首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The central role of glutamate receptors in mediating excitotoxic neuronal death in stroke, epilepsy and trauma has been well established. Glutamate is the major excitatory amino acid transmitter within the CNS and it's signaling is mediated by a number of postsynaptic ionotropic and metabotropic receptors. Although calcium ions are considered key regulators of excitotoxicity, new evidence suggests that specific second messenger pathways rather than total Ca(2+) load, are responsible for mediating neuronal degeneration. Glutamate receptors are found localized at the synapse within electron dense structures known as the postsynaptic density (PSD). Localization at the PSD is mediated by binding of glutamate receptors to submembrane proteins such as actin and PDZ containing proteins. PDZ domains are conserved motifs that mediate protein-protein interactions and self-association. In addition to glutamate receptors PDZ-containing proteins bind a multitude of intracellular signal molecules including nitric oxide synthase. In this way PDZ proteins provide a mechanism for clustering glutamate receptors at the synapse together with their corresponding signal transduction proteins. PSD organization may thus facilitate the individual neurotoxic signal mechanisms downstream of receptors during glutamate overactivity. Evidence exists showing that inhibiting signals downstream of glutamate receptors, such as nitric oxide and PARP-1 can reduce excitotoxic insult. Furthermore we have shown that uncoupling the interaction between specific glutamate receptors from their PDZ proteins protects neurons against glutamate-mediated excitotoxicity. These findings have significant implications for the treatment of neurodegenerative diseases using therapeutics that specifically target intracellular protein-protein interactions.  相似文献   

2.
Multidomain scaffolding proteins are central components of many signaling pathways and are commonly found at membrane specializations. Here we have shown that multiple interdomain interactions in the scaffold Discs Large (Dlg) regulate binding to the synaptic protein GukHolder (GukH). GukH binds the Src homology 3 (SH3) and guanylate kinase-like (GK) protein interaction domains of Dlg, whereas an intramolecular interaction between the two domains inhibits association with GukH. Regulation occurs through a PDZ domain adjacent to the SH3 that allows GukH to interact with the composite SH3-GK binding site, but PDZ ligands inhibit GukH binding such that Dlg forms mutually exclusive PDZ ligand and GukH cellular complexes. The PDZ-SH3-GK module is a common feature of membrane associate guanylate kinase scaffolds such as Dlg, and these results indicate that its supramodular architecture leads to regulation of Dlg complexes.  相似文献   

3.
《The Journal of cell biology》1996,135(4):1125-1137
hDlg, a human homologue of the Drosophila Dig tumor suppressor, contains two binding sites for protein 4.1, one within a domain containing three PSD-95/Dlg/ZO-1 (PDZ) repeats and another within the alternatively spliced I3 domain. Here, we further define the PDZ- protein 4.1 interaction in vitro and show the functional role of both 4.1 binding sites in situ. A single protease-resistant structure formed by the entirety of both PDZ repeats 1 and 2 (PDZ1-2) contains the protein 4.1-binding site. Both this PDZ1-2 site and the I3 domain associate with a 30-kD NH2-terminal domain of protein 4.1 that is conserved in ezrin/radixin/moesin (ERM) proteins. We show that both protein 4.1 and the ezrin ERM protein interact with the murine form of hDlg in a coprecipitating immune complex. In permeabilized cells and tissues, either the PDZ1-2 domain or the I3 domain alone are sufficient for proper subcellular targeting of exogenous hDlg. In situ, PDZ1-2- mediated targeting involves interactions with both 4.1/ERM proteins and proteins containing the COOH-terminal T/SXV motif. I3-mediated targeting depends exclusively on interactions with 4.1/ERM proteins. Our data elucidates the multivalent nature of membrane-associated guanylate kinase homologue (MAGUK) targeting, thus beginning to define those protein interactions that are critical in MAGUK function.  相似文献   

