共查询到20条相似文献,搜索用时 0 毫秒
1.
Fukang Xie Veronique Garzino Stavros Therianos Thomas Meier Heinrich Reichert 《Development genes and evolution》1994,204(2):141-145
Monoclonal antibodies (MAbs) are used to investigate molecules that are expressed during embryonic muscle differentiation and that may be involved in muscle pioneer and muscle attachment site formation. MAb F2A5 immunoreactivity appears in all muscle pioneers as soon as they extend processes, and continues in all muscle precursors. MAb 4H1 immunoreactivity is strongly expressed only after mesodermal cells have fused with the muscle pioneers; then it is concentrated at their growth-cone-like ends near developing attachment sites. During later embryonic development, MAb F2A5 and MAb 4H1 immunoreactivity become associated with the myofibrillar network. Biochemical experiments indicate that MAb 4H1 recognises a 47 kDa antigen, and MAb F2A5 recognises an 80 kDa antigen. 相似文献
2.
We have investigated the ontogenetic basis of locustatachykinin-like expression in a group of cells located in the pars intercerebralis of the grasshopper midbrain. These cells project fibers to the protocerebral bridge and the central body via a characteristic set of fiber bundles called the w, x, y, z tracts. Lineage analyses associate the immunoreactive cells with one of four neuroblasts (termed W, X, Y, Z) in each protocerebral hemisphere of the early embryo. Locustatachykinin is a ubiquitous myotropic peptide among the insects and its expression in the pars intercerebralis begins at approximately 60-65% of embryogenesis. This coincides with the appearance of the columnar neuroarchitecture characteristic of the central body. The number of immunoreactive cells in a given lineage is initially small, increases significantly in later embryogenesis, and attains the adult situation (about 7% of a lineage) in the first larval instar after hatching. Although each neuroblast generates progeny displaying a spectrum of cell body sizes, there is a clear morphological gradient, which reflects birth order within the lineage. Locustatachykinin expressing cells are located stereotypically at or near the tip of their lineage, which an age profile reveals places them amongst the first born progeny of their respective neuroblasts. Although these neuroblasts begin to generate progeny at approximately 25-27% of embryogenesis, their daughter cells remain quiescent with respect to locustatachykinin expression for over 30% of embryogenesis. 相似文献
3.
Vasa is a widely conserved germline marker, both in vertebrates and invertebrates. We identify a vasa orthologue, Sgvasa, and use it to study germline development in the grasshopper Schistocerca gregaria, a species in which no germ plasm has been identified. In adults, Sgvasa is specifically expressed in the ovary and testis. It is expressed at high levels during early oogenesis, but no detectable vasa RNA and little Vasa protein are present in mature unlaid eggs. None appears to be localized to any defined region of the egg cortex, suggesting that germline specification may not depend on maternal germ plasm expressing vasa. Vasa protein is expressed in most cleavage energids as they reach the egg surface and persists at high levels in most cells aggregating to form the embryonic primordium. However, after gastrulation, Vasa protein persists only in extraembryonic membranes and in cells at the outer margin of the late heart-stage embryo. In the embryo, it then become restricted to cells at the dorsal margin of the forming abdomen. In older embryos, these Vasa-positive cells move toward the midline; Vasa protein accumulates asymmetrically in their cytoplasm, a pattern closely resembling that of germ cells in late embryonic gonads. Thus, we suggest that the Vasa-stained cells in the abdominal margin are germ cells, as proposed by Nelson (1934), and not cardioblasts, as has been proposed by others. 相似文献
4.
Central complex modules in the postembryonic brain of the grasshopper Schistocerca gregaria are enveloped by Repo-positive/glutamine-synthetase-positive astrocyte-like glia. Such cells constitute Rind-Neuropil Interface glia. We have investigated the postembryonic development of these glia and their anatomical relationship to axons originating from the w, x, y, z tract system of the pars intercerebralis. Based on glutamine synthetase immunolabeling, we have identified four morphological types of cells: bipolar type 1 glia delimit the central body but only innervate its neuropil superficially; monopolar type 2 glia have a more columnar morphology and direct numerous gliopodia into the neuropil where they arborize extensively; monopolar type 3 glia are found predominantly in the region between the noduli and the central body and have a dendritic morphology and their gliopodia project deeply into the central body neuropil where they arborize extensively; multipolar type 4 glia link the central body neuropil with neighboring neuropils of the protocerebrum. These glia occupy type-specific distributions around the central body. Their gliopodia develop late in embryogenesis, elongate and generally become denser during subsequent postembryonic development. Gliopodia from putatively type 3 glia within the central body have been shown to lie closely apposed to individual axons of identified columnar fiber bundles from the w, x, y, z tract system of the central complex. This anatomical association might offer a substrate for neuron/glia interactions mediating postembryonic maturation of the central complex. 相似文献
5.
