首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Upregulation of CGRP-immunoreactive (IR) primary afferent nerve fibers accompanied by mastocytosis is characteristic for the Schistosoma mansoni-infected murine ileum. These mucosal mast cells (MMC) and CGRP-IR fibers, which originate from dorsal root (DRG) and nodose ganglia, are found in close apposition. We examined interactions between primary cultured MMC and CGRP-IR DRG neurons in vitro by confocal recording of intracellular Ca(2+) concentration ([Ca(2+)](i)). The degranulatory EC(50) for the mast cell secretagogue compound 48/80 (C48/80; 10 microg/ml) and the neuropeptides CGRP (2.10(-8) M) and substance P (SP; 3.10(-8) M) were determined by measurement of extracellular release of the granule chymase, mouse mast cell protease-1. Application of C48/80 (10 microg/ml) and CGRP and SP (both 10(-7) M) to Fluo-4-loaded MMC induced a transient rise in [Ca(2+)](i) after a lag time, indicative of mast cell degranulation and/or secretion. The CGRP response could be completely blocked by pertussis toxin (2 microg/ml), indicating involvement of G(i) proteins. Application of MMC juice, obtained by C48/80 degranulation of MMC, to Fluo-4-loaded DRG neurons induced in all neurons a rise in [Ca(2+)](i), indicative of activation. Degranulation of MMC by C48/80 in culture dishes containing Fluo-4-loaded DRG neurons also caused activation of the DRG neurons. In conclusion, these results demonstrate a bidirectional cross-talk between cultured MMC and CGRP-IR DRG neurons in vitro. This indicates that such a communication may be the functional relevance for the close apposition between MMC and CGRP-IR nerve fibers in vivo.  相似文献   

3.
4.
CGRP and substance P (SP) are produced in dorsal root ganglia (DRG) sensory neurons and modulate vascular tone. Sympathetic and sensory nerves compete for NGF, a potent stimulator of CGRP and SP, and it has been suggested that sympathetic hyperinnervation in spontaneously hypertensive rats may reduce the availability of NGF to sensory nerves, thus reducing CGRP and SP. The purpose of this study was to determine whether destruction of peripheral sympathetic nerves in normal rats would increase the availability of NGF for sensory neurons and enhance expression of CGRP and SP. Sympathectomy was produced in rats by guanethidine sulfate administration. Control rats received saline. Sympathectomized rats displayed reductions in blood pressure (BP) and atria norepinephrine levels, whereas NGF levels in the DRG, spleen, and ventricles were increased. Sympathectomy also enhanced CGRP and SP mRNA and peptide content in DRG. Administration of CGRP and SP receptor antagonists increased the BP in sympathectomized rats but not in the controls. Thus sympathectomy enhances sensory neuron CGRP and SP expression that contributes to the BP reduction.  相似文献   

5.

Background

The GDNF family ligands (GFLs) are regulators of neurogenic inflammation and pain. We have previously shown that GFLs increase the release of the sensory neuron neuropeptide, calcitonin gene-related peptide (CGRP) from isolated mouse DRG.

Results

Inhibitors of the mitogen-activated protein kinase (MAPK) pathway abolished the enhancement of CGRP release by GDNF. Neurturin-induced enhancement in the stimulated release of CGRP, used as an indication of sensory neuronal sensitization, was abolished by inhibition of the phosphatidylinositol-3 kinase (PI-3K) pathway. Reduction in Ret expression abolished the GDNF-induced sensitization, but did not fully inhibit the increase in stimulus-evoked release of CGRP caused by neurturin or artemin, indicating the presence of Ret-independent GFL-induced signaling in sensory neurons. Integrin β-1 and NCAM are involved in a component of Ret-independent GFL signaling in sensory neurons.

