首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human immunodeficiency virus type 1 (HIV-1) infection occurs most efficiently via cell to cell transmission2,10,11. This cell to cell transfer between CD4+ T cells involves the formation of a virological synapse (VS), which is an F-actin-dependent cell-cell junction formed upon the engagement of HIV-1 envelope gp120 on the infected cell with CD4 and the chemokine receptor (CKR) CCR5 or CXCR4 on the target cell 8. In addition to gp120 and its receptors, other membrane proteins, particularly the adhesion molecule LFA-1 and its ligands, the ICAM family, play a major role in VS formation and virus transmission as they are present on the surface of virus-infected donor cells and target cells, as well as on the envelope of HIV-1 virions1,4,5,6,7,13. VS formation is also accompanied by intracellular signaling events that are transduced as a result of gp120-engagement of its receptors. Indeed, we have recently showed that CD4+ T cell interaction with gp120 induces recruitment and phosphorylation of signaling molecules associated with the TCR signalosome including Lck, CD3ζ, ZAP70, LAT, SLP-76, Itk, and PLCγ15.In this article, we present a method to visualize supramolecular arrangement and membrane-proximal signaling events taking place during VS formation. We take advantage of the glass-supported planar bi-layer system as a reductionist model to represent the surface of HIV-infected cells bearing the viral envelope gp120 and the cellular adhesion molecule ICAM-1. The protocol describes general procedures for monitoring HIV-1 gp120-induced VS assembly and signal activation events that include i) bi-layer preparation and assembly in a flow cell, ii) injection of cells and immunofluorescence staining to detect intracellular signaling molecules on cells interacting with HIV-1 gp120 and ICAM-1 on bi-layers, iii) image acquisition by TIRF microscopy, and iv) data analysis. This system generates high-resolution images of VS interface beyond that achieved with the conventional cell-cell system as it allows detection of distinct clusters of individual molecular components of VS along with specific signaling molecules recruited to these sub-domains.  相似文献   

2.
A regulated order of adhesion events directs leukocytes from the vascular compartment into injured tissues in response to inflammatory stimuli. We show that on human T cells, the interaction of the β2 integrin leucocyte function–associated antigen-1 (LFA-1) with its ligand intercellular adhesion molecule-1 (ICAM-1) will decrease adhesion mediated by α4β1 and, to a lesser extent, α5β1. Similar inhibition is also seen when T cells are exposed to mAb 24, which stabilizes LFA-1 in an active state after triggering integrin function through divalent cation Mg2+, PdBu, or T cell receptor/ CD3 complex (TCR/CD3) cross-linking. Such cross talk decreases α4β1 integrin–mediated binding of T cells to fibronectin and vascular cell adhesion molecule-1 (VCAM-1). In contrast, ligand occupancy or prolonged activation of β1 integrin has no effect on LFA-1 adhesion to ICAM-1. We also show that T cell migration across fibronectin, unlike adhesion, is mediated solely by α5β1, and is increased when the α4β1-mediated component of fibronectin adhesion is decreased either by cross talk or the use of α4-blocking mAb. The ability of mAb 24 Fab′ fragments to induce cross talk without cross-linking LFA-1 suggests signal transduction through the active integrin. These data provide the first direct evidence for cross talk between LFA-1 and β1 integrins on T cells. Together, these findings imply that activation of LFA-1 on the extravasating T cell will decrease the binding to VCAM-1 while enhancing the subsequent migration on fibronectin. This sequence of events provides a further level of complexity to the coordination of T cell integrins, whose sequential but overlapping roles are essential for transmigration.  相似文献   

3.
Previous studies have shown that human immunodeficiency virus type 1 (HIV-1) exploits dendritic cells (DC) to replicate and spread among CD4+ T cells. To explain the predominance of non-syncytium-inducing (NSI) over syncytium-inducing (SI) strains during the initial viremia of HIV, we investigated the ability of blood monocyte (Mo)-derived DC to transmit HIV-1 to CD4+ cells of the monocytoid lineage. First, we demonstrate that in our system, DC are able to transmit NSI strains, but not SI strains, of HIV-1 to fresh blood Mo and to Mo-derived macrophages (MDM). To establish a productive infection, a 10-fold-lower amount of virus was necessary for DC-mediated transmission of HIV-1 to Mo than in case of cell-free infection. Second, immature CD83 DC (imDC) transmit virus to Mo and MDM with higher efficacy compared to mature CD83+ DC (maDC); this finding is in contrast to data previously obtained with CD4+ T cells. Third, maturation from imDC to maDC efficiently silenced expression of β2-integrins CD11b, CD11c, and CD18 by maDC. Moreover, monoclonal antibody against CD18 inhibited transmission of HIV-1 from imDC to Mo. We propose that the adhesion molecules of the CD11/CD18 family, involved in cell-cell interactions of DC with the microenvironment, may play a major role in imDC-mediated HIV-1 infection of Mo and MDM.  相似文献   

