首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Glutathione-S-transferase (GST) was isolated from the northern hardshell clam Mercinaria mercinaria (quahog) using a two-step procedure involving ammonium sulfate precipitation and affinity chromatography. Kinetic analysis of the purified enzyme using 1-chloro-2,4-dinitrobenzene as substrate revealed a specific activity of 38.0 μmol min−1 mg−1, while V max and K m values were estimated as 48.0 μmol min−1 mg−1 and 0.24 mM, respectively. Electrophoretic analysis of GST indicated multiple forms of the dimeric enzyme in quahogs with subunit molecular masses of 22, 24, 25, and 27 kDa. Isoelectric focusing analysis resulted in pI values for three isoenzymes of 5.1, 4.9, and 4.6. The acidic pI values obtained indicated that quahog GST belongs to the π class. Inhibition of quahog GST by tetrapyrroles was similar to that of GST from oyster and rat liver. Quantitative comparison of tetrapyrrole inhibition patterns of quahog GST with those of oyster and rat liver GST indicated lower inhibition rates by three of the four tetrapyrroles tested (bilirubin, biliverdin, and chlorophillyin), suggesting that quahog GST could differ structurally or functionally from oyster and rat liver GSTs. Received March 17, 1998; accepted August 18, 1998.  相似文献   

2.
Hydrogenase was solubilized from the membrane of acetate-grown Methanosarcina barkeri MS and purification was carried out under aerobic conditions. The enzyme was reactivated under reducing conditions in the presence of H2. The enzyme showed a maximal activity of 120±40 mol H2 oxidized · min–1 · min–1 with methyl viologen as an electron acceptor, a maximal hydrogen production rate of 45±4 mol H2 · min–1 · mg–1 with methyl viologen as electron donor, and an apparent K m for hydrogen oxidation of 5.6±1.7 M. The molecular weight estimated by gel filtration was 98,000. SDS-PAGE showed the enzyme to consist of two polypeptides of 57,000 and 35,000 present in a 1:1 ratio. The native protein contained 8±2 mol Fe, 8±2 mol S2–, and 0.5 mol Ni/mol enzyme. Cytochrome b was reduced by hydrogen in a solubilized membrane preparation. The hydrogenase did not couple with autologous F420 or ferredoxin, nor with FAD, FMN, or NAD(P)+. The physiological function of the membrane-bound hydrogenase in hydrogen consumption is discussed.Abbreviation CoM-S-S-HTP the heterodisulfide of 7-mercaptoheptanoylthrconine phosphate and coenzyme M (mercaptoethanesulfonic acid)  相似文献   

3.
In C4 grasses belonging to the NADP-malic enzyme-type subgroup, malate is considered to be the predominant C4 acid metabolized during C4 photosynthesis, and the bundle sheath cell chloroplasts contain very little photosystem-II (PSII) activity. The present studies showed that Flaveria bidentis (L.), an NADP-malic enzyme-type C4 dicotyledon, had substantial PSII activity in bundle sheath cells and that malate and aspartate apparently contributed about equally to the transfer of CO2 to bundle sheath cells. Preparations of bundle sheath cells and chloroplasts isolated from these cells evolved O2 at rates between 1.5 and 2 mol · min–1 · mg–1 chlorophyll (Chl) in the light in response to adding either 3-phosphoglycerate plus HCO 3 or aspartate plus 2-oxoglutarate. Rates of more than 2 mol O2 · min–1 · mg–1 Chl were recorded for cells provided with both sets of these substrates. With bundle sheath cell preparations the maximum rates of light-dependent CO2 fixation and malate decarboxylation to pyruvate recorded were about 1.7 mol · min–1 · mg–1 Chl. Compared with NADP-malic enzyme-type grass species, F. bidentis bundle sheath cells contained much higher activities of NADP-malate dehydrogenase and of aspartate and alanine aminotransferases. Time-course and pulse-chase studies following the kinetics of radiolabelling of the C-4 carboxyl of C4 acids from 14CO2 indicated that the photosynthetically active pool of malate was about twice the size of the aspartate pool. However, there was strong evidence for a rapid flux of carbon through both these pools. Possible routes of aspartate metabolism and the relationship between this metabolism and PSII activity in bundle sheath cells are considered.Abbreviations DHAP dihydroxyacetone phosphate - NADP-ME(-type) NADP-malic enzyme (type) - NADP-MDH NADP-malate dehydrogenase - OAA oxaloacetic acid - 2-OG 2-oxoglutarate - PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - Pi orthophosphate - Ru5P ribulose 5-phosphate  相似文献   