4.
Postendocytic sorting of G protein-coupled receptors (GPCRs) is driven by their interactions between highly diverse receptor sequence motifs with their interacting proteins, such as postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), zonula occludens-1 protein (zo-1) (PDZ) domain proteins. However, whether these diverse interactions provide an underlying functional specificity, in addition to driving sorting, is unknown. Here we identify GPCRs that recycle via distinct PDZ ligand/PDZ protein pairs that exploit their recycling machinery primarily for targeted endosomal localization and signaling specificity. The luteinizing hormone receptor (LHR) and β2-adrenergic receptor (B2AR), two GPCRs sorted to the regulated recycling pathway, underwent divergent trafficking to distinct endosomal compartments. Unlike B2AR, which traffics to early endosomes (EE), LHR internalizes to distinct pre-early endosomes (pre-EEs) for its recycling. Pre-EE localization required interactions of the LHR C-terminal tail with the PDZ protein GAIP-interacting protein C terminus, inhibiting its traffic to EEs. Rerouting the LHR to EEs, or EE-localized GPCRs to pre-EEs, spatially reprograms MAPK signaling. Furthermore, LHR-mediated activation of MAPK signaling requires internalization and is maintained upon loss of the EE compartment. We propose that combinatorial specificity between GPCR sorting sequences and interacting proteins dictates an unprecedented spatiotemporal control in GPCR signal activity.  相似文献   

5.
The corticotropin-releasing hormone receptor type 1 (CRHR1) plays an important role in orchestrating neuroendocrine, behavioral, and autonomic responses to stress. To identify molecules capable of directly modulating CRHR1 signaling, we performed a yeast-two-hybrid screen using the C-terminal intracellular tail of the receptor as bait. We identified several members of the membrane-associated guanylate kinase (MAGUK) family: postsynaptic density protein 95 (PSD95), synapse-associated protein 97 (SAP97), SAP102 and membrane associated guanylate kinase, WW and PDZ domain containing 2 (MAGI2). CRHR1 is co-expressed with the identified MAGUKs and with the additionally investigated PSD93 in neurons of the adult mouse brain and in primary hippocampal neurons, supporting the probability of a physiological interaction in vivo. The C-terminal PDZ (PSD-95, discs large, zona occludens 1) binding motif of CRHR1 is essential for its physical interaction with MAGUKs, as revealed by the CRHR1-STAVA mutant, which harbors a functionally impaired PDZ binding motif. The imitation of a phosphorylation at Thr413 within the PDZ binding motif also disrupted the interaction with MAGUKs. In contrast, distinct PDZ domains within the identified MAGUKs are involved in the interactions. Expression of CRHR1 in primary neurons demonstrated its localization throughout the neuronal plasma membrane, including the excitatory post synapse, where the receptor co-localized with PSD95 and SAP97. The co-expression of CRHR1 and respective interacting MAGUKs in HEK293 cells resulted in a clustered subcellular co-localization which required an intact PDZ binding motif. In conclusion, our study characterized the PDZ binding motif-mediated interaction of CRHR1 with multiple MAGUKs, which directly affects receptor function.  相似文献   

6.
Regulation of glutamate transporters accompanies plasticity of some glutamatergic synapses. The regulation of glutamate uptake at the Aplysia sensorimotor synapse during long-term facilitation (LTF) was investigated. Previously, increases in levels of ApGT1 ( Aplysia glutamate transporter 1) in synaptic membranes were found to be related to long-term increases in glutamate uptake. In this study, we found that regulation of ApGT1 during LTF appears to occur post-translationally. Serotonin (5-HT) a transmitter that induces LTF did not increase synthesis of ApGT1. A pool of ApGT1 appears to exist in sensory neuron somata, which is transported to the terminals by axonal transport. Blocking the rough endoplasmic reticulum-Golgi-trans-Golgi network (TGN) pathway with Brefeldin A prevented the 5-HT-induced increase of ApGT1 in terminals. Also, 5-HT produced changes in post-translational modifications of ApGT1 as well as changes in the levels of an ApGT1-co-precipitating protein. These results suggest that regulation of trafficking of ApGT1 from the vesicular trafficking system (rough endoplasmic reticulum-Golgi-TGN) in the sensory neuron somata to the terminals by post-translational modifications and protein interactions appears to be the mechanism underlying the increase in ApGT1, and thus, glutamate uptake during memory formation.  相似文献   

7.
The interactions of the AMPA receptor (AMPAR) auxiliary subunit Stargazin with PDZ domain-containing scaffold proteins such as PSD-95 are critical for the synaptic stabilization of AMPARs. To investigate these interactions, we have developed biomimetic competing ligands that are assembled from two Stargazin-derived PSD-95/DLG/ZO-1 (PDZ) domain-binding motifs using 'click' chemistry. Characterization of the ligands in vitro and in a cellular FRET-based model revealed an enhanced affinity for the multiple PDZ domains of PSD-95 compared to monovalent peptides. In cultured neurons, the divalent ligands competed with transmembrane AMPAR regulatory protein (TARP) for the intracellular membrane-associated guanylate kinase resulting in increased lateral diffusion and endocytosis of surface AMPARs, while showing strong inhibition of synaptic AMPAR currents. This provides evidence for a model in which the TARP-containing AMPARs are stabilized at the synapse by engaging in multivalent interactions. In light of the prevalence of PDZ domain clusters, these new biomimetic chemical tools could find broad application for acutely perturbing multivalent complexes.  相似文献   