6.
Edmund A. Arbas 《Journal of morphology》1983,176(2):141-153
The thoracic morphology of a flightless grasshopper, Barytettix psolus, is described and compared to that of locusts, Schistocerca gregaria, to evaluate modifications to skeleton, muscles, and the nervous system which have accompanied secondary loss of flight. Barytettix lacks hindwings, has immobile vestiges of forewings and is devoid of skeletal specializations for wing movement and flight. Its pterothoracic musculature resembles that of Schistocerca except for the absence of those muscles which, in locusts, have the primary function of moving the wings, the dorsal longitudinal, tergosternal, first basalar, pleuroalar, and dorsal accessory muscles. Pterothoracic ganglia of Barytettix resemble those of Schistocerca in their gross features, number, and primary branching pattern of nerves, with differences in detail relating to reduction of the flight muscles. The combination of features exhibited in Barytettix represents an extreme reduction in the specialization for wing movements and flight displayed by most acridids, at a level which exceeds that of many brachypterous and some apterous species. While skeletal fusion and loss of muscles indicate loss of flight, the accompanying thoracic stiffening and increase in overall body density may promote more efficient jumping as a means of locomotion. 相似文献
7.
Pathfinding, target recognition, and synapse formation of single regenerating fibers in the adult grasshopper Schistocerca gregaria 总被引:2,自引:0,他引:2
After lesion of the peripheral tympanal nerve of the adult locust (Schistocerca gregaria), sensory axons regenerate into their original target areas. We examined the individual behavior of single regenerating auditory afferents during pathway and target selection by intracellularly recording and labeling them at different times postlesion. During axotomy, spontaneous activity is not increased in either the distal or proximal part of the cells. Stimulus response properties of lesioned cells with or without regenerating axons are not influenced. Surprisingly, only 55% of sensory neurons regenerate through the lesion site and often give rise to more than one axonal fiber. Within the central nervous system, 70% of regenerated axons consistently follow an incorrect pathway to reach the correct target region. Often, one of two processes formed by a cell chooses the correct pathway, and the other the incorrect one. In the target region, regenerated axons reconstitute somatotopically ordered projections and form synapses that resemble those of intact fibers in number and structure. The regeneration process does not induce a detectable expression of antigens that are known to be expressed during neural development in these neurons. Our study clearly demonstrates that precise synaptic regeneration is possible in adult animals within a completely differentiated central nervous system, although pathfinding and formation of arborizations are disturbed in a particular and probably system-related manner. The results strongly suggest that accurate pathfinding is unlikely to be a decisive factor in target area recognition and synaptogenesis. 相似文献
8.
The establishment of the sensory nervous system of the antenna of the grasshopper Schistocerca gregaria was examined using immunocytochemical methods and in the light of the appendicular and articulated nature of this structure. The former is demonstrated first by the expression pattern of the segment polarity gene engrailed in the head neuromere innervating the antenna, the deutocerebrum. Engrailed expression is present in identified deutocerebral neuroblasts and, as elsewhere in the body, is continuous with cells of the posterior epithelium of the associated appendage, in this case the antenna. Second, early expression of the glial homeobox gene reversed polarity (repo) in the antenna is by a stereotypic pair of cells at the antenna base, a pattern we show is repeated metamerically for each thoracic appendage of the embryo. Subsequently, three regions of Repo expression (A1, A2, A3) are seen within the antenna, and may represent a preliminary form of articulation. Bromodeoxyuridine incorporation reveals that these regions are sites of intense cell differentiation. Neuron-specific horseradish peroxidase and Lazarillo expression confirm that the pioneers of the ventral and dorsal tracts of the antennal sensory nervous system are amongst these differentiating cells. Sets of pioneers appear simultaneously in several bands and project confluent axons towards the antennal base. We conclude that the sensory nervous system of the antenna is not pioneered from the tip of the antenna alone, but in a stepwise manner by cells from several zones. The early sensory nervous systems of antenna, maxilla and leg therefore follow a similar developmental program consistent with their serially homologous nature. 相似文献
9.
