CD38?/? mice and CD38?/? MEFs at late stage of adipocyte differentiation. Moreover, the expressions of SREBP1 and FASN were also significantly decreased in CD38?/? MEFs. Finally, the CD38 deficiency‐mediated activations of Sirt1 signalling were up‐regulated or down‐regulated by resveratrol and nicotinamide, respectively. These results suggest that CD38 deficiency impairs adipogenesis and lipogenesis through activating Sirt1/PPARγ‐FASN signalling pathway during the development of obesity.  相似文献   

2.
Objective: To directly ascertain the physiological roles in adipocytes of hormone‐sensitive lipase (HSL; E.C. 3.1.1.3), a multifunctional hydrolase that can mediate triacylglycerol cleavage in adipocytes. Research Methods and Procedures: We performed constitutive gene targeting of the mouse HSL gene (Lipe), subsequently studied the adipose tissue phenotype clinically and histologically, and measured lipolysis in isolated adipocytes. Results: Homozygous HSL?/? mice have no detectable HSL peptide or cholesteryl esterase activity in adipose tissue, and heterozygous mice have intermediate levels with respect to wild‐type and deficient littermates. HSL‐deficient mice have normal body weight but reduced abdominal fat mass compared with normal littermates. Histologically, both white and brown adipose tissues in HSL?/? mice show marked heterogeneity in cell size, with markedly enlarged adipocytes juxtaposed to cells of normal morphology. In isolated HSL?/? adipocytes, lipolysis is not significantly increased by β3‐adrenergic stimulation, but under basal conditions in the absence of added catecholamines, the lipolytic rate of isolated HSL?/? adipocytes is at least as high as that of cells from normal controls. Cold tolerance during a 48‐hour period at 4 °C was similar in HSL?/? mice and controls. Overnight fasting was well‐tolerated clinically by HSL?/? mice, but after fasting, liver triglyceride content was significantly lower in HSL?/? mice compared with wild‐type controls. Conclusions: In isolated fat cells, the lipolytic rate after β‐adrenergic stimulation is mainly dependent on HSL. However, the observation of a normal rate of lipolysis in unstimulated HSL?/? adipocytes suggests that HSL‐independent lipolytic pathway(s) exist in fat. Physiologically, HSL deficiency in mice has a modest effect under normal fed conditions and is compatible with normal maintenance of core body temperature during cold stress. However, the lipolytic response to overnight fasting is subnormal.  相似文献   

3.
The ability of catecholamines to maximally stimulate adipocyte lipolysis (lipolytic capacity) is decreased in obesity. It is not known whether the lipolytic capacity is determined by the ability of adipocytes to differentiate. The aim of the study was to investigate if lipolytic capacity is related to preadipocyte differentiation and if the latter can predict lipolysis in mature adipocytes. IN VITRO experiments were performed on differentiating preadipocytes and isolated mature adipocytes from human subcutaneous adipose tissue. In preadipocytes, noradrenaline-induced lipolysis increased significantly until terminal differentiation (day 12). However, changes in the expression of genes involved in lipolysis (hormone sensitive lipase, adipocyte triglyceride lipase, the alpha2-and beta1-adrenoceptors, perilipin, and fatty acid binding protein) reached a plateau much earlier during differentiation (day 8). A significant positive correlation between lipolysis in differentiated preadipocytes and mature adipocytes was observed for noradrenaline (r=0.5, p<0.01). The late differentiation capacity of preadipocytes measured as glycerol-3-phosphate dehydrogenase activity was positively correlated with noradrenaline-induced lipolysis in preadipocytes (r=0.51, p<0.005) and mature fat cells (r=0.35, p<0.05). In conclusion, intrinsic properties related to terminal differentiation determine the ability of catecholamines to maximally stimulate lipolysis in fat cells. The inability to undergo full differentiation might in part explain the low lipolytic capacity of fat cells among the obese.  相似文献   