8.
Postsynaptic density-95 is a multidomain scaffolding protein that recruits glutamate receptors to postsynaptic sites and facilitates signal processing and connection to the cytoskeleton. It is the leading member of the membrane-associated guanylate kinase family of proteins, which are defined by the PSD-95/Discs large/ZO-1 (PDZ)-Src homology 3 (SH3)-guanylate kinase domain sequence. We used NMR to show that phosphorylation of conserved tyrosine 397, which occurs in vivo and is located in an atypical helical extension (α3), initiates a rapid equilibrium of docked and undocked conformations. Undocking reduced ligand binding affinity allosterically and weakened the interaction of PDZ3 with SH3 even though these domains are separated by a ~25-residue linker. Additional phosphorylation at two linker sites further disrupted the interaction, implicating α3 and the linker in tuning interdomain communication. These experiments revealed a novel mode of regulation by a detachable PDZ element and offer a first glimpse at the dynamic interaction of PDZ and SH3-guanylate kinase domains in membrane-associated guanylate kinases.  相似文献   

9.
Postsynaptic density (PSD)-95/Synapse-associated protein (SAP) 90 and synaptic scaffolding molecule (S-SCAM) are neuronal membrane-associated guanylate kinases. Because PSD-95/SAP90 and S-SCAM function as synaptic scaffolding proteins, identification of ligands for these proteins is important to elucidate the structure of synaptic junctions. Here, we report a novel protein interacting with the PDZ domains of PSD-95/SAP90 and S-SCAM and named it MAGUIN-1 (membrane-associated guanylate kinase-interacting protein-1). MAGUIN-1 has one sterile alpha motif, one PDZ, and one plekstrin homology domain. MAGUIN-1 is localized at the plasma membrane via the plekstrin homology domain and the C-terminal region and interacts with PSD-95/SAP90 and S-SCAM via a C-terminal PDZ domain-binding motif. MAGUIN-1 has a short isoform, MAGUIN-2, which lacks a PDZ domain-binding motif. MAGUINs are expressed in neurons and localized in the cell body and neurites and are coimmunoprecipitated with PSD-95/SAP90 and S-SCAM from rat crude synaptosome. MAGUIN-1 may play an important role with PSD-95/SAP90 and S-SCAM to assemble the components of synaptic junctions.  相似文献   

10.
Phospholipase C-beta isozymes that are activated by G protein-coupled receptors (GPCR) and heterotrimeric G proteins carry a PSD-95/Dlg/ZO-1 (PDZ) domain binding motif at their C terminus. Through interactions with PDZ domains, this motif may endow the PLC-beta isozyme with specific roles in GPCR signaling events that occur in compartmentalized regions of the plasma membrane. In this study, we identified the interaction of PLC-beta3 with Shank2, a PDZ domain-containing multimodular scaffold in the postsynaptic density (PSD). The C terminus of PLC-beta3, but not other PLC-beta isotypes, specifically interacts with the PDZ domain of Shank2. Homer 1b, a Shank-interacting protein that is linked to group I metabotropic glutamate receptors and IP3 receptors, forms a multiple complex with Shank2 and PLC-beta3. Importantly, microinjection of a synthetic peptide specifically mimicking the C terminus of PLC-beta3 markedly reduces the mGluR-mediated intracellular calcium response. These results demonstrate that Shank2 brings PLC-beta3 closer to Homer 1b and constitutes an efficient mGluR-coupled signaling pathway in the PSD region of neuronal synapses.  相似文献   