We have investigated the pattern of glia associated with central complex lineages in the embryonic brain of the grasshopper Schistocerca gregaria. Using the glia-specific marker Repo, we identified glia associated externally with such lineages, termed lineage-extrinsic glia, and glia located internally within the lineages, termed lineage-intrinsic glia. Populations of both glial types increase up to 60 % of embryogenesis, and thereafter decrease. Extrinsic glia change their locations over time, while intrinsic ones are consistently found in the more apical part of a lineage. Apoptosis is not observed for either glial type, suggesting migration is a likely mechanism accounting for changes in glial number. Proliferative glia are present both within and without individual lineages and two glial clusters associated with the lineages, one apically and the other basally, may represent sources of glia. 相似文献
10.
Studies of somitogenesis in vertebrates have identified a number of genes that are regulated by a periodic oscillator that
patterns the pre-somitic mesoderm. One of these genes, hairy, is homologous to a Drosophila segmentation gene that also shows periodic spatial expression. This, and the periodic expression of a zebrafish homologue
of hairy during somitogenesis, has suggested that insect segmentation and vertebrate somitogenesis may use similar molecular mechanisms
and possibly share a common origin. In chicks and mice expression of the lunatic fringe gene also oscillates in the presomitic mesoderm. Fringe encodes an extracellular protein that regulates Notch signalling. This, and the finding that mutations in Notch or its ligands
disrupt somite patterning, suggests that Notch signalling plays an important role in vertebrate somitogenesis. Although Notch
signalling is not known to play a role in the formation of segments in Drosophila, we reasoned that it might do so in other insects such as the grasshopper, where segment boundaries form between cells, not
between syncytial nuclei as they do in Drosophila. Here we report the cloning of a single fringe gene from the grasshopper Schistocerca. We show that it is not detectably expressed in the forming trunk segments of the embryo until after segment boundaries have
formed. We conclude that fringe is not part of the mechanism that makes segments in Schistocerca. Thereafter it is expressed in a pattern which shows that it is a downstream target of the segmentation machinery and suggests
that it may play a role in segment morphogenesis. Like its Drosophila counterpart, Schistocerca fringe is also expressed in the eye, in rings in the legs, and during oogenesis, in follicle cells.
Received: 14 October 1999 / Accepted: 18 January 2000 相似文献
11.
George Boyan Leslie Williams Andrea Legl Zsofia Herbert 《Cell and tissue research》2010,341(2):259-277
The central complex of the grasshopper Schistocerca gregaria develops to completion during embryogenesis. A major cellular contribution to the central complex is from the w, x, y, z
lineages of the pars intercerebralis, each of which comprises over 100 cells, making them by far the largest in the embryonic
protocerebrum. Our focus has been to find a cellular mechanism that allows such a large number of cell progeny to be generated
within a restricted period of time. Immunohistochemical visualization of the chromosomes of mitotically active cells has revealed
an almost identical linear array of proliferative cells present simultaneously in each w, x, y, z lineage at 50% of embryogenesis.
This array is maintained relatively unchanged until almost 70% of embryogenesis, after which mitotic activity declines and
then ceases. The array is absent from smaller lineages of the protocerebrum not associated with the central complex. The proliferative
cells are located apically to the zone of ganglion mother cells and amongst the progeny of the neuroblast. Comparisons of
cell morphology, immunoreactivity (horseradish peroxidase, repo, Prospero), location in lineages and spindle orientation have
allowed us to distinguish the proliferative cells in an array from neuroblasts, ganglion mother cells, neuronal progeny and
glia. Our data are consistent with the proliferative cells being secondary (amplifying) progenitors and originating from a
specific subtype of ganglion mother cell. We propose a model of the way that neuroblasts, ganglion mother cells and secondary
progenitors together produce the large cell numbers found in central complex lineages. 相似文献
12.
We have examined the developmental expression of the neuromodulators locustatachykinin, leucokinin-1, allatostatin and serotonin in a subset of lineages (Y, Z) of the central complex in the brain of the grasshopper Schistocerca gregaria. First, we show that all these neuromodulators are expressed in the same lineages during embryogenesis. The neuroblasts generating these lineages are therefore biochemically multipotent. Second, the neurons expressing the different neuromodulators are found clustered at stereotypic locations in their respective lineages. Locustatachykinin and leucokinin-1 map to the apical region of the lineage, allatostatin medially and serotonin to the base of the lineage. Since the location in these lineages translates into their birth order, we have been able ontogenetically to analyse their biochemical expression patterns. The age-profile within a lineage reveals that locustatachykinin- and leucokinin-1-expressing neurons are born first, then allatostatin neurons and finally serotoninergic neurons. Co-expression has been tested for serotonin with locustatachykin, leucokinin-1 or allatostatin and is negative but is positive for locustatachykinin and leucokinin-1, consistent with the stereotypic location of cells in the lineages. The delay between the birth of a neuron and the expression of its neuromodulator is stereotypic for each substance. Combined with a known birth date, this delay translates into a developmental expression pattern for the central complex itself. 相似文献
13.