4.
White adipose tissues are composed mainly of white fat cells (adipocytes), which play a key role in energy storage and metabolism. White adipocytes are terminally differentiated postmitotic cells and arise from their progenitor cells (preadipocytes) or mesenchymal stem cells residing in white adipose tissues. Thus, white adipocyte number is most likely controlled by the rate of preadipocyte proliferation, which may contribute to the etiology of obesity. However, little is known about the molecular mechanisms that regulate preadipocyte proliferation during adipose tissue development. Necdin, which is expressed predominantly in postmitotic neurons, is a pleiotropic protein that possesses anti-mitotic and pro-survival activities. Here we show that necdin functions as an intrinsic regulator of white preadipocyte proliferation in developing adipose tissues. Necdin is expressed in early preadipocytes or mesenchymal stem cells residing in the stromal compartment of white adipose tissues in juvenile mice. Lentivirus-mediated knockdown of endogenous necdin expression in vivo in adipose tissues markedly increases fat mass in juvenile mice fed a high-fat diet until adulthood. Furthermore, necdin-null mutant mice exhibit a greater expansion of adipose tissues due to adipocyte hyperplasia than wild-type mice when fed the high-fat diet during the juvenile and adult periods. Adipose stromal-vascular cells prepared from necdin-null mice differentiate in vitro into a significantly larger number of adipocytes in response to adipogenic inducers than those from wild-type mice. These results suggest that necdin prevents excessive preadipocyte proliferation induced by adipogenic stimulation to control white adipocyte number during adipose tissue development.  相似文献   

5.
Preadipocyte conversion to macrophage. Evidence of plasticity   总被引:11,自引:0,他引:11  
Preadipocytes are present throughout adult life in adipose tissues and can proliferate and differentiate into mature adipocytes according to the energy balance. An increasing number of reports demonstrate that cells from adipose lineages (preadipocytes and adipocytes) and macrophages share numerous functional or antigenic properties. No large scale comparison reflecting the phenotype complexity has been performed between these different cell types until now. We used profiling analysis to define the common features shared by preadipocyte, adipocyte, and macrophage populations. Our analysis showed that the preadipocyte profile is surprisingly closer to the macrophage than to the adipocyte profile. From these data, we hypothesized that in a macrophage environment preadipocytes could effectively be converted into macrophages. We injected labeled stroma-vascular cells isolated from mouse white adipose tissue or 3T3-L1 preadipocyte cell line into the peritoneal cavity of nude mice and investigated changes in their phenotype. Preadipocytes rapidly and massively acquired high phagocytic activity and index. 60-70% of preadipocytes also expressed five macrophage-specific antigens: F4/80, Mac-1, CD80, CD86, and CD45. These values were similar to those observed for peritoneal macrophages. In vitro experiments showed that cell-to-cell contact between preadipocytes and peritoneal macrophages partially induced this preadipocyte phenotype conversion. Overall, these results suggest that preadipocyte and macrophage phenotypes are very similar and that preadipocytes have the potential to be very efficiently and rapidly converted into macrophages. This work emphasizes the great cellular plasticity of adipose precursors and reinforces the link between adipose tissue and innate immunity processes.  相似文献   

6.
To elucidate cellular mechanisms of sex‐related differences in fat distribution, we determined body fat distribution (dual‐energy X‐ray absorptiometry and single‐slice abdominal computed tomography (CT)), adipocyte size, adipocyte number, and proportion of early‐differentiated adipocytes (aP2+CD68?) in the stromovascular fraction (SVF) in the upper and lower body of normal‐weight healthy men (n = 12) and premenopausal women (n = 20) (age: 18–49 years, BMI: 18–26 kg/m2). Women had more subcutaneous and less visceral fat than men. The proportion of early differentiated adipocytes in the subcutaneous adipose tissue SVF of women was greater than in men (P = 0.01), especially in the femoral depot, although in vitro adipogenesis, as assessed by peroxisome proliferator activated receptor‐γ (PPARγ) expression, was not increased in femoral preadipocytes cultured from women compared with men. In women, differentiation of femoral preadipocytes was less than that of abdominal subcutaneous preadipocytes (P = 0.04), and femoral subcutaneous preadipocytes tended to be more resistant to tumor necrosis factor‐α (TNFα)–induced apoptosis (P = 0.06). Thus, turnover and utilization of the preadipocyte pool may be reduced in lower vs. the upper‐body fat in women. Collectively, these data indicate that the microenvironment, rather than differences in inherent properties of preadipocytes between genders, may explain the gynoid obesity phenotype and higher percent body fat in women compared to men.  相似文献   

