首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
经颅磁刺激在大脑皮质研究中的应用和进展   总被引:4,自引:0,他引:4  
经颅磁刺激(TMS)是一种能够在脑中感应聚焦电流,瞬间调制大脑皮质的无创方法,在临床研究、基础神经学和诊治疾病等方面有许多应用。通过记录运动皮质诱发电位(MEPs),TMS已经或将成为探测脑下运动路径传导、评价皮质兴奋性、皮质映射和研究皮质塑性的常规工具。TMS能够主动干预脑功能,这种特性使它成为研究正常人脑-行为关系的独特技术,可以建立脑活动与任务完成之间的因果关系,探索脑功能连接。近年来的许多实验又表明,TMS在运动紊乱和精神疾病方面有潜在的治疗作用,但达到临床应用还有一定距离。  相似文献   

2.
经颅磁刺激:生理、心理、脑成像及其临床应用   总被引:12,自引:0,他引:12  
非侵入性的经颅磁刺激 (TranscranialMagneticStimulation ,TMS)可以无痛地产生感应性电流来激活皮层 ,从而改变大脑内的生理过程。通过改变TMS的参数可以观测到不同的生理和心理效应。TMS对大脑的不同的调节方式体现在对感觉的调节、对认知功能和行为表现的促进或抑制上。TMS还可以与神经病学、精神病学和药理学研究相结合。无框架的TMS立体定位技术可以提高用于解剖定位的TMS以及用于指引脑外科手术的准确性。最后 ,中医针灸的理论也可以用于理解TMS在脑内调节作用的频率效应  相似文献   

3.
Transcranial magnetic stimulation (TMS) is a technique whereby parts of the cerebral cortex and underlying white matter can be excited by a brief electrical current induced by a similarly brief, rapidly fluctuating magnetic field which is itself produced by rapidly discharging a current through an insulated coil held against the scalp. When combined with magnetic resonance structural and functional images of the subject's brain, the stimulation can be directed at specific cortical areas. Over a period of only 15 years, TMS has revealed hitherto unsuspected aspects of brain function, such as the role of distant parts of the brain in recovery from stroke, and has helped to resolve several previously intractable disputes, such as the neuronal basis of conscious awareness. This article describes and discusses the origins and nature of TMS, its applications and limitations, and its especial usefulness in conjunction with other techniques of evaluating or imaging brain activity.  相似文献   

4.
A combination of oculometric measurements, invasive electrophysiological recordings and microstimulation have proven instrumental to study the role of the Frontal Eye Field (FEF) in saccadic activity. We hereby gauged the ability of a non-invasive neurostimulation technology, Transcranial Magnetic Stimulation (TMS), to causally interfere with frontal activity in two macaque rhesus monkeys trained to perform a saccadic antisaccade task. We show that online single pulse TMS significantly modulated antisaccade latencies. Such effects proved dependent on TMS site (effects on FEF but not on an actively stimulated control site), TMS modality (present under active but not sham TMS on the FEF area), TMS intensity (intensities of at least 40% of the TMS machine maximal output required), TMS timing (more robust for pulses delivered at 150 ms than at 100 post target onset) and visual hemifield (relative latency decreases mainly for ipsilateral AS). Our results demonstrate the feasibility of using TMS to causally modulate antisaccade-associated computations in the non-human primate brain and support the use of this approach in monkeys to study brain function and its non-invasive neuromodulation for exploratory and therapeutic purposes.  相似文献   

5.

Background

While traditionally quite distinct, functional neuroimaging (e.g. functional magnetic resonance imaging: fMRI) and functional interference techniques (e.g. transcranial magnetic stimulation: TMS) increasingly address similar questions of functional brain organization, including connectivity, interactions, and causality in the brain. Time-resolved TMS over multiple brain network nodes can elucidate the relative timings of functional relevance for behavior (“TMS chronometry”), while fMRI functional or effective connectivity (fMRI EC) can map task-specific interactions between brain regions based on the interrelation of measured signals. The current study empirically assessed the relation between these different methods.

Methodology/Principal Findings

One group of 15 participants took part in two experiments: one fMRI EC study, and one TMS chronometry study, both of which used an established cognitive paradigm involving one visuospatial judgment task and one color judgment control task. Granger causality mapping (GCM), a data-driven variant of fMRI EC analysis, revealed a frontal-to-parietal flow of information, from inferior/middle frontal gyrus (MFG) to posterior parietal cortex (PPC). FMRI EC-guided Neuronavigated TMS had behavioral effects when applied to both PPC and to MFG, but the temporal pattern of these effects was similar for both stimulation sites. At first glance, this would seem in contradiction to the fMRI EC results. However, we discuss how TMS chronometry and fMRI EC are conceptually different and show how they can be complementary and mutually constraining, rather than contradictory, on the basis of our data.