4.
To carry out their physiological responsibilities, CD4+ T lymphocytes interact with various tissues of different mechanical properties. Recent studies suggest that T cells migrate upstream on surfaces expressing intracellular adhesion molecule-1 (ICAM-1) through interaction with leukocyte function-associated antigen-1 (αLβ2) (LFA-1) integrins. LFA-1 likely behaves as a mechanosensor, and thus we hypothesized that substrate mechanics might affect the ability of LFA-1 to support upstream migration of T cells under flow. Here we measured motility of CD4+ T lymphocytes on polyacrylamide gels with predetermined stiffnesses containing ICAM-1, vascular cell adhesion molecule-1 (VCAM-1), or a 1:1 mixture of VCAM-1/ICAM-1. Under static conditions, we found that CD4+ T cells exhibit an increase in motility on ICAM-1, but not on VCAM-1 or VCAM-1/ICAM-1 mixed, surfaces as a function of matrix stiffness. The mechanosensitivity of T-cell motility on ICAM-1 is overcome when VLA-4 (very late antigen-4 [α4β1]) is ligated with soluble VCAM-1. Last, we observed that CD4+ T cells migrate upstream under flow on ICAM–1-functionalized hydrogels, independent of substrate stiffness. In summary, we show that CD4+ T cells under no flow respond to matrix stiffness through LFA-1, and that the cross-talk of VLA-4 and LFA-1 can compensate for deformable substrates. Interestingly, CD4+ T lymphocytes migrated upstream on ICAM-1 regardless of the substrate stiffness, suggesting that flow can compensate for substrate stiffness.  相似文献   

5.
CD47 plays an important but incompletely understood role in the innate and adaptive immune responses. CD47, also called integrin-associated protein, has been demonstrated to associate in cis with β1 and β3 integrins. Here we test the hypothesis that CD47 regulates adhesive functions of T-cell α4β1 (VLA-4) and αLβ2 (LFA-1) in in vivo and in vitro models of inflammation. Intravital microscopy studies reveal that CD47/ Th1 cells exhibit reduced interactions with wild-type (WT) inflamed cremaster muscle microvessels. Similarly, murine CD47/ Th1 cells, as compared with WT, showed defects in adhesion and transmigration across tumor necrosis factor-α (TNF-α)–activated murine endothelium and in adhesion to immobilized intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion protein 1 (VCAM-1) under flow conditions. Human Jurkat T-cells lacking CD47 also showed reduced adhesion to TNF-α–activated endothelium and ICAM-1 and VCAM-1. In cis interactions between Jurkat T-cell β2 integrins and CD47 were detected by fluorescence lifetime imaging microscopy. Unexpectedly, Jurkat CD47 null cells exhibited a striking defect in β1 and β2 integrin activation in response to Mn2+ or Mg2+/ethylene glycol tetraacetic acid treatment. Our results demonstrate that CD47 associates with β2 integrins and is necessary to induce high-affinity conformations of LFA-1 and VLA-4 that recognize their endothelial cell ligands and support leukocyte adhesion and transendothelial migration.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) infection of dendritic cells (DCs) has been documented in vivo and may be an important contributor to HIV-1 transmission and pathogenesis. HIV-1-specific CD4+ T cells respond to HIV antigens presented by HIV-1-infected DCs and in this process become infected, thereby providing a mechanism through which HIV-1-specific CD4+ T cells could become preferentially infected in vivo. HIV-2 disease is attenuated with respect to HIV-1 disease, and host immune responses are thought to be contributory. Here we investigated the susceptibility of primary myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) to infection by HIV-2. We found that neither CCR5-tropic primary HIV-2 isolates nor a lab-adapted CXCR4-tropic HIV-2 strain could efficiently infect mDCs or pDCs, though these viruses could infect primary CD4+ T cells in vitro. HIV-2-exposed mDCs were also incapable of transferring virus to autologous CD4+ T cells. Despite this, we found that HIV-2-specific CD4+ T cells contained more viral DNA than memory CD4+ T cells of other specificities in vivo. These data suggest that either infection of DCs is not an important contributor to infection of HIV-2-specific CD4+ T cells in vivo or that infection of DCs by HIV-2 occurs at a level that is undetectable in vitro. The frequent carriage of HIV-2 DNA within HIV-2-specific CD4+ T cells, however, does not appear to be incompatible with preserved numbers and functionality of HIV-2-specific CD4+ T cells in vivo, suggesting that additional mechanisms contribute to maintenance of HIV-2-specific CD4+ T-cell help in vivo.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) transmission by the parenteral route is similar to mucosal transmission in the predominance of virus using the CCR5 coreceptor (R5 virus), but it is unclear whether blood dendritic cells (DCs), monocytes, or T cells are the cells initially infected. We used ex vivo HIV-1 infection of sorted blood mononuclear cells to model the in vivo infection of blood leukocytes. Using quantitative real-time PCR to detect full-length HIV-1 DNA, both sorted CD11c+ myeloid and CD11c plasmacytoid DCs were more frequently infected than other blood mononuclear cells, including CD16+ or CD14+ monocytes or resting CD4+ T cells. There was a strong correlation between CCR5 coreceptor use and preferential DC infection across a range of HIV-1 isolates. After infection of unsorted blood mononuclear cells, HIV-1 was initially detected in the CD11c+ DCs and later in other leukocytes, including clustering DCs and activated T cells. DC infection with R5 virus was productive, as shown by efficient transmission to CD4+ T cells in coculture. Blood DCs infected with HIV-1 in vitro and cultured alone expressed only low levels of multiply spliced HIV-1 RNA unless cocultured with CD4+ T cells. Early selective infection of immature blood DCs by R5 virus and upregulation of viral expression during DC-T-cell interaction and transmission provide a potential pathway for R5 selection following parenteral transmission.  相似文献   