7.
Conditionally immortalized white preadipocytes: a novel adipocyte model   总被引:1,自引:0,他引:1  
This study describes a novel approach to generate conditionally immortalized preadipocyte cell lines from white adipose tissue (IMWAT) that can be induced to differentiate into white adipocytes even after expansion in culture. Such adipocytes express markers of white fat such as peroxisome proliferator-activated receptor gamma and aP2 but not brown fat markers, have an intact insulin signaling pathway, and express proinflammatory cytokines. They can be readily transduced with adenoviral vectors, allowing them to be used to investigate the consequences of the depletion of specific adipocyte factors using short hairpin RNA. This approach has been used to study the effect of reduced expression of the nuclear receptor corepressor receptor interacting protein 140 (RIP140), a regulator of adipocyte function. The depletion of RIP140 results in changes in metabolic gene expression that resemble those in adipose tissue of the RIP140 null mouse. Thus, IMWAT cells provide a novel model for adipocytes that are derived from preadipocytes rather than fibroblasts and provide an alternative system to primary preadipocytes for the investigation of adipocyte function.  相似文献   

8.
Our objective was to investigate expression of A disintegrin and metalloproteinase (ADAM) and ADAM proteins with a thrombospondin (TS) motif (ADAMTS) family members in adipose tissue of lean and obese mice. Five-week-old male mice were kept on standard chow (SFD) or on high fat diet (HFD) for 15 weeks, and subcutaneous (SC) and gonadal (GON) adipose tissue, as well as mature adipocytes and stromal-vascular (S-V) cells were harvested. mRNA levels of plasminogen activator inhibitor-1 (PAI-1), tumor necrosis factor-alpha (TNF-alpha), ADAM-17 (TACE or TNF-alpha converting enzyme), ADAMTS-1 and ADAMTS-8 were quantified in isolated adipose tissues and cell fractions, and during differentiation of murine preadipocytes. The HFD resulted in a significantly enhanced weight of isolated SC and GON fat pads, and in enhanced blood levels of glucose, cholesterol and PAI-1. ADAM-17, TNF-alpha, PAI-1, ADAMTS-1 and ADAMTS-8 mRNA were detected in both SC and GON adipose tissue of lean mice (SFD). In SC adipose tissue of obese mice (HFD), the expression of ADAM-17 and PAI-1 was enhanced and that of ADAMTS-1 reduced, whereas in GON adipose tissue expression of TNF-alpha was enhanced and that of ADAMTS-8 reduced. In lean and obese mice, expression of ADAM-17, ADAMTS-1 and ADAMTS-8 was higher in the S-V cell fraction than in mature adipocytes. During differentiation of murine 3T3-F442A preadipocytes, expression of ADAM-17 and ADAMTS-1 remained virtually unaltered, whereas that of ADAMTS-8 decreased as adipocytes matured. Several ADAM and ADAMTS family members are expressed in adipose tissue and during differentiation of preadipocytes. Modulation of their expression upon development of obesity is adipose tissue-dependent.  相似文献   

9.

Background

Adipocyte renewal from preadipocytes occurs throughout the lifetime and contributes to obesity. To date, little is known about the mechanisms that control preadipocyte proliferation and differentiation. Prokineticin-2 is an angiogenic and anorexigenic hormone that activate two G protein-coupled receptors (GPCRs): PKR1 and PKR2. Prokineticin-2 regulates food intake and energy metabolism via central mechanisms (PKR2). The peripheral effect of prokineticin-2 on adipocytes/preadipocytes has not been studied yet.