Conclusions

These data demonstrate the distinct and variable Ret-dependent and Ret-independent signaling mechanisms by which GFLs induce sensitization of sensory neurons. Additionally, there is a clear disconnect between intracellular signaling pathway activation and changes in sensory neuronal function.  相似文献   

6.
The neurotoxic effect of capsaicin has been shown to be selective on a subpopulation of small dorsal root ganglion neurons in newborn animals. The aim of this study was to provide evidence of the long lasting effect of capsaicin and its ultrapotent analog resiniferatoxin (RTX) on sensory peptidergic neurons maintained in organotypic cultures. The effects of the two irritants were examined on neurons that contained substance P (SP) and calcitonin gene-related peptide (CGRP). Exposure of the cultures to 10 microM capsaicin and 100 nM RTX for periods of 2 days or longer resulted in almost complete elimination of SP-immunoreactive (IR) neurites and reduction, but not elimination, of CGRP-IR neurites. In addition, both 10 microM capsaicin and 100 nM RTX significantly reduced the number of SP- and CGRP-IR cell bodies within DRG explants. Capsaicin in 100 microM concentration produced complete elimination of SP-IR fibers and a greater decrease in the number of CGRP-IR fibers, but failed to completely eliminate IR cell bodies. Exposure of the cultures to the irritants in the same concentrations for 90 min did not produce a measurable effect on SP- or CGRP-IR in neurites or cell bodies. It is important to establish that the effect of capsaicin and RTX on cultured neurons was of long duration (longer than 4 days) and is therefore different from depletion of peptides. These findings demonstrate that processes of cultured sensory neurons are much more sensitive to capsaicin and RTX than cell bodies. Furthermore, our results show that SP-IR neuronal elements are more sensitive to capsaicin than CGRP-IR elements. These data suggest that cultured sensory neurons express the functional properties of differentiated sensory neurons in vivo.  相似文献   

7.
Visceral pain/hypersensitivity is a cardinal symptom of functional gastrointestinal disorders. With their peripheral and central (spinal) projections, sensory neurons in the dorsal root ganglia (DRG) are the "gateway" for painful signals emanating from both somatic and visceral structures. In contrast to somatic pain, the neurochemical pathways involved in visceral pain/hypersensitivity have not been well studied. We hypothesized the neuropeptide changes in spinal cord and DRG during visceral pain would mirror similar changes in somatic nociception. Noxious (painful) colorectal distension (CRD) was done by distending a rectal balloon up to 60 mm Hg phasically for 1 h in Sprague-Dawley rats. The spinal content of calcitonin gene-related peptide (CGRP), substance P (SP), galanin and vasoactive intestinal peptide (VIP) as well as their mRNAs in DRG were measured at 0, 4 and 24 h after the CRD. Visceromotor reflex (VMR) was measured by recording the electromyogram at the abdominal muscle in response to CRD. Distal colorectum was removed for evaluating the presence of inflammation. No significant evidence of histological inflammation was seen in the colonic mucosa/submucosa after repeated CRD, which is confirmed by myeloperoxidase assay. The spinal content of CGRP and SP decreased significantly 4 h after CRD, while galanin and VIP levels increased gradually and reached highest level at 24 h (p<0.05). The mRNAs in DRG of the neuropeptides were significantly upregulated after CRD (p<0.05). VMR recording showed the rat's colon became hypersensitive 4 h after CRD, a sequence parallel to the spinal changes of CGRP and SP in timeframe. Noxious mechanical distension of the colorectum causes an acute change in the spinal levels of excitatory neurotransmitters (CGRP and SP), probably reflecting central release of these peptides from sensory neurons and contributing to the hypersensitivity following the noxious CRD. This is followed by a slower change in the levels of the inhibitory neurotransmitter galanin and VIP. Such stimulation results in significant alternation of the gene expression in DRG, reflecting the plasticity of the neuronal response. In the absence of visceral inflammation, the aforementioned neuropeptides are important mediators in the processing of visceral pain/hypersensitivity.  相似文献   