Conclusions/Significance

The findings that fMRI EC could successfully localize functionally relevant TMS target regions on the single subject level, and conversely, that TMS confirmed an fMRI EC identified functional network to be behaviorally relevant, have important methodological and theoretical implications. Our results, in combination with data from earlier studies by our group (Sack et al., 2007, Cerebral Cortex), lead to informed speculations on complex brain mechanisms, and TMS disruption thereof, underlying visuospatial judgment. This first in-depth empirical and conceptual comparison of fMRI EC and TMS chronometry thereby shows the complementary insights offered by the two methods.  相似文献   

6.
Transcranial magnetic stimulation (TMS) is a safe, non-invasive brain stimulation technique that uses a strong electromagnet in order to temporarily disrupt information processing in a brain region, generating a short-lived “virtual lesion.” Stimulation that interferes with task performance indicates that the affected brain region is necessary to perform the task normally. In other words, unlike neuroimaging methods such as functional magnetic resonance imaging (fMRI) that indicate correlations between brain and behavior, TMS can be used to demonstrate causal brain-behavior relations. Furthermore, by varying the duration and onset of the virtual lesion, TMS can also reveal the time course of normal processing. As a result, TMS has become an important tool in cognitive neuroscience. Advantages of the technique over lesion-deficit studies include better spatial-temporal precision of the disruption effect, the ability to use participants as their own control subjects, and the accessibility of participants. Limitations include concurrent auditory and somatosensory stimulation that may influence task performance, limited access to structures more than a few centimeters from the surface of the scalp, and the relatively large space of free parameters that need to be optimized in order for the experiment to work. Experimental designs that give careful consideration to appropriate control conditions help to address these concerns. This article illustrates these issues with TMS results that investigate the spatial and temporal contributions of the left supramarginal gyrus (SMG) to reading.  相似文献   

7.
Fifteen years after its introduction by Anthony Barker, transcranial magnetic stimulation (TMS) appears to be 'coming of age' in cognitive neuroscience and promises to reshape the way we investigate brain-behavior relations. Among the many methods now available for imaging the activity of the human brain, magnetic stimulation is the only technique that allows us to interfere actively with brain function. As illustrated by several experiments over the past couple of years, this property of TMS allows us to investigate the relationship between focal cortical activity and behavior, to trace the timing at which activity in a particular cortical region contributes to a given task, and to map the functional connectivity between brain regions.  相似文献   

8.
Transcranial magnetic stimulation: a primer   总被引:4,自引:0,他引:4  
Hallett M 《Neuron》2007,55(2):187-199
Transcranial magnetic stimulation (TMS) is a technique for noninvasive stimulation of the human brain. Stimulation is produced by generating a brief, high-intensity magnetic field by passing a brief electric current through a magnetic coil. The field can excite or inhibit a small area of brain below the coil. All parts of the brain just beneath the skull can be influenced, but most studies have been of the motor cortex where a focal muscle twitch can be produced, called the motor-evoked potential. The technique can be used to map brain function and explore the excitability of different regions. Brief interference has allowed mapping of many sensory, motor, and cognitive functions. TMS has some clinical utility, and, because it can influence brain function if delivered repetitively, it is being developed for various therapeutic purposes.  相似文献   

9.
创伤后应激障碍会损伤记忆、注意和执行等认知功能,引起异常的脑活动及脑区间功能连接.尽管药物治疗和心理干预能够取得一定的治疗效果,但存在药物副作用和起效延迟等问题.经颅磁刺激作为新的创伤后应激障碍干预手段受到越来越多的关注.本文通过综述经颅磁刺激干预创伤后应激障碍以及调控认知功能和脑活动的相关研究,系统探讨了创伤后应激障碍干预中经颅磁刺激模式、刺激靶点和疗效评估等问题,并提出未来借助更有效的技术手段进行定位、建立全面有效的评估体系和结合新的记忆理论探索具有长期临床改善效果的干预方案.  相似文献   