Methodology/Principal Findings

Since adipocytes and preadipocytes express mainly prokineticin receptor-1 (PKR1), here, we explored the role of PKR1 in adipose tissue expansion, generating PKR1-null (PKR1−/−) and adipocyte-specific (PKR1ad−/−) mutant mice, and using murine and human preadipocyte cell lines. Both PKR1−/− and PKR1ad−/− had excessive abdominal adipose tissue, but only PKR1−/− mice showed severe obesity and diabetes-like syndrome. PKR1ad−/−) mice had increased proliferating preadipocytes and newly formed adipocyte levels, leading to expansion of adipose tissue. Using PKR1-knockdown in 3T3-L1 preadipocytes, we show that PKR1 directly inhibits preadipocyte proliferation and differentiation. These PKR1 cell autonomous actions appear targeted at preadipocyte cell cycle regulatory pathways, through reducing cyclin D, E, cdk2, c-Myc levels.

Conclusions/Significance

These results suggest PKR1 to be a crucial player in the preadipocyte proliferation and differentiation. Our data should facilitate studies of both the pathogenesis and therapy of obesity in humans.  相似文献   

10.
Sphingosine kinases phosphorylate sphingosine to sphingosine 1?phosphate (S1P), which functions as a signaling molecule. We have previously shown that sphingosine kinase 2 (Sphk2) is important for insulin secretion. To obtain a better understanding of the role of Sphk2 in glucose and lipid metabolism, we have characterized 20- and 52-week old Sphk2?/? mice using glucose and insulin tolerance tests and by analyzing metabolic gene expression in adipose tissue. A detailed metabolic characterization of these mice revealed that aging Sphk2?/? mice are protected from metabolic decline and obesity compared to WT mice. Specifically, we found that 52-week old male Sphk2?/? mice had decreased weight and fat mass, and increased glucose tolerance and insulin sensitivity compared to control mice. Indirect calorimetry studies demonstrated an increased energy expenditure and food intake in 52-week old male Sphk2?/? versus control mice. Furthermore, expression of adiponectin gene in adipose tissue was increased and the plasma levels of adiponectin elevated in aged Sphk2?/? mice compared to WT. Analysis of lipid metabolic gene expression in adipose tissue showed increased expression of the Atgl gene, which was associated with increased Atgl protein levels. Atgl encodes for the adipocyte triglyceride lipase, which catalyzes the rate-limiting step of lipolysis. In summary, these data suggest that mice lacking the Sphk2 gene are protected from obesity and insulin resistance during aging. The beneficial metabolic effects observed in aged Sphk2?/? mice may be in part due to enhanced lipolysis by Atgl and increased levels of adiponectin, which has lipid- and glucose-lowering effects.  相似文献   

11.
Neuropeptide Y (NPY) is an orexigenic peptide that plays an essential role in caloric restriction (CR)‐mediated lifespan extension. However, the mechanisms underlying the NPY‐mediated effects in CR are poorly defined. Here, we report that NPY deficiency in male mice during CR increases mortality in association with lipodystrophy. NPY?/? mice displayed a rapid decrease in body weight and fat mass, as well as increased lipolysis during CR. These alterations in fat regulation were inhibited by the lipolysis inhibitor, acipimox, a treatment associated with reduced mortality. The lipolytic/thermogenic signaling, β3‐adrenergic receptor/hormone sensitive lipase, was markedly activated in white adipose tissue of NPY?/? mice compared with that of NPY+/+ mice, and thermogenesis was controlled by NPY under negative energy balance. These results demonstrate the critical role of NPY in the regulation of lipid metabolic homeostasis and survival via control of lipolysis and thermogenesis in a state of negative energy balance.  相似文献   

