首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuroimaging studies have revealed an association between word generation and activity in the left inferior frontal gyrus (IFG) that is attentuated with item repetition. The experiment reported here examined the effects of repeated word generation, under conditions in which completion was either decreased or increased, on activity measured during whole-brain echoplanar functional magnetic resonance imaging. Activity in left IFG decreased during repetition conditions that reduced competition but increased during repetition conditions that increased competition; this pattern was contrasted to repetition effects observed in other cortical areas, specifically regions of left temporal cortex. The increase in left IFG activity, which is not predicted by a simple semantic retrieval account of prefrontal function, is consistent with the hypothesis that left IFG subserves the selection of semantic knowledge among competing alternatives.  相似文献   

2.
3.
Encoding of episodic memories relies on stimulus-specific information processing and involves the left prefrontal cortex. We here present an incidental finding from a simultaneous EEG-TMS experiment as well as a replication of this unexpected effect. Our results reveal that stimulating the left dorsolateral prefrontal cortex (DLPFC) with slow repetitive transcranial magnetic stimulation (rTMS) leads to enhanced word memory performance. A total of 40 healthy human participants engaged in a list learning paradigm. Half of the participants (N = 20) received 1 Hz rTMS to the left DLPFC, while the other half (N = 20) received 1 Hz rTMS to the vertex and served as a control group. Participants receiving left DLPFC stimulation demonstrated enhanced memory performance compared to the control group. This effect was replicated in a within-subjects experiment where 24 participants received 1 Hz rTMS to the left DLPFC and vertex. In this second experiment, DLPFC stimulation also induced better memory performance compared to vertex stimulation. In addition to these behavioural effects, we found that 1 Hz rTMS to DLPFC induced stronger beta power modulation in posterior areas, a state that is known to be beneficial for memory encoding. Further analysis indicated that beta modulations did not have an oscillatory origin. Instead, the observed beta modulations were a result of a spectral tilt, suggesting inhibition of these parietal regions. These results show that applying 1 Hz rTMS to DLPFC, an area involved in episodic memory formation, improves memory performance via modulating neural activity in parietal regions.

Encoding of episodic memories relies on stimulus-specific information processing and involves the left prefrontal cortex. An incidental finding from a simultaneous EEG-TMS experiment reveals that applying 1-Hz repetitive transcranial magnetic stimulation to this area of the brain improves memory performance by modulating neural activity in parietal regions.  相似文献   

4.
Specialization in the left prefrontal cortex for sentence comprehension   总被引:5,自引:0,他引:5  
Hashimoto R  Sakai KL 《Neuron》2002,35(3):589-597
Using functional magnetic resonance imaging (fMRI), we examined cortical activation under syntactic decision tasks and a short-term memory task for sentences, focusing on essential properties of syntactic processing. By comparing activation in these tasks with a short-term memory task for word lists, we found that two regions in the left prefrontal cortex showed selective activation for syntactic processing: the dorsal prefrontal cortex (DPFC) and the inferior frontal gyrus (IFG). Moreover, the left DPFC showed more prominent activation under the short-term memory task for sentences than that for word lists, which cannot be explained by general cognitive factors such as task difficulty and verbal short-term memory. These results support the proposal of specialized systems for sentence comprehension in the left prefrontal cortex.  相似文献   

5.
Although the auditory cortex plays a necessary role in sound localization, physiological investigations in the cortex reveal inhomogeneous sampling of auditory space that is difficult to reconcile with localization behavior under the assumption of local spatial coding. Most neurons respond maximally to sounds located far to the left or right side, with few neurons tuned to the frontal midline. Paradoxically, psychophysical studies show optimal spatial acuity across the frontal midline. In this paper, we revisit the problem of inhomogeneous spatial sampling in three fields of cat auditory cortex. In each field, we confirm that neural responses tend to be greatest for lateral positions, but show the greatest modulation for near-midline source locations. Moreover, identification of source locations based on cortical responses shows sharp discrimination of left from right but relatively inaccurate discrimination of locations within each half of space. Motivated by these findings, we explore an opponent-process theory in which sound-source locations are represented by differences in the activity of two broadly tuned channels formed by contra- and ipsilaterally preferring neurons. Finally, we demonstrate a simple model, based on spike-count differences across cortical populations, that provides bias-free, level-invariant localization—and thus also a solution to the “binding problem” of associating spatial information with other nonspatial attributes of sounds.  相似文献   