8.
Understanding the molecular mechanisms underlying dysregulated immune responses in human immunodeficiency virus type 1 (HIV-1) infection is crucial for the control of HIV/AIDS. Despite the postulate that HIV envelope glycoprotein gp120-CD4 interactions lead to impaired T-cell responses, the precise mechanisms underlying such association are not clear. To address this, we analyzed Lck and F-actin redistribution into the immunological synapse in stimulated human primary CD4+ T cells from HIV-1-infected donors. Similar experiments were performed with CD4+ T cells from HIV-uninfected donors, which were exposed to anti-CD4 domain 1 antibodies, as an in vitro model of gp120-CD4 interactions, or aldithriol-inactivated HIV-1 virions before stimulation. CD4+ T cells from HIV-infected patients exhibited a two- to threefold inhibition of both Lck and F-actin recruitment into the synapse, compared to cells from uninfected donors. Interestingly, defective recruitment of Lck was ameliorated following suppressive highly active antiretroviral therapy. Engagement of the CD4 receptor on T cells from HIV-uninfected donors before anti-CD3/CD28 stimulation led to similar defects. Furthermore, the redistribution of Lck into lipid rafts was abrogated by CD4 preengagement. Our results suggest that the engagement of CD4 by HIV gp120 prior to T-cell receptor stimulation leads to dysregulation of early signaling events and could consequently play an important role in impaired CD4+ T-cell function.  相似文献   

9.
The activity of integrins on leukocytes is kept under tight control to avoid inappropriate adhesion while these cells are circulating in blood or migrating through tissues. Using lymphocyte function-associated antigen-1 (LFA-1) on T cells as a model, we have investigated adhesion to ligand intercellular adhesion molecule-1 induced by the Ca2+ mobilizers, ionomycin, 2,5-di-t-butylhydroquinone, and thapsigargin, and the well studied stimulators such as phorbol ester and cross-linking of the antigen-specific T cell receptor (TCR)– CD3 complex. We report here that after exposure of T cells to these agonists, integrin is released from cytoskeletal control by the Ca2+-induced activation of a calpain-like enzyme, and adhesive contact between cells is strengthened by means of the clustering of mobilized LFA-1 on the membrane. We propose that methods of leukocyte stimulation that cause Ca2+ fluxes induce LFA-1 adhesion by regulation of calpain activity. These findings suggest a mechanism whereby engagement of the TCR could promote adhesion strengthening at an early stage of interaction with an antigen-presenting cell.  相似文献   