12.
To understand the significance of the reported depot differences in preadipocyte dynamics, we developed a procedure to identify committed preadipocytes in the stromovascular fraction of fresh human adipose tissue. We documented that adipocyte fatty acid binding protein (aP2) is expressed in human preadipocyte clones capable of replication, indicating that can be used as a marker of committed preadipocytes. Because aP2 expression can be induced in macrophages, stromovascular cells were also stained for the macrophage marker CD68. We found aP2+CD68- cells (designated as committed preadipocytes) that did not have lipid droplets (true preadipocytes) and that did have lipid droplets < 6.5 microm in diameter (very immature adipocytes). Adipose tissue from subcutaneous, omental, and mesenteric depots was obtained from nine patients undergoing bariatric surgery for measurement of stromovascular cell number, the number of committed preadipocytes (aP2+CD68-), aP2+ macrophages (aP2+CD68+), and aP2- macrophages (aP2-CD68+). The number of committed preadipocytes did not differ significantly between depots but varied >20-fold among individuals. Total cell number, stromovascular cell number, and the number of aP2- macrophages was less (P < 0.05) in subcutaneous than in omental fat (means +/- SE, in millions: subcutaneous, 2.3 +/- 0.3, 1.4 +/- 0.3, and 0.17 +/- 0.08; and omental, 4.8 +/- 0.7, 3.8 +/- 0.5, and 0.34 +/- 0.06); mesenteric depot was intermediate. These data indicate that the cellular composition of adipose tissue varies between depots and between individuals. The ability to quantify committed preadipocytes in fresh adipose tissue should facilitate study of adipose tissue biology.  相似文献   

13.
Objective: To examine differences in gene expression between visceral (VF) and subcutaneous fat (SF) to identity genes of potential importance in regulation of VF. Methods and Procedures: We compared gene expression (by DNA array and quantitative PCR (qPCR)) in paired VF and SF adipose biopsies from 36 subjects (age 54 ± 15 years, 15 men/21 women) with varying degrees of adiposity and insulin resistance, in chow and fat fed mice (± rosiglitazone treatment) and in c‐Cbl?/? mice. Gene expression was also examined in 3T3‐L1 preadipocytes during differentiation. Results: A twofold difference or more was found between VF and SF in 1,343 probe sets, especially for genes related to development, cell differentiation, signal transduction, and receptor activity. Islet‐1 (ISL1), a LIM‐homeobox gene with important developmental and regulatory function in islet, neural, and cardiac tissue, not previously recognized in adipose tissue was virtually absent in SF but substantially expressed in VF. ISL1 expression correlated negatively with BMI (r = ?0.37, P = 0.03), abdominal fat (by dual energy X‐ray absorptiometry, r = ?0.44, P = 0.02), and positively with circulating adiponectin (r = 0.33, P = 0.04). In diet‐induced obese mice, expression was reduced in the presence or absence of rosiglitazone. Correspondingly, expression was increased in the c‐Cbl?/? mouse, which is lean and insulin sensitive (IS). ISL1 expression was increased sevenfold in 3T3‐L1 preadipocytes during early (day 1) differentiation and was reduced by day 2 differentiation. Discussion: An important developmental and regulatory gene ISL1 is uniquely expressed in VF, probably in the preadipocyte. Our data suggest that ISL1 may be regulated by adiposity and its role in metabolic regulation merits further study.  相似文献   

14.
A high-fat diet (HFD) is associated with adipose inflammation, which contributes to key components of metabolic syndrome, including obesity and insulin resistance. The increased visceral adipose tissue mass associated with obesity is the result of hyperplasia and hypertrophy of adipocytes. To investigate the effects of exercise on HFD-induced metabolic disorders, male C57BL/6 mice were divided into four groups: SED (sedentary)-ND (normal diet), EX (exercise)-ND, SED-HFD, and EX-HFD. Exercise was performed on a motorized treadmill at 15 m/min, 40 min/day, and 5 day/wk for 8 wk. Exercise resulted in a decrease in abdominal fat contents and inflammation, improvements in glucose tolerance and insulin resistance, and enhancement of vascular constriction and relaxation responses. Exercise with or without HFD increased putative brown adipocyte progenitor cells in brown adipose tissue compared with groups with the same diet, with an increase in brown adipocyte-specific gene expression in brown and white adipose tissue. Exercise training enhanced in vitro differentiation of the preadipocytes from brown adipose depots into brown adipocytes and enhanced the expression of uncoupling protein 1. These findings suggest that exercise ameliorates high-fat diet-induced metabolic disorders and vascular dysfunction, and increases adipose progenitor cell population in brown adipose tissue, which might thereby contribute to enhanced functional brown adipose.  相似文献   