4.
Response of Rhizobium leguminosarum to nickel stress   总被引:2,自引:0,他引:2  
Rhizobium leguminosarum strain P-5 biovar viciae was sensitive to Ni2+ (MIC, 75 M) and showed concentration-dependent Ni2+ uptake in a wide concentration range (50–500 M). Ni2+ uptake up to a certain threshold limit also increased thiol content (66 nmol mg–1 protein), proline content (10.85 nmol mg–1 protein) and urease specific activity (500 nmol min–1 mg–1 protein) maximum corresponding to 100 M Ni2+ as the external concentration or 151 nmol Ni2+ mg–1 protein as the intracellular buildup. Proline synthesis was stimulated most even at much lower Ni2+ concentration (25 M). Higher intracellular Ni2+ load neither favoured thiol nor proline biosynthesis nor urease activity. Ni2+ requirement of urease was ascertained by using EDTA-grown cells and the addition of bicarbonate (NaHCO3, 100 mM) to the crude extract. The induction of thiol or proline by Ni2+, therefore, reflects the possible strategies adopted by bacterial cells to overcome the environmental stress.  相似文献   

5.
A thermophilic bacterium, which we designated as Geobacillus thermoleovorans 47b was isolated from a hot spring in Beppu, Oita Prefecture, Japan, on the basis of its ability to grow on bitter peptides as a sole carbon and nitrogen source. The cell-free extract from G. thermoleovorans 47b contained leucine aminopeptidase (LAP; EC 3.4.11.10), which was purified 164-fold to homogeneity in seven steps, using ammonium sulfate fractionation followed by the column chromatography using DEAE-Toyopearl, hydroxyapatite, MonoQ and Superdex 200 PC gel filtration, followed again by MonoQ and hydroxyapatite. The enzyme was a single polypeptide with a molecular mass of 42,977.2 Da, as determined by matrix-assisted laser desorption ionization and time-of-flight mass spectrometry, and was found to be thermostable at 90°C for up to 1 h. Its optimal pH and temperature were observed to be 7.6–7.8 and 60°C, respectively, and it had high activity towards the substrates Leu-p-nitroanilide (p-NA)(100%), Arg-p-NA (56.3%) and LeuGlyGly (486%). The Km and Vmax values for Leu-p-NA and LeuGlyGly were 0.658 mM and 25.0 mM and 236.2 mol min–1 mg–1 protein and 1,149 mol min–1 mg–1 protein, respectively. The turnover rate (kcat) and catalytic efficiency (kcat/ Km) for Leu-p-NA and LeuGlyGly were 10,179 s–1 and 49,543 s–1 and 15,470 mM–1 s–1 and 1981.7 mM–1 s–1, respectively. The enzyme was strongly inhibited by EDTA, 1,10-phenanthroline, dithiothreitol, -mercaptoethanol, iodoacetate and bestatin; and its apoenzyme was found to be reactivated by Co2+ .  相似文献   

6.
Glutathione transferases (GSTs) are essential enzymes in many organisms due their diverse functions and, in helminths they are the main detoxification system. For Taenia solium, two cytosolic GSTs with molecular masses of 25.5 and 26.5 kDa (Ts26GST) have been found. Ts26GST was cloned to be studied in its recombinant form (recTs26GST). Although the primary structure is related to the mu class, the kinetic parameters for CDNB (Vmax = 51.5 μmol min−1 mg−1; Km = 1.06 mM; kcat = 22.2 s−1) are related with some alpha GSTs. The substrate and inhibitor class markers reaffirmed these bimodal characteristics. Inhibition studies with anthelminthics indicate that recTs26GST is sensitive to mebendazole, displaying a non competitive inhibition pattern suggesting that at least two molecules are binding to recTs26GST. On the other hand, the kinetic curves for CDNB and GSH showed a positive cooperativity that was corroborated using fluorometric assays. Those assays indicate that CDNB binding is highly influenced by GSH, probably by modulation of the Ts26GST conformational ensamble.  相似文献   