8.
We examined whether nerve growth factor (NGF), an inflammatory mediator that contributes to chronic hypersensitivity, alters the intracellular signaling that mediates the sensitizing actions of PGE2 from activation of protein kinase A (PKA) to exchange proteins directly activated by cAMP (Epacs). When isolated sensory neurons are grown in the absence of added NGF, but not in cultures grown with 30 ng/ml NGF, inhibiting protein kinase A (PKA) activity blocks the ability of PGE2 to augment capsaicin-evoked release of the neuropeptide CGRP and to increase the number of action potentials (APs) evoked by a ramp of current. Growing sensory neurons in culture in the presence of increasing concentrations of NGF increases the expression of Epac2, but not Epac1. An intradermal injection of complete Freund''s adjuvant into the rat hindpaw also increases the expression of Epac2, but not Epac1 in the dorsal root ganglia and spinal cord: an effect blocked by intraplantar administration of NGF antibodies. Treating cultures grown in the presence of 30 ng/ml NGF with Epac1siRNA significantly reduced the expression of Epac1, but not Epac2, and did not block the ability of PGE2 to augment capsaicin-evoked release of CGRP from sensory neurons. Exposing neuronal cultures grown in NGF to Epac2siRNAreduced the expression of Epac2, but not Epac1 and prevented the PGE2-induced augmentation of capsaicin and potassium-evoked CGRP release in sensory neurons and the PGE2-induced increase in the number of APs generated by a ramp of current. In neurons grown with no added NGF, Epac siRNAs did not attenuate PGE2-induced sensitization. These results demonstrate that NGF, through increasing Epac2 expression, alters the signaling cascade that mediates PGE2-induced sensitization of sensory neurons, thus providing a novel mechanism for maintaining PGE2-induced hypersensitivity during inflammation.  相似文献   

9.
The neuropeptide-immunoreactive (IR) and neurofilament-IR neurons are two major phenotypical classes in dorsal root ganglion (DRG). Targets of neuronal innervation play a vital role in regulating the survival and differentiation of innervating neurotrophin-responsive neurons. Monosialoganglioside (GM1) has been considered to have a neurotrophic factor-like activity. Both GM1 and target skeletal muscle (SKM) cells are essential for the maintenance of the function of neurons. However, whether target SKM cells and GM1, alone or associated, generate neuropeptide or neurofilament expression remains unclear. The aim of the present study is to investigate the effects of GM1 or/and SKM on DRG neuronal phenotypes. DRG neurons containing the neuropeptide substance P (SP) and neurofilament 200 (NF-200) were quantified using immunofluorescent labeling in cultures of DRG, which was dissected out at times before (at embryonic days 12.5, E12.5) and after (at E19.5) sensory neurons contact peripheral targets in vivo. DRG neurons were cultured in absence or presence of GM1 or/and SKM cells. In this experiment, we found that: (1) GM1 promoted expression of SP and NF-200 in E12.5 DRG cultures; (2) SKM cells promoted expression of NF-200 but not SP in E12.5 DRG cultures; (3) GM1 and target SKM cells had additive effects on expression of SP and NF-200 in E12.5 DRG cultures; and (4) SKM or/and GM1 did not have effects on expression of SP and NF-200 in E19.5 DRG cultures. These results suggested that GM1 could influence DRG, two major neuronal phenotypes, before sensory neurons contact peripheral targets in vivo. Target SKM cells could only influence neurofilament-expressed neuronal phenotype before sensory neurons contact peripheral targets in vivo. GM1 and SKM cells had the additive effects on two major DRG neuronal classes, which express neuropeptide or neurofilament when DRG cells were harvested before sensory neurons contact peripheral targets in vivo. These results offered new clues for a better understanding of the association of GM1 or/and SKM with neuronal phenotypes.  相似文献   