15.
Obesity is associated with adipose tissue remodeling, characterized by adipocyte hypertrophy and macrophage infiltration. Previously, we have shown that very low density lipoprotein receptor (VLDLR) is virtually absent in preadipocytes but is strongly induced during adipogenesis and actively participates in adipocyte hypertrophy. In this study, we investigated the role of VLDLR in adipose tissue inflammation and adipocyte-macrophage interactions in wild type and VLDLR-deficient mice fed a high fat diet. The results show that VLDLR deficiency reduced high fat diet-induced inflammation and endoplasmic reticulum (ER) stress in adipose tissue in conjunction with reduced macrophage infiltration, especially those expressing pro-inflammatory markers. In adipocyte culture, VLDLR deficiency prevented adipocyte hypertrophy and strongly reduced VLDL-induced ER stress and inflammation. Likewise, cultures of primary peritoneal macrophages show that VLDLR deficiency reduced lipid accumulation and inflammation but did not alter chemotactic response of macrophages to adipocyte signals. Moreover, VLDLR deficiency tempered the synergistic inflammatory interactions between adipocytes and macrophages in a co-culture system. Collectively, these results show that VLDLR contributes to adipose tissue inflammation and mediates VLDL-induced lipid accumulation and induction of inflammation and ER stress in adipocytes and macrophages.  相似文献   

16.
In order to study the ontogenesis of the beta- and alpha 2-adrenergic control of lipolysis during the adipose conversion process, a model based on preadipocytes isolated from the stromal-vascular fraction of hamster adipose tissue was developed. When cultured in an ITT (insulin, transferrin, triiodothyronine) medium supplemented with 2% fetal calf serum, adipose precursors differentiated into adipose-like cells. On 8-day-post-confluent differentiating preadipocytes, the rank order of potency of activation of lipolysis by various beta-adrenergic agonists (BRL37344 greater than norepinephrine = isoproterenol greater than epinephrine greater than fenoterol) was equivalent to that determined in mature adipocytes isolated from adult hamster adipose tissue. On 8-day-post-confluent differentiating preadipocytes, phenylisopropyladenosine (A1-adenosine agonist) and prostaglandin E1 evoked a strong antilipolytic response whereas that evoked by UK 14304 and clonidine (alpha 2-adrenergic agonists) remained undetectable at this step of differentiation. The activity of UK 14304 and clonidine only appeared on 20- to 25-day-post-confluent differentiating preadipocytes. They induced dose-dependent antilipolysis with a maximal effect reaching 80-85% inhibition of adenosine deaminase-stimulated lipolysis. Their action was blocked by increased concentrations of different alpha 2-adrenergic antagonists with the following order of potency, RX 821002 greater than phentolamine much greater than yohimbine. This order of potency was similar to that determined on mature adipocytes isolated from adult hamsters. Both the density of the alpha 2-adrenoceptors, identified with the selective alpha 2-adrenergic radioligand [3H]RX-821002 (19 +/- 1 vs. 30 +/- 1 fmol/mg protein: P less than 0.01) and the amount of Gi proteins identified by pertussis toxin-catalyzed ADP-ribosylation (31 +/- 4 vs. 43 +/- 4% of the amount defined in mature fat cells from adult hamsters: P less than 0.05) were significantly increased between 8 days and 20-25 days after confluence, explaining the late emergence of the alpha 2-adrenergic control of lipolysis during preadipocyte differentiation. In conclusion, the late emergence of the alpha 2-adrenergic control of lipolysis, which is also supported by previous data obtained in vivo that demonstrated the age and/or the fat cell size dependence of alpha 2-adrenoreceptor expression in mature adipocytes, allows the alpha 2-adrenoceptor to be considered as a marker of adipocyte hypertrophy.  相似文献   

17.
We have studied the effect of PTK787 (Vatalanib), an inhibitor of vascular endothelial growth factor receptor (VEGFR) tyrosine kinases, on adipose tissue development. Oral administration of PTK787 for 4 weeks (2 mg/g high fat diet, HFD) to C57Bl/6 mice resulted in a significant reduction in total body weight and of subcutaneous (SC) and gonadal (GON) adipose tissue mass, as compared to control animals fed HFD only (all p<0.0005). In the GON adipose tissue adipocytes were hypertrophic after PTK787 treatment. Blood vessel size and density were not significantly affected by PTK787 treatment. Expression of Flk-1 (VEGFR-2) mRNA was significantly reduced in SC and GON adipose tissues of PTK787 treated mice. De novo fat pad formation following injection of preadipocytes in NUDE mice was significantly (p<0.005) impaired by PTK787 administration (2 mg/g HFD for 4 weeks), without associated effect on blood vessel size or density. Thus, in nutritionally induced murine obesity models, oral administration of the VEGFR tyrosine kinases inhibitor PTK787 resulted in reduced adipose tissue development.  相似文献   