7.
Summary Geotrichum candidum (isolate 1–9) pathogenic on citrus fruits, appears to lack siderophore production. Iron uptake byG. candidum is mediated by two distinct iron-regulated, energy-and temperature-dependent transport systems that require sulfhydryl groups. One system exhibits specificity for either ferric or ferrous iron, whereas the other exhibits specificity for ferrioxamine-B-mediated iron uptake and presumably other hydroxamate siderophores. Radioactive iron uptake from59FeCl3 showed an optimum at pH 6 and 35° C, and Michaelis-Menten kinetics (apparentK m = 3 m,V max = 0.054 nmol · mg–1 · min–1). The maximal rate of Fe2+ uptake was higher than Fe3+ (V max = 0.25 nmol · mg–1 · min–1) but theK m was identical. Reduction of ferric to ferrous iron prior to transport could not be detected. The ferrioxamine B system exhibits an optimum at pH 6 and 40° C and saturation kinetics (K m = 2 M,V max = 0.22 nmol · mg–1 · min–1). The two systems were distinguished as two separate entities by negative reciprocal competition, and on the basis of differential response to temperature and phenazine methosulfate. Mössbauer studies revealed that cells fed with either57FeCl3 or57FeCl2 accumulated unknown ferric and ferrous binding metabolites.  相似文献   

8.
Rhodopseudomonas acidophila strain 7050 can satisfy all its nitrogen and carbon requirements from l-alanine. Addition of 100 M methionine sulfoximine to alanine grown cultures had no effect on growth rate indicating that deamination of alanine via alanine dehydrogenase and re-assimilation of the released NH 4 + by glutamine synthetase/glutamate synthase was an insignificant route of nitrogen transfer in this bacterium. Determination of aminotransferase activities in cell-free extracts failed to demonstrate the presence of direct routes from alanine to either aspartate or glutamate. The only active aminotransferase involving l-alanine was the alanine-glyoxylate enzyme (114–167 nmol·min–1·mg–1 protein) which produced glycine as end-product. The amino group of glycine was further transaminated to yield aspartate via a glycineoxaloacetate aminotransferase (117–136 nmol·min–1 ·mg–1 protein). No activity was observed when 2-oxoglutarate was substituted for oxaloacetate. The formation of glutamate from aspartate was catalysed by aspartate-2-oxoglutarate aminotransferase (85–107 nmol·min–1·mg–1 protein). Determinations of free intracellular amino acid pools in alanine and alanine+100 M methionine sulfoximine grown cells showed the predominance of glutamate, glycine and aspartate, providing further evidence that in alanine grown cultures R. acidophila satisfies its nitrogen requirements for balanced growth by transamination.Abbreviations ADH alanine dehydrogenase - GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase - MSO methionine sulfoximine - GOT glutamate-oxaloacetate aminotransferase - GPT glutamate-pyruvate amino-transferase - AGAT alanine-glyoxylate aminotransferase - GOAT glycine-oxaloacetate aminotransferase - GOTAT glycine-2-oxoglutarate aminotransferase - AOAT alanine-oxaloacetate aminotransferase  相似文献   

9.
The thermophilic fungus,Humicola sp isolated from soil, secreted extracellular -galactosidase in a medium cotaining wheat bran extract and yeast extract. Maximum enzyme production was found in a medium containing 5% wheat bran extract as a carbon source and 0.5% beef extract as a carbon and nitrogen source. Enzyme secretion was strongly inhibited by the presence of Cu2+, Ni2+ and Hg2+ (1mM) in the fermentation medium. Production of enzyme under stationary conditions resulted in 10-fold higher activity than under shaking conditions. The temperature range for production of the enzyme was 37° C to 55°C, with maximum activity (5.54 U ml–1) at 45°C. Optimum pH and temperature for enzyme activity were 5.0 and 60° C respectively. One hundred per cent of the original activity was retained after heating the enzyme at 60°C for 1 h. At 5mM Hg2+ strongly inhibited enzyme activity. TheK m andV max forp-nitrophenyl--d-galactopyranoside were 60M and 33.6 mol min–1 mg–1, respectively, while for raffinose those values were 10.52 mM and 1.8 mol min–1 mg–1, respectively.  相似文献   

10.
A new NADH oxidase, useful for the regeneration of NAD+, was isolated and characterized from Lactobacillus brevis. In crude extracts the activity was from 10–15 U mg–1. After purification by four chromatographic steps, an activity of 116 U mg–1 was obtained with 14% yield. Highest activity was from pH 5.5–7 and at 40°C. The enzyme requires dithiothreitol to prevent oxidative deactivation. The K m value for NADH was 24 M.  相似文献   