10.
Transcranial Magnetic Stimulation (TMS) is an effective method for establishing a causal link between a cortical area and cognitive/neurophysiological effects. Specifically, by creating a transient interference with the normal activity of a target region and measuring changes in an electrophysiological signal, we can establish a causal link between the stimulated brain area or network and the electrophysiological signal that we record. If target brain areas are functionally defined with prior fMRI scan, TMS could be used to link the fMRI activations with evoked potentials recorded. However, conducting such experiments presents significant technical challenges given the high amplitude artifacts introduced into the EEG signal by the magnetic pulse, and the difficulty to successfully target areas that were functionally defined by fMRI. Here we describe a methodology for combining these three common tools: TMS, EEG, and fMRI. We explain how to guide the stimulator''s coil to the desired target area using anatomical or functional MRI data, how to record EEG during concurrent TMS, how to design an ERP study suitable for EEG-TMS combination and how to extract reliable ERP from the recorded data. We will provide representative results from a previously published study, in which fMRI-guided TMS was used concurrently with EEG to show that the face-selective N1 and the body-selective N1 component of the ERP are associated with distinct neural networks in extrastriate cortex. This method allows us to combine the high spatial resolution of fMRI with the high temporal resolution of TMS and EEG and therefore obtain a comprehensive understanding of the neural basis of various cognitive processes.  相似文献   

11.
Transcranial magnetic stimulation (TMS) allows non-invasive manipulation of brain activity during active task performance. Because every TMS pulse is accompanied by non-neural effects such as a clicking sound and somato-sensation on the head, control conditions are required to ensure that changes in task behavior are indeed due to the induced neural effects. However, the non-neural effects of TMS in the context of a given task performance are largely unknown and, consequently, it is unclear what constitutes a valid control condition. We explored the non-neural effects of TMS on visual target detection. Participants received single pulse sham TMS to each hemisphere at different time points prior to target appearance during a visual target detection task. It was hypothesized that the clicking sound of a sham TMS pulse differentially affects performance depending on the location of the coil and the timing of the pulse.Our results show that, first, sham TMS caused a facilitation of reaction times when preceding the target stimulus by 150, 200, and 250 ms, whereas earlier and later time windows were not effective. Second, positioning the TMS coil ipsilateral instead of contralateral relative to the target stimulus improved reaction times. Third, infrequent noTMS trials that were interleaved with sham TMS trials had oddball-like properties resulting in increased reaction times during noTMS. The clicking sound produced by sham TMS influences task performance in multiple ways. These non-neural effects of TMS need to be controlled for in TMS research and the present findings provide an empirical basis for deciding what constitutes a valid control condition.  相似文献   

12.
Auditory cortex pertains to the processing of sound, which is at the basis of speech or music-related processing1. However, despite considerable recent progress, the functional properties and lateralization of the human auditory cortex are far from being fully understood. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can transiently or lastingly modulate cortical excitability via the application of localized magnetic field pulses, and represents a unique method of exploring plasticity and connectivity. It has only recently begun to be applied to understand auditory cortical function 2. An important issue in using TMS is that the physiological consequences of the stimulation are difficult to establish. Although many TMS studies make the implicit assumption that the area targeted by the coil is the area affected, this need not be the case, particularly for complex cognitive functions which depend on interactions across many brain regions 3. One solution to this problem is to combine TMS with functional Magnetic resonance imaging (fMRI). The idea here is that fMRI will provide an index of changes in brain activity associated with TMS. Thus, fMRI would give an independent means of assessing which areas are affected by TMS and how they are modulated 4. In addition, fMRI allows the assessment of functional connectivity, which represents a measure of the temporal coupling between distant regions. It can thus be useful not only to measure the net activity modulation induced by TMS in given locations, but also the degree to which the network properties are affected by TMS, via any observed changes in functional connectivity.Different approaches exist to combine TMS and functional imaging according to the temporal order of the methods. Functional MRI can be applied before, during, after, or both before and after TMS. Recently, some studies interleaved TMS and fMRI in order to provide online mapping of the functional changes induced by TMS 5-7. However, this online combination has many technical problems, including the static artifacts resulting from the presence of the TMS coil in the scanner room, or the effects of TMS pulses on the process of MR image formation. But more importantly, the loud acoustic noise induced by TMS (increased compared with standard use because of the resonance of the scanner bore) and the increased TMS coil vibrations (caused by the strong mechanical forces due to the static magnetic field of the MR scanner) constitute a crucial problem when studying auditory processing. This is one reason why fMRI was carried out before and after TMS in the present study. Similar approaches have been used to target the motor cortex 8,9, premotor cortex 10, primary somatosensory cortex 11,12 and language-related areas 13, but so far no combined TMS-fMRI study has investigated the auditory cortex. The purpose of this article is to provide details concerning the protocol and considerations necessary to successfully combine these two neuroscientific tools to investigate auditory processing. Previously we showed that repetitive TMS (rTMS) at high and low frequencies (resp. 10 Hz and 1 Hz) applied over the auditory cortex modulated response time (RT) in a melody discrimination task 2. We also showed that RT modulation was correlated with functional connectivity in the auditory network assessed using fMRI: the higher the functional connectivity between left and right auditory cortices during task performance, the higher the facilitatory effect (i.e. decreased RT) observed with rTMS. However those findings were mainly correlational, as fMRI was performed before rTMS. Here, fMRI was carried out before and immediately after TMS to provide direct measures of the functional organization of the auditory cortex, and more specifically of the plastic reorganization of the auditory neural network occurring after the neural intervention provided by TMS. Combined fMRI and TMS applied over the auditory cortex should enable a better understanding of brain mechanisms of auditory processing, providing physiological information about functional effects of TMS. This knowledge could be useful for many cognitive neuroscience applications, as well as for optimizing therapeutic applications of TMS, particularly in auditory-related disorders.  相似文献   