18.
Resistin, a product of white adipose tissue, is postulated to induce insulin resistance in obesity and regulate adipocyte differentiation. The aim of this study was to examine resistin gene expression in adipose tissue from mice bearing the MAC16 adenocarcinoma, which induces cancer cachexia with marked wasting of adipose tissue and skeletal muscle mass. MAC16-bearing mice lost weight progressively over the period following tumour transplantation, while the weight of control mice remained stable. Leptin mRNA in gonadal fat was 50 % lower in MAC16 mice than in controls (p < 0.05). Plasma insulin concentrations were also significantly lower in the MAC16 group (p < 0.05). However, resistin mRNA level in gonadal fat in MAC16 mice was similar to controls (94 % of controls). Thus, despite severe weight loss and significant falls in leptin expression and insulin concentration, resistin gene expression appears unchanged in white adipose tissue of mice with MAC16 tumour. Maintenance of resistin production may help inhibit the formation of new adipocytes in cancer cachexia.  相似文献   

19.
Development of brown and beige/brite adipocytes increases thermogenesis and helps to reduce obesity and metabolic syndrome. Our previous study suggests that dietary raspberry can ameliorate metabolic syndromes in diet-induced obese mice. Here, we further evaluated the effects of raspberry on energy expenditure and adaptive thermogenesis and determined whether these effects were mediated by AMP-activated protein kinase (AMPK). Mice deficient in the catalytic subunit of AMPKα1 and wild-type (WT) mice were fed a high-fat diet (HFD) or HFD supplemented with 5% raspberry (RAS) for 10 weeks. The thermogenic program and related regulatory factors in adipose tissue were assessed. RAS improved the insulin sensitivity and reduced fat mass in WT mice but not in AMPKα1-/- mice. In the absence of AMPKα1, RAS failed to increase oxygen consumption and heat production. Consistent with this, the thermogenic gene expression in brown adipose tissue and brown-like adipocyte formation in subcutaneous adipose tissue were not induced by RAS in AMPKα1-/- mice. In conclusion, AMPKα1 is indispensable for the effects of RAS on brown and beige/brite adipocyte development, and prevention of obesity and metabolic dysfunction.  相似文献   

20.
Expression of thrombospondin-2 (TSP-2), a matricellular protein with anti-angiogenic properties, is modulated in developing adipose tissue. To investigate a potential functional role of TSP-2 in adipose tissue angiogenesis and growth, TSP-2 deficient (TSP-2(-/-)) and wild-type littermate (TSP-2(+/+)) mice were kept on normal chow (standard fat diet (SFD)) or on high fat diet (HFD) for 15 weeks. TSP-2(-/-) mice kept on HFD had a significantly lower total body weight throughout the experimental period. Subcutaneous (SC) and gonadal (GON) fat mass were, however, not different, and their composition in terms of size and density of adipocytes and blood vessels was also comparable in both genotypes. Macrophage infiltration in SC or GON adipose tissues was not affected by TSP-2 deficiency. TSP-2 deficiency had no effect on adipose tissue mRNA expression of gelatinase A (MMP-2), whereas gelatinase B (MMP-9) was downregulated in SC and GON adipose tissues of TSP-2(-/-) mice on HFD. Glucose tolerance and insulin resistance tests were comparable for TSP-2(+/+) and TSP-2(-/-) mice. TSP-2 deficiency was not compensated by increased expression of TSP-1 in the TSP-2(-/-) mice. These data suggest that TSP-2, despite its reported anti-angiogenic properties, does not play an important functional role in adipose tissue related angiogenesis or associated fat development in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号