6.
7.
Current theoretical positions assume that action-related word meanings are established by functional connections between perisylvian language areas and the motor cortex (MC) according to Hebb's associative learning principle. To test this assumption, we probed the functional relevance of the left MC for learning of a novel action word vocabulary by disturbing neural plasticity in the MC with transcranial direct current stimulation (tDCS). In combination with tDCS, subjects learned a novel vocabulary of 76 concrete, body-related actions by means of an associative learning paradigm. Compared with a control condition with "sham" stimulation, cathodal tDCS reduced success rates in vocabulary acquisition, as shown by tests of novel action word translation into the native language. The analysis of learning behavior revealed a specific effect of cathodal tDCS on the ability to associatively couple actions with novel words. In contrast, we did not find these effects in control experiments, when tDCS was applied to the prefrontal cortex or when subjects learned object-related words. The present study lends direct evidence to the proposition that the left MC is causally involved in the acquisition of novel action-related words.  相似文献   

8.
Integration is a fundamental working memory operation, requiring the insertion of information from one task into the execution of another concurrent task. Previous neuroimaging studies have suggested the involvement of left anterior prefrontal cortex (L-aPFC) in relation to working memory integration demands, increasing during presentation of information to be integrated (loading), throughout its maintenance during a secondary task, up to the integration step, and then decreasing afterward (unloading). Here we used short bursts of 5 Hz repetitive Transcranic Magnetic Stimulation (rTMS) to modulate L-aPFC activity and to assess its causal role in integration. During experimental blocks, rTMS was applied (N = 10) over L-aPFC or vertex (control site) at different time-points of a task involving integration of a preloaded digit into a sequence of arithmetical steps, and contrasted with a closely matched task without integration demand (segregation). When rTMS was applied during the loading phase, reaction times during secondary task were faster, without significant changes in error rates. RTMS instead worsened performance when applied during information unloading. In contrast, no effects were observed when rTMS was applied during the other phases of integration, or during the segregation condition. These results confirm the hypothesis that L-aPFC is causally and selectively involved in the integration of information in working memory. They additionally suggest that pre-integration loading and post-integration unloading of information involving this area may be active and resource-consuming processes.  相似文献   

9.
Identifying higher brain central region(s) that are responsible for the unpleasantness of pain is the focus of many recent studies. Here we show that direct stimulation of the anterior cingulate cortex (ACC) in mice produced fear-like freezing responses and induced long-term fear memory, including contextual and auditory fear memory. Auditory fear memory required the activation of N-methyl-D-aspartate (NMDA) receptors in the amygdala. To test the hypothesis that neuronal activity in the ACC contributes to unpleasantness, we injected a GABAA receptor agonist, muscimol bilaterally into the ACC. Both contextual and auditory memories induced by foot shock were blocked. Furthermore, activation of metabotropic glutamate receptors in the ACC enhanced behavioral escape responses in a noxious hot-plate as well as spinal nociceptive tail-flick reflex. Our results provide strong evidence that the excitatory activity in the ACC contribute to pain-related fear memory as well as descending facilitatory modulation of spinal nociception.  相似文献   

10.
11.
Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex.  相似文献   

12.
Dynamics of population code for working memory in the prefrontal cortex   总被引:8,自引:0,他引:8  
Baeg EH  Kim YB  Huh K  Mook-Jung I  Kim HT  Jung MW 《Neuron》2003,40(1):177-188
Some neurons (delay cells) in the prefrontal cortex elevate their activities throughout the time period during which the animal is required to remember past events and prepare future behavior, suggesting that working memory is mediated by continuous neural activity. It is unknown, however, how working memory is represented within a population of prefrontal cortical neurons. We recorded from neuronal ensembles in the prefrontal cortex as rats learned a new delayed alternation task. Ensemble activities changed in parallel with behavioral learning so that they increasingly allowed correct decoding of previous and future goal choices. In well-trained rats, considerable decoding was possible based on only a few neurons and after removing continuously active delay cells. These results show that neural activity in the prefrontal cortex changes dynamically during new task learning so that working memory is robustly represented and that working memory can be mediated by sequential activation of different neural populations.  相似文献   

13.
Expertise in recognizing objects in cluttered scenes is a critical skill for our interactions in complex environments and is thought to develop with learning. However, the neural implementation of object learning across stages of visual analysis in the human brain remains largely unknown. Using combined psychophysics and functional magnetic resonance imaging (fMRI), we show a link between shape-specific learning in cluttered scenes and distributed neuronal plasticity in the human visual cortex. We report stronger fMRI responses for trained than untrained shapes across early and higher visual areas when observers learned to detect low-salience shapes in noisy backgrounds. However, training with high-salience pop-out targets resulted in lower fMRI responses for trained than untrained shapes in higher occipitotemporal areas. These findings suggest that learning of camouflaged shapes is mediated by increasing neural sensitivity across visual areas to bolster target segmentation and feature integration. In contrast, learning of prominent pop-out shapes is mediated by associations at higher occipitotemporal areas that support sparser coding of the critical features for target recognition. We propose that the human brain learns novel objects in complex scenes by reorganizing shape processing across visual areas, while taking advantage of natural image correlations that determine the distinctiveness of target shapes.  相似文献   