11.
Summary Several strains of the enterobacterial groupErwinia herbicola (Enterobacter agglomerans) were screened for siderophore production. After 3 days of growth in a low-iron medium, all strains studied produced hydroxamate siderophores. The retention values of the main siderophore during thin-layer chromatography on silica gel plates and on HPLC reversed-phase columns were identical with those of an authentic sample of ferrioxamine E (norcardamine). Gas-chromatographic analysis of the HI hydrolyzate yielded succinic acid and 1,5-diaminopentane in equimolar amounts; fast-atom-bombardment (FAB) mass spectroscopy showed a molecular mass of 653 Da. Iron from55Fe-labelled ferrioxamine E was well taken up by iron-starved cells ofE. herbicola (K m=0.1 M,V max=8 pmol mg–1 min–1). However, besides ferrioxamine E (100%), several exogenous siderophores such as enterobactin (94.5%), ferric citrate (78.5%), coprogen (63.5%) and ferrichrome (17.5%) served as siderophores, suggesting the presence of multiple siderophore receptors in the outer membrane ofE. herbicola.  相似文献   

12.
Uptake of [14C]glycine-betaine by Listeria monocytogenes was stimulated by NaCl with optimal stimulation at 0.4–0.5 M. The glycine-betaine transport system had a K m of 22 M and a V max of 11.7 nmol-1 min-1 mg-1 protein when grown in the absence of NaCl. When grown in the presence of 0.8 M NaCl the V max increased to 27.0 nmol-1 min-1 mg-1 protein in 0.8 M NaCl. At NaCl concentrations above 0.5 M the uptake rate of glycine-betaine was reduced. Measurement of intracellular K+ concentrations and fluorescent dye quenching indicated that higher NaCl concentrations also led to a decrease in the electrochemical potential difference across the cytoplasmic membrane. Uptake of glycine was also observed, but this was not stimulated by NaCl.  相似文献   

13.
Chun HS  Kim HJ  Kim Y  Chang HJ 《Biotechnology letters》2004,26(22):1701-1706
Diallyl sulfide (DAS) and diallyl disulfide (DADS) at 25 g ml–1decreased the benzo[a]pyrene (B[a]P)-induced colony growth inhibition of human epidermal keratinocytes. DAS and DADS decreased B[a]P-DNA and B[a]P-protein adducts by 65% and 49–55%, respectively. The B[a]P-induced ethoxyresorufin O-deethylase activity, a marker enzyme for cytochrome P450 1, was decreased from 3 to 1.7–1.9 nmol min–1 mg–1 microsomal protein by DAS and DADS treatments. The activity of glutathione S-transferase, a detoxifying enzyme for B[a]P, but was decreased by DADS, but was unaffected by DAS.  相似文献   

14.
Plant vacuoles were isolated from cotyledons of germinatingAcacia mangium seeds, which had been treated with or withoutcolchicine, to measure vacuolar membrane pyrophosphate (PPi)- andATP-dependent H+ transport activities, and enzymaticactivities of H+-pyrophosphatase(H+-PPase) and H+-ATPase. Innon-colchicine-treated seeds, activities of the two enzymes increasedrapidly after seed germination to almost a maximal level on the seventhday. A linear function relationship exists in magnitude between PPi- orATP-dependent H+transport activity and its correspondingenzymatic activity. The former regression equation is: PPi-dependentH+ transport activity(%A.min–1.g–1) =–0.039 + H+-PPase activity(units.mg–1) × 1.574, the latter is:ATP-dependent H+ transport activity(%A.min–1.g–1) =–0.003 + H+-ATPase activity(units.mg–1) × 0.549. In colchicine-treatedseeds, activities of the two enzymes increased very slowly during 8 daysof germination and the relationship to their respectiveH+ transport activities was not in agreement with theabove-mentioned regression equations. PPi- and ATP-dependentH+ transport activities were lower than thecorresponding values calculated from H+-PPase activityand H+-ATPase activity according to the two regressionequations, respectively. However, when sucrose, indole butyric acid(IBA), or 6-benzyladenine (6-BA) were applied exogenously to the seedsfollowing colchicine treatment for 3 days, activities ofH+-PPase, H+-ATPase, PPi- andATP-dependent H+ transport in the 6-day-old seedlingsall increased. By statistical analysis, it was concluded that colchicineinhibits cotyledon vacuolar membrane H+-PPase,H+-ATPase activities, PPi- and ATP-dependentH+ transport activities during seed germination andearly seedling growth of Acacia mangium. The inhibitory effectsof colchicine could be overcome by IBA, 6-BA and sucrose to varyingdegrees.  相似文献   