11.
Postsynaptic molecules with PDZ domains (PDZ proteins) interact with various glutamate receptors and regulate their subcellular trafficking and stability. In rat neocortical development, the protein expression of AMPA-type glutamate receptor GluR1 lagged behind its mRNA expression and rather paralleled an increase in PDZ protein levels. One of the neurotrophins, brain-derived neurotrophic factor (BDNF), appeared to contribute to this process, regulating the PDZ protein expression. In neocortical cultures, BDNF treatment upregulated SAP97, GRIP1, and Pick1 PDZ proteins. Conversely, BDNF gene targeting downregulated these same PDZ molecules. The BDNF-triggered increases in PDZ proteins resulted in the elevation of their total association with the AMPA receptors GluR1 and GluR2/3, which led to the increase in AMPA receptor proteins. When Sindbis viruses carrying GluR1 or GluR2 C-terminal decoys disrupted their interactions, GluR2 C-terminal decoys inhibited both BDNF-triggered GluR1 and GluR2/3 increases, whereas GluR1 C-terminal decoys blocked only the BDNF-triggered GluR1 increase. In agreement, coexpression of SAP97 and GluR1 in nonneuronal HEK293 cells increased both proteins compared with their single transfection, implying mutual stabilization. This work reveals a novel function of BDNF in postsynaptic development by regulating the PDZ protein expression.  相似文献   

12.
Jee C  Lee J  Lee JI  Lee WH  Park BJ  Yu JR  Park E  Kim E  Ahnn J 《FEBS letters》2004,561(1-3):29-36
Protein localization in the postsynaptic density (PSD) of neurons is mediated by scaffolding proteins such as PSD-95 and Shank, which ensure proper function of receptors at the membrane. The Shank family of scaffolding proteins contain PDZ (PSD-95, Dlg, and ZO-1) domains and have been implicated in the localizations of many receptor proteins including glutamate receptors in mammals. We have identified and characterized shn-1, the only homologue of Shank in Caenorhabditis elegans. The shn-1 gene shows approximately 40% identity over 1000 amino acids to rat Shanks. SHN-1 protein is localized in various tissues including neurons, pharynx and intestine. RNAi suppression of SHN-1 did not cause lethality or developmental abnormality. However, suppression of SHN-1 in the itr-1 (sa73) mutant, which has a defective inositol-1,4,5-trisphosphate (IP(3)) receptor, resulted in animals with altered defecation rhythm. Our data suggest a possible role of SHN-1 in affecting function of IP(3) receptors in C. elegans.  相似文献   

13.
PDZ (also called DHR or GLGF) domains are found in diverse membraneassociated proteins including members of the MAGUK family of guanylate kinase homologues, several protein phosphatases and kinases, neuronal nitric oxide synthase, and several dystrophin-associated proteins, collectively known as syntrophins. Many PDZ domain-containing proteins appear to be localised to highly specialised submembranous sites, suggesting their participation in cellular junction formation, receptor or channel clustering, and intracellular signalling events. PDZ domains of several MAGUKs interact with the C-terminal polypeptides of a subset of NMDA receptor subunits and/or with Shaker-type K+ channels. Other PDZ domains have been shown to bind similar ligands of other transmembrane receptors. Recently, the crystal structures of PDZ domains, with and without ligand, have been determined. These demonstrate the mode of ligand-binding and the structural bases for sequence conservation among diverse PDZ domains.  相似文献   

14.
Recent studies have demonstrated that kainate receptors are associated with members of the SAP90/PSD-95 family (synapse-associated proteins (SAPs)) in neurons and that SAP90 can cluster and modify the electrophysiological properties of GluR6/KA2 kainate receptors when co-expressed in transfected cells. In vivo, SAP90 tightly binds kainate receptor subunits, while SAP97 is only weakly associated, suggesting that this glutamate receptor differentially associates with SAP90/PSD-95 family members. Here, green fluorescent protein (GFP)-tagged chimeras and deletion mutants of SAP97 and SAP90 were employed to define the molecular mechanism underlying their differential association with kainate receptors. Our results show that a weak interaction between GluR6 and the PDZ1 domain of SAP97 can account for the weak association of GluR6 with the full-length SAP97 observed in vivo. Expression studies in HEK293 cells and in vitro binding studies further show that although the individual Src homology 3 and guanylate kinase domains in SAP97 can interact with the C-terminal tail of KA2 subunit, specific intramolecular interactions in SAP97 (e.g. the SAP97 N terminus (S97N) binding to the Src homology 3 domain) interfere with KA2 binding to the full-length molecule. Because receptor subunits are known to segregate to different parts of the neuron, our results imply that differential association of kainate receptors with SAP family proteins may be one mechanism of subcellular localization.  相似文献   