10.
A restricted number of studies have shown that human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic CD4+ T cells are present in HIV-1-infected individuals. However, the roles of this type of CD4+ T cell in the immune responses against an HIV-1 infection remain unclear. In this study, we identified novel Nef epitope-specific HLA-DRB1*0803-restricted cytotoxic CD4+ T cells. The CD4+ T-cell clones specific for Nef187-203 showed strong gamma interferon production after having been stimulated with autologous B-lymphoblastoid cells infected with recombinant vaccinia virus expressing Nef or pulsed with heat-inactivated virus particles, indicating the presentation of the epitope antigen through both exogenous and endogenous major histocompatibility complex class II processing pathways. Nef187-203-specific CD4+ T-cell clones exhibited strong cytotoxic activity against both HIV-1-infected macrophages and CD4+ T cells from an HLA-DRB1*0803+ donor. In addition, these Nef-specific cytotoxic CD4+ T-cell clones exhibited strong ability to suppress HIV-1 replication in both macrophages and CD4+ T cells in vitro. Nef187-203-specific cytotoxic CD4+ T cells were detected in cultures of peptide-stimulated peripheral blood mononuclear cells (PBMCs) and in ex vivo PBMCs from 40% and 20% of DRB1*0803+ donors, respectively. These results suggest that HIV-1-specific CD4+ T cells may directly control HIV-1 infection in vivo by suppressing virus replication in HIV-1 natural host cells.Human immunodeficiency virus (HIV)-specific CD8+ cytotoxic T cells (CTLs) play a central role in the control of HIV type 1 (HIV-1) during acute and chronic phases of an HIV-1 infection (5, 29, 34). However, HIV-1 escapes from the immune surveillance of CD8+ CTLs by mechanisms such as mutations of immunodominant CTL epitopes and downregulation of major histocompatibility complex class I (MHC-I) molecules on the infected cells (9, 11, 12, 49). Therefore, most HIV-1-infected patients without highly active antiretroviral therapy (HAART) develop AIDS eventually.HIV-1-specific CD4+ T cells also play an important role in host immune responses against HIV-1 infections. An inverse association of CD4+ T-cell responses with viral load in chronically HIV-1-infected patients was documented in a series of earlier studies (8, 36, 39, 41, 48), although the causal relationship between them still remains unclear (23). Classically, CD4+ T cells help the expansion of CD8+ CTLs by producing growth factors such as interleukin-2 (IL-2) or by their CD40 ligand interaction with antigen-processing cells and CD8+ CTLs. In addition, CD4+ T cells provide activation of macrophages, which can professionally maintain CD8+ T-cell memory (17). On the other hand, the direct ability of virus-specific cytotoxic CD4+ T cells (CD4+ CTLs) to kill target cells has been widely observed in human virus infections such as those by human cytomegalovirus, Epstein-Barr virus (EBV), hepatitis B virus, Dengue virus, and HIV-1 (2, 4, 10, 19, 30, 31, 38, 50). Furthermore, one study showed that mouse CD4+ T cells specific for lymphocytic choriomeningitis virus have cytotoxic activity in vivo (25). These results, taken together, indicate that a subset of effector CD4+ T cells develops cytolytic activity in response to virus infections.HIV-1-specific CD4+ CTLs were found to be prevalent in HIV-1 infections, as Gag-specific cytotoxic CD4+ T cells were detected directly ex vivo among peripheral blood mononuclear cells (PBMCs) from an HIV-1-infected long-term nonprogressor (31). Other studies showed that up to 50% of the CD4+ T cells in some HIV-1-infected donors can exhibit a clear cytolytic potential, in contrast to the fact that healthy individuals display few of these cells (3, 4). These studies indicate the real existence of CD4+ CTLs in HIV-1 infections.The roles of CD4+ CTLs in the control of an HIV-1 infection have not been widely explored. It is known that Gag-specific CD4+ CTLs can suppress HIV-1 replication in a human T-cell leukemia virus type 1-immortalized CD4+ T-cell line (31). However, the functions of CD4+ T cells specific for other HIV-1 antigens remain unclear. On the other hand, the abilities of CD4+ CTLs to suppress HIV-1 replication in infected macrophages and CD4+ T cells may be different, as in the case of CD8+ CTLs for HIV-1-infected macrophages (17). In this study, we identified Nef-specific CD4+ T cells and investigated their ability to kill HIV-1 R5 virus-infected macrophages and HIV-1 X4 virus-infected CD4+ T cells and to suppress HIV-1 replication in the infected macrophages and CD4+ T cells. The results obtained in the present study show for the first time the ability of HIV-1-specific CD4+ CTLs to suppress HIV-1 replication in natural host cells, i.e., macrophages and CD4+ T cells.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1)-infected T cells form a virological synapse with noninfected CD4+ T cells in order to efficiently transfer HIV-1 virions from cell to cell. The virological synapse is a specialized cellular junction that is similar in some respects to the immunological synapse involved in T-cell activation and effector functions mediated by the T-cell antigen receptor. The immunological synapse stops T-cell migration to allow a sustained interaction between T-cells and antigen-presenting cells. Here, we have asked whether HIV-1 envelope gp120 presented on a surface to mimic an HIV-1-infected cell also delivers a stop signal and if this is sufficient to induce a virological synapse. We demonstrate that HIV-1 gp120-presenting surfaces arrested the migration of primary activated CD4 T cells that occurs spontaneously in the presence of ICAM-1 and induced the formation of a virological synapse, which was characterized by segregated supramolecular structures with a central cluster of envelope surrounded by a ring of ICAM-1. The virological synapse was formed transiently, with the initiation of migration within 30 min. Thus, HIV-1 gp120-presenting surfaces induce a transient stop signal and supramolecular segregation in noninfected CD4+ T cells.  相似文献   