14.
Acetylcholine and associative memory in the piriform cortex   总被引:5,自引:0,他引:5  
The significance of cholinergic modulation for associative memory performance in the piriform cortex was examined in a study combining cellular neurophysiology in brain slices with realistic biophysical network simulations. Three different physiological effects of acetylcholine were identified at the single-cell level: suppression of neuronal adaptation, suppression of synaptic transmission in the intrinsic fibers layer, and activity-dependent increase in synaptic strength. Biophysical simulations show how these three effects are joined together to enhance learning and recall performance of the cortical network. Furthermore, our data suggest that activity-dependent synaptic decay during learning is a crucial factor in determining learning capability of the cortical network. Accordingly, it is predicted that acetylcholine should also enhance long-term depression in the piriform cortex.  相似文献   

15.
16.
Adopting an unusual posture can sometimes give rise to paradoxical experiences. For example, the subjective ordering of successive unseen tactile stimuli delivered to the two arms can be affected when people cross them. A growing body of evidence now highlights the role played by the parietal cortex in spatio-temporal information processing when sensory stimuli are delivered to the body or when actions are executed; however, little is known about the neural basis of such paradoxical feelings resulting from such unusual limb positions. Here, we demonstrate increased fMRI activation in the left posterior parietal cortex when human participants adopted a crossed hands posture with their eyes closed. Furthermore, by assessing tactile temporal order judgments (TOJs) in the same individuals, we observed a positive association between activity in this area and the degree of reversal in TOJs resulting from crossing arms. The strongest positive association was observed in the left intraparietal sulcus. This result implies that the left posterior parietal cortex may be critically involved in monitoring limb position and in spatio-temporal binding when serial events are delivered to the limbs.  相似文献   

17.
Functional rehabilitation of the cortex following peripheral or central nervous system damage is likely to be improved by a combination of behavioural training and natural or therapeutically enhanced synaptic plasticity mechanisms. Experience-dependent plasticity studies in the somatosensory cortex have begun to reveal those synaptic plasticity mechanisms that are driven by sensory experience and might therefore be active during behavioural training. In this review the anatomical pathways, synaptic plasticity mechanisms and structural plasticity substrates involved in cortical plasticity are explored, focusing on work in the somatosensory cortex and the barrel cortex in particular.  相似文献   

18.
19.
When searching for an object, we usually avoid items that are visually different from the target and objects or places that have been searched already. Previous studies have shown that neural activity in the lateral intraparietal area (LIP) can be used to guide this behaviour; responses to task irrelevant stimuli or to stimuli that have been fixated previously in the trial are reduced compared with responses to potential targets. Here, we test the hypothesis that these reduced responses have a different genesis. Two animals were trained on a visual foraging task, in which they had to find a target among a number of physically identical potential targets (T) and task irrelevant distractors. We recorded neural activity and local field potentials (LFPs) in LIP while the animals performed the task. We found that LFP power was similar for potential targets and distractors but was greater in the alpha and low beta bands when a previously fixated T was in the response field. We interpret these data to suggest that the reduced single-unit response to distractors is a bottom-up feed-forward result of processing in earlier areas and the reduced response to previously fixated Ts is a result of active top-down suppression.  相似文献   

20.
Antzoulatos EG  Miller EK 《Neuron》2011,71(2):243-249
Learning to classify diverse experiences into meaningful groups, like categories, is fundamental to normal cognition. To understand its neural basis, we simultaneously recorded from multiple electrodes in lateral prefrontal cortex and dorsal striatum, two interconnected brain structures critical for learning. Each day, monkeys learned to associate novel abstract, dot-based categories with a right versus left saccade. Early on, when they could acquire specific stimulus-response associations, striatum activity was an earlier predictor of the corresponding saccade. However, as the number of exemplars increased and monkeys had to learn to classify them, PFC activity began to predict the saccade associated with each category before the striatum. While monkeys were categorizing novel exemplars at a high rate, PFC activity was a strong predictor of their corresponding saccade early in the trial before the striatal neurons. These results suggest that striatum plays a greater role in stimulus-response association and PFC in abstraction of categories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号