We investigated the synaptic inputs from the serially homologous pleural, tympanal and wing-hinge chordotonal organs onto a set of identified homologous interneurons (714, 539, 529) in the ventral nerve cord of the grasshopper Schistocerca gregaria. Cobalt backfills show that afferents from all chordotonal organs project into stereotypic tracts in the central nervous system in which intracellular staining reveals the interneurons to have dendritic arborizations. Neuron 714 was found to receive excitatory bilateral synaptic input from all the serial chordotonal organs tested, from the second thoracic segment down to the seventh abdominal segment. Neuron 531, by contrast, only receives input from the chordotonal afferents on the first abdominal segment; those on the axon side are excitatory, while those on the soma side are inhibitory. The pattern of chordotonal input onto neuron 529 is similar to that seen for neuron 714, with the exception that neuron 529 receives no input from the forewing chordotonal organs. The pattern of afferent connectivities onto neurons 714, 531 and 529 differs with respect to those afferents which synapse directly or indirectly with the respective neuron. The synaptic inputs demonstrate a segmental specialization in the chordotonal system and thereby offer an insight into information processing in a modular sensory system. 相似文献
14.
Lewis I. Held Jr. Michael A. Heup J. Mark Sappington Scott D. Peters 《Development genes and evolution》1994,203(6):310-319
The genes decapentaplegic, wingless, and Distalless appear to be instrumental in constructing the anatomy of the adult Drosophila leg. In order to investigate how these genes function and whether they act coordinately, we analyzed the leg phenotypes of the single mutants and their inter se double mutant compounds. In decapentaplegic the tarsi frequently exhibit dorsal deficiencies which suggest that the focus of gene action may reside dorsally rather than distally. In wingless the tarsal hinges are typically duplicated along with other dorsal structures, confirming that the hinges arise dorsally. The plane of symmetry in double-ventral duplications caused by decapentaplegic is virtually the same as the plane in double-dorsal duplications caused by wingless. It divides the fate map into two parts, each bisected by the dorsoventral axis. In the double mutant decapentaplegic wingless the most ventral and dorsal tarsal structures are missing, consistent with the notion that both gene products function as morphogens. In wingless Distal-less compounds the legs are severely truncated, indicating an important interaction between these genes. Distal-less and decapentaplegic manifest a relatively mild synergism when combined.Correspondence to: L.I. Held 相似文献
15.
The central body is a prominent neuropilar structure in the midbrain of the grasshopper and is characterized by a fan-shaped array of fiber columns, which are part of a chiasmal system linking anterior and posterior commissures. These columns are established during embryogenesis and comprise axons from cell clusters in the pars intercerebralis, which project to the central body via the so-called w, x, y, z tracts. Up to mid-embryogenesis the primary axon scaffold in both the brain and ventral nerve cord comprises a simple orthogonal arrangement of commissural and longitudinal fiber pathways. No chiasmata are present and this pattern is maintained during subsequent development of the ventral nerve cord. In the midbrain, individual axons entering the commissural system from each of the w, x, y, z tracts after mid-embryogenesis (55%) are seen to systematically de-fasciculate from an anterior commissure and re-fasciculate with another more posterior commissure en route across the midline, a feature we call "fascicle switching". Since the w, x, y, z tracts are bilaterally symmetrical, fascicle switching generates chiasmata at stereotypic locations across the midbrain. Choice points for leaving and entering fascicles mark the anterior and posterior positions of each future column. As the midbrain neuropil expands, the anterior and posterior groups of commissures condense, so that the chiasmata spanning the widening gap between them become progressively more orthogonally oriented. A columnar neuroarchitecture resembling that of the adult central body is already apparent at 70% of embryogenesis. 相似文献
16.
17.