12.
We tested the hypothesis that therapeutic vaccination against HIV-1 can increase the frequency and suppressive function of regulatory, CD4+ T cells (Treg), thereby masking enhancement of HIV-1-specific CD8+ T cell response. HIV-1-infected subjects on antiretroviral therapy (N = 17) enrolled in a phase I therapeutic vaccine trial received 2 doses of autologous dendritic cells (DC) loaded with HIV-1 peptides. The frequency of CD4+CD25hiFOXP3+ Treg in blood was determined prior to and after vaccination in subjects and normal controls. Polyfunctional CD8+ T cell responses were determined pre- and post-vaccine (N = 7) for 5 immune mediators after in vitro stimulation with Gag peptide, staphylococcal enterotoxin B (SEB), or medium alone. Total vaccine response (post-vaccine–pre-vaccine) was compared in the Treg(+) and Treg-depleted (Treg-) sets. After vaccination, 12/17 subjects showed a trend of increased Treg frequency (P = 0.06) from 0.74% to 1.2%. The increased frequency did not correlate with CD8+ T cell vaccine response by enzyme linked immunosorbent assay for interferon γ production. Although there was no significant change in CD8+ T cell polyfunctional response after vaccination, Treg depletion increased the polyfunctionality of the total vaccine response (P = 0.029), with a >2-fold increase in the percentage of CD8+ T cells producing multiple immune mediators. In contrast, depletion of Treg did not enhance polyfunctional T cell response to SEB, implying specificity of suppression to HIV-1 Gag. Therapeutic immunization with a DC-based vaccine against HIV-1 caused a modest increase in Treg frequency and a significant increase in HIV-1-specific, Treg suppressive function. The Treg suppressive effect masked an increase in the vaccine-induced anti-HIV-1-specific polyfunctional response. The role of Treg should be considered in immunotherapeutic trials of HIV-1 infection.  相似文献   

13.
In vitro evidence suggests that memory CD4+ cells are preferentially infected by human immunodeficiency virus type 1 (HIV-1), yet studies of HIV-1-infected individuals have failed to detect preferential memory cell depletion. To explore this paradox, we stimulated CD45RA+ CD4+ (naïve) and CD45RO+ CD4+ (memory) cells with antibodies to CD3 and CD28 and infected them with either CCR5-dependent (R5) or CXCR4-dependent (X4) HIV-1 isolates. Naïve CD4+ cells supported less X4 HIV replication than their memory counterparts. However, naïve cells were susceptible to R5 viral infection, while memory cells remained resistant to infection and viral replication. As with the unseparated cells, mixing the naïve and memory cells prior to infection resulted in cells resistant to R5 infection and highly susceptible to X4 infection. While both naïve and memory CD4+ subsets downregulated CCR5 expression in response to CD28 costimulation, only the memory cells produced high levels of the β-chemokines RANTES, MIP-1α, and MIP-1β upon stimulation. Neutralization of these β-chemokines rendered memory CD4+ cells highly sensitive to infection with R5 HIV-1 isolates, indicating that downregulation of CCR5 is not sufficient to mediate complete protection from CCR5 strains of HIV-1. These results indicate that susceptibility to R5 HIV-1 isolates is determined not only by the level of CCR5 expression but also by the balance of CCR5 expression and β-chemokine production. Furthermore, our results suggest a model of HIV-1 transmission and pathogenesis in which naïve rather than memory CD4+ T cells serve as the targets for early rounds of HIV-1 replication.  相似文献   