15.
Javier RT  Rice AP 《Journal of virology》2011,85(22):11544-11556
More than a decade ago, three viral oncoproteins, adenovirus type 9 E4-ORF1, human T-lymphotropic virus type 1 Tax, and high-risk human papillomavirus E6, were found to encode a related carboxyl-terminal PDZ domain-binding motif (PBM) that mediates interactions with a select group of cellular PDZ proteins. Recent studies have shown that many other viruses also encode PBM-containing proteins that bind to cellular PDZ proteins. Interestingly, these recently recognized viruses include not only some with oncogenic potential (hepatitis B virus, rhesus papillomavirus, cottontail rabbit papillomavirus) but also many without this potential (influenza virus, Dengue virus, tick-borne encephalitis virus, rabies virus, severe acute respiratory syndrome coronavirus, human immunodeficiency virus). Examination of the cellular PDZ proteins that are targets of viral PBMs reveals that the viral proteins often interact with the same or similar types of PDZ proteins, most notably Dlg1 and other members of the membrane-associated guanylate kinase protein family, as well as Scribble. In addition, cellular PDZ protein targets of viral PBMs commonly control tight junction formation, cell polarity establishment, and apoptosis. These findings reveal a new theme in virology wherein many different virus families encode proteins that bind and perturb the function of cellular PDZ proteins. The inhibition or perturbation of the function of cellular PDZ proteins appears to be a widely used strategy for viruses to enhance their replication, disseminate in the host, and transmit to new hosts.  相似文献   

16.
Proteomic analyses have revealed a novel synaptic proline-rich membrane protein: PRR7 (proline rich 7), in the postsynaptic density (PSD) fraction of rat forebrain. PRR7 is 269 amino acid residues long, and displays a unique architecture, composed of a very short N-terminal extracellular region, a single membrane spanning domain, and a cytoplasmic domain possessing a proline-rich sequence and a C-terminal type-1 PDZ binding motif. A fraction of PRR7 accumulates in spines along with synapse maturation, and colocalizes with PSD-95 in a punctate pattern in rat hippocampal neural cultures. Immunoprecipitation and GST pull-down assays demonstrated that PRR7 binds to the third PDZ domain of PSD-95. In addition, the NMDA receptor subunits, NR1 and NR2B, specifically co-immunoprecipitated with PRR7. These results suggest that PRR7 is involved in modulating neural activities via interactions with the NMDA receptor and PSD-95, and PSD core formation.  相似文献   

17.
The Drosophila discs large tumor suppressor protein, Dlg, is the prototype of a newly discovered family of proteins termed MAGUKs (membrane-associated guanylate kinase homologues). MAGUKs are localized at the membrane-cytoskeleton interface, usually at cell-cell junctions, where they appear to have both structural and signaling roles. They contain several distinct domains, including a modified guanylate kinase domain, an SH3 motif, and one or three copies of the DHR (GLGF/PDZ) domain. Recessive lethal mutations in the discs large tumor suppressor gene interfere with the formation of septate junctions (thought to be the arthropod equivalent of tight junctions) between epithelial cells, and they cause neoplastic overgrowth of imaginal discs, suggesting a role for cell junctions in proliferation control. A homologue of the Dlg protein, named Hdlg, has been isolated from human B lymphocytes. It shows 65-79% identity to Dlg in the different domains, and it binds to the cytoskeletal protein 4.1. Here, we report that the gene for lymphocyte Hdlg, named DLG1, is located at chromosome band 3q29. This finding identifies a novel site for a candidate tumor suppressor on chromosome 3.  相似文献   

18.
Craven SE  El-Husseini AE  Bredt DS 《Neuron》1999,22(3):497-509
During synaptic development, proteins aggregate at specialized pre- and postsynaptic structures. Mechanisms that mediate protein clustering at these sites remain unknown. To investigate this process, we analyzed synaptic targeting of a postsynaptic density protein, PSD-95, by expressing green fluorescent protein- (GFP-) tagged PSD-95 in cultured hippocampal neurons. We find that postsynaptic clustering relies on three elements of PSD-95: N-terminal palmitoylation, the first two PDZ domains, and a C-terminal targeting motif. In contrast, disruptions of PDZ3, SH3, or guanylate kinase (GK) domains do not affect synaptic targeting. Palmitoylation is sufficient to target the diffusely expressed SAP-97 to synapses, and palmitoylation cannot be replaced with alternative membrane association motifs, suggesting that a specialized synaptic lipid environment mediates postsynaptic clustering. The requirements for PDZ domains and a C-terminal domain of PSD-95 indicate that protein-protein interactions cooperate with lipid interactions in synaptic targeting.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号