13.
Reorganisation of cerebral representations has been hypothesised to underlie the recovery from ischaemic brain infarction. The mechanisms can be investigated non-invasively in the human brain using functional neuroimaging and transcranial magnetic stimulation (TMS). Functional neuroimaging showed that reorganisation is a dynamic process beginning after stroke manifestation. In the acute stage, the mismatch between a large perfusion deficit and a smaller area with impaired water diffusion signifies the brain tissue that potentially enables recovery subsequent to early reperfusion as in thrombolysis. Single-pulse TMS showed that the integrity of the cortico-spinal tract system was critical for motor recovery within the first four weeks, irrespective of a concomitant affection of the somatosensory system. Follow-up studies over several months revealed that ischaemia results in atrophy of brain tissue adjacent to and of brain areas remote from the infarct lesion. In patients with hemiparetic stroke activation of premotor cortical areas in both cerebral hemispheres was found to underlie recovery of finger movements with the affected hand. Paired-pulse TMS showed regression of perilesional inhibition as well as intracortical disinhibition of the motor cortex contralateral to the infarction as mechanisms related to recovery. Training strategies can employ post-lesional brain plasticity resulting in enhanced perilesional activations and modulation of large-scale bihemispheric circuits.  相似文献   

14.
Transcranial magnetic stimulation (TMS) can be used to simulate the effects of highly circumscribed brain damage permanently present in some neuropsychological patients, by reversibly disrupting the normal functioning of the cortical area to which it is applied. By using TMS we attempted to recreate deficits similar to those reported in a motion-blind patient and to assess the specificity of deficits when TMS is applied over human area V5. We used six visual search tasks and showed that subjects were impaired in a motion but not a form ''pop-out'' task when TMS was applied over V5. When motion was present, but irrelevant, or when attention to colour and form were required, TMS applied to V5 enhanced performance. When attention to motion was required in a motion-form conjunction search task, irrespective of whether the target was moving or stationary, TMS disrupted performance. These data suggest that attention to different visual attributes involves mutual inhibition between different extrastriate visual areas.  相似文献   

15.
Noninvasive stimulation of the brain by means of transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) has driven important discoveries in the field of human memory functions. Stand-alone or in combination with other brain mapping techniques noninvasive brain stimulation can assess issues such as location and timing of brain activity, connectivity and plasticity of neural circuits and functional relevance of a circumscribed brain area to a given cognitive task. In this emerging field, major advances in technology have been made in a relatively short period. New stimulation protocols and, especially, the progress in the application of tDCS have made it possible to obtain longer and much clearer inhibitory or facilitatory effects even after the stimulation has ceased. In this introductory review, we outline the basic principles, discuss technical limitations and describe how noninvasive brain stimulation can be used to study human memory functions in vivo. Though improvement of cognitive functions through noninvasive brain stimulation is promising, it still remains an exciting challenge to extend the use of TMS and tDCS from research tools in neuroscience to the treatment of neurological and psychiatric patients.  相似文献   

16.
随着对神经机制问题阐述水平的迅速提高,所应用的神经成像技术、方法及各种工具的复杂程度也在不断提高.一方面是神经成像技术本身的不断发展,另一方面则是大脑直接刺激与神经成像技术同步记录方法的发展.经颅磁刺激-功能磁共振成像同步技术(TMS-fMRI)和经颅磁刺激-脑电技术(TMS-EEG)能为研究大脑网络的功能和有效连通性提供技术手段,该技术在多种认知领域的发展和应用,为神经科学、认知心理学、神经信息学等学科的研究者对人脑的研究开启了多条通道,更加有利于深入地理解人类大脑的工作机制.  相似文献   