14.
Virus-specific CD8+ T cells play a central role in the control of viral infections, including human immunodeficiency virus type 1 (HIV-1) infection. However, despite the presence of strong and broad HIV-specific CD8+ T-cell responses in chronic HIV-1 infection, these cells progressively lose critical effector functions and fail to clear the infection. Mounting evidence suggests that the upregulation of several inhibitory regulatory receptors on the surface of CD8+ T cells during HIV-1 infection may contribute directly to the impairment of T-cell function. Here, we investigated the role of killer immunoglobulin receptors (KIR), which are expressed on NK cells and on CD8+ T cells, in regulating CD8+ T-cell function in HIV-1 infection. KIR expression was progressively upregulated on CD8+ T cells during HIV-1 infection and correlated with the level of viral replication. Expression of KIR was associated with a profound inhibition of cytokine secretion, degranulation, proliferation, and activation by CD8+ T cells following stimulation with T-cell receptor (TCR)-dependent stimuli. In contrast, KIR+ CD8+ T cells responded potently to TCR-independent stimulation, demonstrating that these cells are functionally competent. KIR-associated suppression of CD8+ T-cell function was independent of ligand engagement, suggesting that these regulatory receptors may constitutively repress TCR activation. This ligand-independent repression of TCR activation of KIR+ CD8+ T cells may represent a significant barrier to therapeutic interventions aimed at improving the quality of the HIV-specific CD8+ T-cell response in infected individuals.  相似文献   

15.
The virological synapse (VS) is a specialized molecular structure that facilitates the transfer of certain lymphotropic viruses into uninfected T cells. However, the role of the VS in the transfer of nonlymphotropic viruses into T cells is unknown. Herpes simplex virus (HSV) has been shown in vitro to infect T cells and modulate T-cell receptor function, thereby suppressing T-cell antiviral function. However, whether such infection of T cells occurs in vivo is unknown. Here, we examined whether T-cell infection could be observed in human HSV disease and investigated the mechanism of HSV entry into T cells. We found that HSV-infected T cells were readily detectable during human disease, suggesting that infection and modulation of T-cell function plays a role in human immunopathology. HSV infection of both CD4+ and CD8+ T cells occurred much more efficiently via direct cell-to-cell spread from infected fibroblasts than by cell-free virus. Activation of T cells increased their permissivity to HSV infection. Cell-to-cell spread to T cells did not require HSV glycoproteins E and I (gE and gI), which are critical for cell-to-cell spread between epithelial cells. Transfer of HSV to T cells required gD, and the four known entry receptors appear to be contributing to viral entry, with a dominant role for the herpesvirus entry mediator and nectin-1. VS-like structures enriched in activated lymphocyte function-associated antigen 1 (LFA-1) were observed at the point of contact between HSV-infected fibroblasts and T cells. Consistent with spread occurring via the VS, transfer of HSV was increased by activation of LFA-1, and cell-to-cell spread could be inhibited by antibodies to LFA-1 or gD. Taken together, these results constitute the first demonstration of VS-dependent cell-to-cell spread for a predominantly nonlymphotropic virus. Furthermore, they support an important role for infection and immunomodulation of T cells in clinical human disease. Targeting of the VS might allow selective immunopotentiation during infections with HSV or other nonlymphotropic viruses.The virological synapse (VS) is a specialized molecular structure that facilitates the transfer of certain lymphotropic viruses, such as human immunodeficiency virus (HIV) and human T-cell leukemia virus type 1 (HTLV-1), into uninfected T cells (22, 28, 38). Entry and infection of T cells by HIV or HTLV-1 via the VS is far more efficient than infection by cell-free virus, and thus this structure plays a critical role in the pathogenesis of these viruses. The organization of the VS is in many respects similar to the immunological synapse (IS), in particular, to the immature IS. The VS is highly enriched in the adhesion molecule lymphocyte function-associated antigen 1 (LFA-1) and its ligands intercellular adhesion molecule 1 (ICAM-1) and ICAM-3 (29); however, it does not possess the CD3-enriched central region associated with the mature IS (28, 47). While the VS is critical to the pathogenesis of HIV and HTLV-1, it remains an unanswered question whether the VS is also involved in T-cell infection by other viruses, especially those not typically considered lymphotropic.Herpes simplex virus (HSV) is a remarkably successful human pathogen that establishes lifelong latency in neurons of the dorsal root ganglia. HSV can efficiently reactivate from the latent state and transmit to new hosts despite the presence of preformed immunity. HSV is thought to achieve this feat by employing a number of sophisticated immune evasion mechanisms (33), many of which are directed at the cellular arm of the immune response. In one such potential mechanism, HSV has evolved the ability to enter and infect T cells. Although T cells do not support efficient viral replication (25), infection by HSV profoundly modulates T-cell receptor (TCR) signaling, which prevents T-cell cytotoxic function (55) and alters cytokine production profiles toward an interleukin-10-dominated immunosuppressive phenotype (54). However, it is unknown whether and to what extent HSV infection of T cells occurs during human HSV disease. Furthermore, the dominant mechanisms by which HSV might gain access to lesion-infiltrating T cells have not been elucidated.Here, we evaluated T-cell infection during human HSV infections, the mechanisms by which HSV enters T cells, the relative involvement of cell-cell spread versus cell-free virus in T-cell infection, and the role of the VS in the infection of T cells by HSV. The demonstration of infection of T cells in human HSV disease and of a dominant role for the VS in entry of HSV into T cells suggests that the VS is important in the pathogenesis of nonlymphotropic as well as lymphotropic viruses. Thus, the VS may be a unique pharmacologic target to allow improved immune control of a wide variety of viral infections.  相似文献   