Boyan G Posser S Ludwig P Güntner M Williams L 《Arthropod Structure & Development》2004,33(2):125-137
In this paper, we propose an ontogeny for previously identified cells from the median domain in the midline of the embryonic brain of the grasshopper Schistocerca gregaria. The so-called lateral cells (LCs) are characteristically located laterally within the median domain at its border with the protocerebral hemispheres. The LC occurs singly and can be identified in the early embryo on the basis of their expression of the cell surface lipocalin Lazarillo. Using immunocytochemical, dye injection, electron microscopical and histological methods, we show that these LC are neurons and derive as postmitotic cells directly from the epithelium of the median domain. Further, they and the other identified cells of the median domain such as the protocerebral commissure pioneers (PCP), co-express the Mes-3 antigen, consistent with a derivation from the mesectodermal germ layer of the embryo. Subsequent to axogenesis, electron microscopy reveals that these Mes-3-expressing LC fasciculate with the co-expressing PCPs within the developing protocerebral commissure. We present a model for the origin of all these cells based on histological data and bromodeoxyuridine incorporation. The model suggests a delamination of cells from the mesectoderm followed by a migration to their ultimate sites within the median domain. 相似文献
18.
The central complex of the grasshopper (Schistocerca gregaria) brain comprises a modular set of neuropils, which develops after mid-embryogenesis and is functional on hatching. Early in embryogenesis, Repo-positive glia cells are found intermingled among the commissures of the midbrain, but then redistribute as central complex modules become established and, by the end of embryogenesis, envelop all midbrain neuropils. The predominant glia associated with the central body during embryogenesis are glutamine synthetase-/Repo-positive astrocyte-like glia, which direct extensive processes (gliopodia) into and around midbrain neuropils. We used intracellular dye injection in brain slices to ascertain whether such glia are dye-coupled into a communicating cellular network during embryogenesis. Intracellular staining of individual cells located at any one of four sites around the central body revealed a population of dye-coupled cells whose number and spatial distribution were stereotypic for each site and comparable at both 70 and 100% of embryogenesis. Subsequent immunolabeling confirmed these dye-coupled cells to be astrocyte-like glia. The addition of n-heptanol to the bathing saline prevented all dye coupling, consistent with gap junctions linking the glia surrounding the central body. Since dye coupling also occurred in the absence of direct intersomal contacts, it might additionally involve the extensive array of gliopodia, which develop after glia are arrayed around the central body. Collating the data from all injection sites suggests that the developing central body is surrounded by a network of dye-coupled glia, which we speculate may function as a positioning system for the developing neuropils of the central complex. 相似文献
19.
Hatching rhythms in the desert locust, Schistocerca gregaria 总被引:1,自引:0,他引:1
D. E. PADGHAM 《Physiological Entomology》1981,6(2):191-198
ABSTRACT. The eggs of Schistocerca gregaria (Orthoptera, Acrididae) incubated under natural conditions hatch only within a few of hours on either side of dawn. This gated hatching is controlled by a circadian clock that is phase set by the diel fluctuations in the temperature of the soil surrounding the eggs. There is a circadian fluctuation in haemolymph sugar concentration which is initiated at least 4 days before hatching. However, eggs hatch arrhythmically unless given cycled temperature incubation for at least 10 days of a 12–13-day incubation. Increase in acetylcholine esterase content of the brain during the penultimate day suggests that increased hatching rhythmicity occurring at this time is the result of increased neural organization. Embryonic activity and respiration show no circadian rhythm but do provide confirmatory evidence of a quiescent phase prior to hatching. This quiescent phase is an integral part of gated hatching behaviour. 相似文献
20.
The expression pattern of the segment polarity gene engrailed was studied at the single cell level in the protocerebrum of the early embryonic brain of the grasshopper Schistocerca gregaria, the neuromere containing the secondary headspot cells. The engrailed protein is first expressed in the protocerebrum at about 22% of embryogenesis by a group of identified neuroblasts bordering the antennal lobe. The number of immunoreactive neuroblasts increases up to 26% of embryogenesis and then rapidly declines so that by 30% only the three most posterior remain immunoreactive. These three neuroblasts become incorporated into the developing antennal lobe of the deutocerebrum. Subsequently, there is a progressive re-expression of the engrailed protein in the protocerebrum by the so-called six secondary headspot cells. These are the first born sibling progeny of three identified protocerebral neuroblasts which themselves expressed the engrailed protein prior to generating their lineages, and so represents a reacquisition of engrailed expression within identified clones. The secondary headspot cells are neurons which direct axonal processes into the developing optic tract and so contribute to the primary axon scaffold of the brain. From our analysis of their ontogeny, we conclude that the secondary headspot cells do not represent a segmental border in the brain. 相似文献