17.
Noninvasive stimulation of the brain by means of transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) has driven important discoveries in the field of human memory functions. Stand-alone or in combination with other brain mapping techniques noninvasive brain stimulation can assess issues such as location and timing of brain activity, connectivity and plasticity of neural circuits and functional relevance of a circumscribed brain area to a given cognitive task. In this emerging field, major advances in technology have been made in a relatively short period. New stimulation protocols and, especially, the progress in the application of tDCS have made it possible to obtain longer and much clearer inhibitory or facilitatory effects even after the stimulation has ceased. In this introductory review, we outline the basic principles, discuss technical limitations and describe how noninvasive brain stimulation can be used to study human memory functions in vivo. Though improvement of cognitive functions through noninvasive brain stimulation is promising, it still remains an exciting challenge to extend the use of TMS and tDCS from research tools in neuroscience to the treatment of neurological and psychiatric patients.  相似文献   

18.
Transcranial magnetic stimulation (TMS) is increasingly being used to demonstrate the causal links between brain and behavior in humans. Further, extensive clinical trials are being conducted to investigate the therapeutic role of TMS in disorders such as depression. Because TMS causes strong peripheral effects such as auditory clicks and muscle twitches, experimental artifacts such as subject bias and placebo effect are clear concerns. Several sham TMS methods have been developed, but none of the techniques allows one to intermix real and sham TMS on a trial-by-trial basis in a double-blind manner. We have developed an attachment that allows fast, automated switching between Standard TMS and two types of control TMS (Sham and Reverse) without movement of the coil or reconfiguration of the setup. We validate the setup by performing mathematical modeling, search-coil and physiological measurements. To see if the stimulus conditions can be blinded, we conduct perceptual discrimination and sensory perception studies. We verify that the physical properties of the stimulus are appropriate, and that successive stimuli do not contaminate each other. We find that the threshold for motor activation is significantly higher for Reversed than for Standard stimulation, and that Sham stimulation entirely fails to activate muscle potentials. Subjects and experimenters perform poorly at discriminating between Sham and Standard TMS with a figure-of-eight coil, and between Reverse and Standard TMS with a circular coil. Our results raise the possibility of utilizing this technique for a wide range of applications.  相似文献   

19.
Since 1985, transcranial magnetic stimulation (TMS) has been widely used for the investigation of different processes in the human central nervous system. We studied the thresholds of the motor-evoked responses (MER) during TMS and their hemispheric differences in healthy subjects and patients with brain tumors of different localization: in the brainstem projection, left and right motor areas, and left frontal-temporal area. The obtained results testify to a lower threshold of MER in healthy subjects during TMS of the dominant hemisphere. In patients with brainstem tumors, there was a decrease in the thresholds of MER during TMS. In patients with tumors in the motor area, the thresholds of MER were increased on the lesion side, whereas in patients with tumors in the left temporal area, the thresholds were significantly decreased during TMS of the lesioned hemisphere.  相似文献   

20.
BACKGROUND: Regions in human frontal cortex may have modulatory top-down influences on retinotopic visual cortex, but to date neuroimaging methods have only been able to provide indirect evidence for such functional interactions between remote but interconnected brain regions. Here we combined transcranial magnetic stimulation (TMS) with concurrent functional magnetic resonance imaging (fMRI), plus psychophysics, to show that stimulation of the right human frontal eye-field (FEF) produced a characteristic topographic pattern of activity changes in retinotopic visual areas V1-V4, with functional consequences for visual perception. RESULTS: FEF TMS led to activity increases for retinotopic representations of the peripheral visual field, but to activity decreases for the central field, in areas V1-V4. These frontal influences on visual cortex occurred in a top-down manner, independently of visual input. TMS of a control site (vertex) did not elicit such visual modulations, and saccades, blinks, or pupil dilation could not account for our results. Finally, the effects of FEF TMS on activity in retinotopic visual cortex led to a behavioral prediction that we confirmed psychophysically by showing that TMS of the frontal site (again compared with vertex) enhanced perceived contrast for peripheral relative to central visual stimuli. CONCLUSIONS: Our results provide causal evidence that circuits originating in the human FEF can modulate activity in retinotopic visual cortex, in a manner that differentiates the central and peripheral visual field, with functional consequences for perception. More generally, our study illustrates how the new approach of concurrent TMS-fMRI can now reveal causal interactions between remote but interconnected areas of the human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号