16.
Recent studies have demonstrated that the β-chemokines RANTES, MIP-1α, and MIP-1β suppress human immunodeficiency virus type 1 (HIV-1) replication in vitro and may play an important role in protecting exposed but uninfected individuals from HIV-1 infection. However, levels of β-chemokines in AIDS patients are comparable to and can exceed levels in nonprogressing individuals, indicating that global β-chemokine production may have little effect on HIV-1 disease progression. We sought to clarify the role of β-chemokines in nonprogressors and AIDS patients by examination of β-chemokine production and HIV-1 infection in patient T-lymphocyte clones established by herpesvirus saimiri immortalization. Both CD4+ and CD8+ clones were established, and they resembled primary T cells in their phenotypes and expression of activated T-cell markers. CD4+ T-cell clones from all patients had normal levels of mRNA-encoding CCR5, a coreceptor for non-syncytium-inducing (NSI) HIV-1. CD4+ clones from nonprogressors and CD8+ clones from AIDS patients secreted high levels of RANTES, MIP1α, and MIP-1β. In contrast, CD4+ clones from AIDS patients produced no RANTES and little or no MIP-1α or MIP-1β. The infection of CD4+ clones with the NSI HIV-1 strain ADA revealed an inverse correlation to β-chemokine production; clones from nonprogressors were poorly susceptible to ADA replication, but clones from AIDS patients were highly infectable. The resistance to ADA infection in CD4+ clones from nonprogressors could be partially reversed by treatment with anti-β-chemokine antibodies. These results indicate that CD4+ cells can be protected against NSI-HIV-1 infection in culture through endogenously produced factors, including β-chemokines, and that β-chemokine production by CD4+, but not CD8+, T cells may constitute one mechanism of disease-free survival for HIV-1-infected individuals.  相似文献   

17.
The C-type lectin receptor DCIR, which has been shown very recently to act as an attachment factor for HIV-1 in dendritic cells, is expressed predominantly on antigen-presenting cells. However, this concept was recently challenged by the discovery that DCIR can also be detected in CD4+ T cells found in the synovial tissue from rheumatoid arthritis (RA) patients. Given that RA and HIV-1 infections share common features such as a chronic inflammatory condition and polyclonal immune hyperactivation status, we hypothesized that HIV-1 could promote DCIR expression in CD4+ T cells. We report here that HIV-1 drives DCIR expression in human primary CD4+ T cells isolated from patients (from both aviremic/treated and viremic/treatment naive persons) and cells acutely infected in vitro (seen in both virus-infected and uninfected cells). Soluble factors produced by virus-infected cells are responsible for the noticed DCIR up-regulation on uninfected cells. Infection studies with Vpr- or Nef-deleted viruses revealed that these two viral genes are not contributing to the mechanism of DCIR induction that is seen following acute infection of CD4+ T cells with HIV-1. Moreover, we report that DCIR is linked to caspase-dependent (induced by a mitochondria-mediated generation of free radicals) and -independent intrinsic apoptotic pathways (involving the death effector AIF). Finally, we demonstrate that the higher surface expression of DCIR in CD4+ T cells is accompanied by an enhancement of virus attachment/entry, replication and transfer. This study shows for the first time that HIV-1 induces DCIR membrane expression in CD4+ T cells, a process that might promote virus dissemination throughout the infected organism.  相似文献   