15.
To clarify the diversity and function of isozymes of ascorbate peroxidase (APX) in plants, a method of producing large quantities of these proteins is needed. Here, we describe an Escherichia coli expression system for the rapid and economic expression of two rice APX genes, APXa and APXb (GeneBank accession Nos. D45423 and AB053297, respectively). The two genes were cloned into the pGEX-6p-3 vector to allow expression of APX as a glutathione-S-transferase (GST) fusion protein. The GST-APXa and GST-APXb fusion proteins were purified by affinity chromatography using a glutathione-Sepharose 4B column, with final yields of 40 and 73 mg g–1 dry cells, respectively. Specific activities were 15 and 20 mM ascorbate min–1 mg–1 protein, respectively. The Km values for ascorbate were 4 and 1 mM, respectively, and those for H2O2 were 0.3 and 0.7 mM, respectively indicating that the two rice isoenzymes have different properties.Revisions requested 27 September 2004; Revisions received 12 November 2004  相似文献   

16.
Isolated embryos ofKarwinskia humboldtiana were cultured in vitro. The growth of embryos and development to plantlets on woody plant medium supplemented with indole-3-acetic acid 6.10-2 mol l–1, gibberellic acid (GA3) 3.10-2 mol l–1, and 6-benzylaminopurine (BA) 2 mol l–1 was obtained. Multiplication of shoots and rooting of excised shoots has been achieved. Callus formation on modified Murashige-Skoog medium supplemented with 1-naphthaleneacetic acid 10 mol l–1, GA3 14 mol l–1, and kinetin 5 mol l–1 on hypocotyls, or on root cultures on medium supplemented with 2.4-dichlorophenoxyacetic acid 10 mol l–1 and BA 10 mol l–1 was induced.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - TEM transmission electron microscopy  相似文献   

17.
Cloning and characterization of an exoinulinase from Bacillus polymyxa   总被引:2,自引:0,他引:2  
A gene encoding an exoinulinase (inu) from Bacillus polymyxa MGL21 was cloned and sequenced. It is composed of 1455 nucleotides, encoding a protein (485 amino acids) with a molecular mass of 55522 Da. Inu was expressed in Escherichia coli and the His-tagged exoinulinase was purified. The purified enzyme hydrolyzed sucrose, levan and raffinose, in addition to inulin, with a sucrose/inulin ratio of 2. Inulinase activity was optimal at 35°C and pH 7, was completely inactivated by 1 mM Ag+ or Hg2+. The K m and V max values for inulin hydrolysis were 0.7 mM and 2500 M min–1 mg–1 protein. The enzyme acted on inulin via an exo-attack to produce fructose mainly.  相似文献   

18.
We recently isolated an acetate-oxidizing rodshaped eubacterium (AOR) which was capable of oxidizing acetate to CO2 when grown in coculture with the hydrogenotrophic methanogen Methanobacterium sp. strain THF. The AOR was also capable of growing axenically on H2CO2 which it converted to acetate. Previous results for the acetate oxidizing coculture showed isotopic exchange between acetate and CO2, suggesting that the AOR was using a pathway for acetate oxidation resembling a reveral of the acetogenic (carbon monoxide) pathway. In this study, it was found that production of 14CO2 from 14CH3COO- by the coculture was inhibited by 200 M cyanide, while methanogenesis from H2–CO2 was unaffected, implying the involvement of carbon monoxide dehydrogenase (CODH) in acetate oxidation. CODH was present at 0.055 mol methyl viologen reduced min-1 mg-1 protein in extracts of Methanobacterium sp. strain THF, but was present in higher levels in the acetate oxidizing coculture and in the AOR grown axenically and on H2–CO2 (2.0 and 6.4 mol min-1 mg-1 protein respectively). Anaerobic activity stains for CODH in native polyacrylamide gels from the AOR coculture showed components co-migrating with bands from both organisms, as well as an additional band in extracts of the coculture. Formate dehydrogenase (FDH) was present in both the AOR coculture and monoculture but not in extracts of H2–CO2 grown cells of Methanobacterium sp. strain THF. Formyltetrahydrofolate (FTHF) synthetase was not detectable in extracts of the AOR monoculture or coculture, although it was found in high amounts in extracts of H2–CO2 grown cells of the thermophilic acetogen Acetogenium kivui. Extracts of H2–CO2 grown cells of the AOR showed a fluorescence spectrum typical of pterin derivatives. Bioassay for folates showed levels to be at anabolic rather than catabolic levels. It is possible that the AOR uses pterins distinct from folate for catabolism. Isocitrate dehydrogenase, a citric acid cycle enzyme, was also present in the AOR, but at anabolic levels and -ketoglutarate dehydrogenase was not detectable.Abbreviations (AOR) acetate-oxidizing rod - (CODH) carbon monoxide dehydrogenase - (FDH) formate dehydrogenase - (FTHF) formyltetrahydrofolate  相似文献   