18.
19.
Progressive immune dysfunction and AIDS develop in most cases of human immunodeficiency virus type 1 (HIV-1) infection but in only 25 to 30% of persons with HIV-2 infection. However, the natural history and immunologic responses of individuals with dual HIV-1 and HIV-2 infection are largely undefined. Based on our previous findings, we hypothesized that among patients with dual infection the control of HIV-1 is associated with the ability to respond to HIV-2 Gag epitopes and to maintain HIV-specific CD4+ T-cell responses. To test this, we compared the HIV-specific ex vivo IFN-γ enzyme-linked immunospot (ELISPOT) assay responses of 19 dually infected individuals to those of persons infected with HIV-1 or HIV-2 only. Further, we assessed the functional profile of HIV Gag-specific CD4+ and CD8+ T cells from nine HIV dually infected patients by using a multicolor intracellular cytokine staining assay. As determined by ELISPOT assay, the magnitude and frequency of IFN-γ-secreting T-cell responses to gene products of HIV-1 were higher than those to gene products of HIV-2 (2.64 versus 1.53 log10 IFN-γ spot-forming cells/106 cells [90% versus 63%, respectively].) Further, HIV-1 Env-, Gag-, and Nef- and HIV-2 Gag-specific responses were common; HIV-2 Nef-specific responses were rare. HIV-specific CD4+ T helper responses were detected in nine of nine dually infected subjects, with the majority of these T cells producing gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) and, to a lesser extent, interleukin-2. The HIV-1 plasma viral load was inversely correlated with HIV-2 Gag-specific IFN-γ-/TNF-α-secreting CD4+ and HIV-2 Gag-specific IFN-γ-secreting CD8+ T cells. In conclusion, the T-cell memory responses associated with containment of single HIV-1 and HIV-2 infection play a similar significant role in the immune control of dual HIV-1 and HIV-2 infection.  相似文献   

20.
Dendritic cells (DCs) potently stimulate the cell-cell transmission of human immunodeficiency virus type 1 (HIV-1). However, the mechanisms that underlie DC transmission of HIV-1 to CD4+ T cells are not fully understood. DC-SIGN, a C-type lectin, efficiently promotes HIV-1 trans infection. DC-SIGN is expressed in monocyte-derived DCs (MDDCs), macrophage subsets, activated B lymphocytes, and various mucosal tissues. MDDC-mediated HIV-1 transmission to CD4+ T cells involves DC-SIGN-dependent and -independent mechanisms. DC-SIGN transmission of HIV-1 depends on the donor cell type. HIV-1 Nef can upregulate DC-SIGN expression and promote DC-T-cell clustering and HIV-1 spread. Nef also downregulates CD4 expression; however, the effect of the CD4 downmodulation on DC-mediated HIV-1 transmission has not been examined. Here, we report that CD4 expression levels correlate with inefficient HIV-1 transmission by monocytic cells expressing DC-SIGN. Expression of CD4 on Raji B cells strongly impaired DC-SIGN-mediated HIV-1 transmission to T cells. By contrast, enhanced HIV-1 transmission was observed when CD4 molecules on MDDCs and DC-SIGN-CD4-expressing cell lines were blocked with specific antibodies. Coexpression of CD4 and DC-SIGN in Raji cells promoted the internalization and intracellular retention of HIV-1. Interestingly, internalized HIV-1 particles were sorted and confined to late endosomal compartments that were positive for CD63 and CD81. Furthermore, in HIV-1-infected MDDCs, significant downregulation of CD4 by Nef expression correlated with enhanced viral transmission. These results suggest that CD4, which is present at various levels in DC-SIGN-positive primary cells, is a key regulator of HIV-1 transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号