19.
We have addressed the question, whether the reduction of caffeate in Acetobacterium woodii strain NZva16 is coupled to ATP synthesis by electron transport phosphorylation. The following results were obtained: 1. Cultures of A. woodii with H2 and CO2, grew to greater cell densities, when caffeate was also present. Caffeate was reduced to give hydrocaffeate and less acetate was formed. The cell yield based on the amount of caffeate reduced was approximately 1 g dry cells/mol. 2. Non-growing bacterial suspensions catalyzed the reduction of caffeate by H2. The specific activity (0.2–1.0 mol · min–1 · mg–1 bacterial protein) was as high as expected for a catabolic reaction. 3. The ATP content of bacteria incubated, with H2 increased from < 1 to about 7 mol per g cellular protein on the addition of caffeate. The ATP yield was calculated as 0.06 mol ATP · mol–1 caffeate from the initial velocity of ATP formation and the activity of caffeate reduction. Valinomycin together with nigericin inhibited ATP formation and caused a 2–3-fold increase of the activity of caffeate reduction. Protonophores were without, effect. 4. Caffeate in the presence of H2 caused the uptake of tetraphenylphosphonium cation by the bacteria. The uptake was abolished by valinomycin plus nigericin, and was considerably enhanced by monensin. Protonophores were without effect, even in the presence of monensin. It is concluded that caffeate reduction by H2 is coupled to ATP formation by electron transport phosphorylation. However, the failure of protonophores to prevent phosphorylation and TPP uptake cannot be explained.Abbreviations Caffeate 3,4-Dihydroxycinnamate - Hydrocaffeate 3,4-dihydroxyphenylpropionate - TPP+ tetraphenylphosphonium cation - FCCP carbonylcyanide-4-trifluoromethoxyphenylhydrazone - TTGB 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazol - TCS 3,5,3,4-tetrachlorosalicylanilide  相似文献   

20.
The basis for the outcome of competition between sulfidogens and methanogens for H2 was examined by comparing the kinetic parameters of representatives of each group separately and in co-culture. Michaelis-Menten parameters (V max and K m) for four methanogens and five sulfate-reducing bacteria were determined from H2-depletion data. Further, Monod growth parameters (max, K s, Y H2) for Desulfovibrio sp. G11 and Methanospirillum hungatei JF-1 were similarly estimated. H2 K m values for the methanogenic bacteria ranged from 2.5 M (Methanospirillum PM1) to 13 M for Methanosarcina barkeri MS; Methanospirillum hungatei JF-1 and Methanobacterium PM2 had intermediate H2 K m estimates of 5 M. Average H2 K m estimates for the five sulfidogens was 1.2 M. No consistent difference among the V max estimates for the above sulfidogens (mean=100 nmol H2 min-1 mg-1 protein) and methanogens (mean=110 nmol H2 min-1 mg-1 protein) was found. A two-term Michaelis-Menten equation accurately predicted the apparent H2 K m values and the fate of H2 by resting co-cultures of sulfate-reducers and methanogens. Half-saturation coefficients (K s) for H2-limited growth of Desulfovibrio sp. G11 (2–4 M) and Methanospirillum JF-1 (6–7 M) were comparable to H2 K m estimates obtained for these organisms. Maximum specific growth rates for Desulfovibrio sp. G11 (0.05 h-1) were similar to those of Methanospirillum JF-1 (0.05–0.06 h-1); whereas G11 had an average yield coefficient 4 x that of JF-1. Calculated max and V max/K m values for the methanogens and sulfidogens studied predict that the latter bacterial group will process more H2 whether these organisms are in a growing or resting state, when the H2 concentration is in the first-order region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号