10.
To investigate extrinsic origins of calcitonin gene-related peptide immunoreactive (CGRP-IR) nerve fibres in the sheep ileum, the retrograde fluorescent tracer Fast Blue (FB) was injected into the ileum wall. Sections of thoraco-lumbar dorsal root ganglia (DRG) and distal (nodose) vagal ganglia showing FB-labelled neurons were processed for CGRP immunohistochemistry. The distribution of CGRP-IR in fibres and nerve cell bodies in the ileum was also studied. CGRP-IR enteric neurons were morphometrically analysed in myenteric (MP) and submucosal plexuses (SMP) of lambs (2–4 months). Sensory neurons retrogradely labelled with FB were scattered in T5-L4 DRG but most were located at the upper lumbar levels (L1-L3); only a minor component of the extrinsic afferent innervation of the ileum was derived from nodose ganglia. In the DRG, 57% of retrogradely labelled neurons were also CGRP-IR. In cryostat sections, a dense network of CGRP-IR fibres was observed in the lamina propria beneath the epithelium, around the lacteals and lymphatic follicles (Peyer's platches), and along and around enteric blood vessels. Rare CGRP-IR fibres were also present in both muscle layers. Dense pericellular baskets of CGRP-IR fibres were observed around CGRP-negative somata. The only CGRP-IR nerve cells were well-defined Dogiel type II neurons localised in the MP and in the external and internal components of the SMP. CGRP-IR neurons in the myenteric ganglia were significantly larger than those in the submucosal ganglia (mean profile areas: about 1,400 μm2 for myenteric neurons, 750 μm2 for submucosal neurons). About 6% of myenteric neurons and 25% of submucosal neurons were CGRP-IR Dogiel type II neurons. The percentages of CGRP-IR neurons that were also tachykinin-IR were about 9% (MP) and 42% (SMP), whereas no CGRP-IR neurons exhibited immunoreactivity for vasoactive intestinal peptide, nitric oxide synthase or tyrosine hydroxylase in either plexus. Thus, CGRP immunoreactivity occurs in the enteric nervous system of the sheep ileum (as in human small intestine and MP of pig ileum) in only one morphologically defined type of neuron, Dogiel type II cells. These are probably intrinsic primary afferent neurons. This work was supported by grants from the Ricerca Fondamentale Orientata (RFO) and Fondazione Del Monte di Bo e Ra.  相似文献   

11.
Both neurotrophins (NTs) and target skeletal muscle (SKM) cells are essential for the maintenance of the function of neurons and nerve-muscle communication. However, much less is known about the association of target SKM cells with distinct NTs on the expression of mRNAs for preprotachykinin (PPT), calcitonin-gene related peptide (CGRP), neurofilament 200 (NF-200), and microtubule associated protein 2 (MAP-2) in dorsal root ganglion (DRG) sensory neurons. In the present study, a neuromuscular coculture model of dissociated dorsal root ganglion (DRG) neurons and SKM cells was established. The morphology of DRG neurons and SKM cells in coculture was observed with an inverted phase contrast microscope. The effects of nerve growth factor (NGF) or neurotrophin-3 (NT-3) on the expression of mRNAs for PPT, CGRP, NF-200, and MAP-2 was analyzed by real time-PCR assay. The morphology of DRG neuronal cell bodies and SKM cells in neuromuscular coculture at different conditions was similar. The neurons presented evidence of dense neurite outgrowth in the presence of distinct NTs in neuromuscular cocultures. NGF and NT-3 increased mRNA levels of PPT, CGRP, and NF-200, but not MAP-2, in neuromuscular cocultures. These results offer new clues towards a better understanding of the association of target SKM cells with distinct NTs on the expression of mRNAs for PPT, CGRP, NF-200 and MAP-2, and implicate the association of target SKM cells and NTs with DRG sensory neuronal phenotypes.  相似文献   

12.
本文采用逆转录聚合酶链反应(RT-PCR)方法测定大鼠内毒素血症不同时期胸腰段背根神经节降钙素基因相关肽(CGRP)mRNA水平的改变,结合血浆CGRP水平的改变,以期全面了解大鼠内毒素血症不同时期CGRP释放与合成的变化。结果显示:注射内毒素(5mg/kg)后30min时,大鼠血浆CGRP开始增高,而背根神经节CGRPmRNA水平无明显变化;注射内毒素后3h时,血浆CGRP及背根神经节CGRPmRNA均明显增高.分别为142%和32%,8h时则进一步增高,分别为216%和85%。提示内毒素不仅刺激外周组织释放CGRP,而且还能通过某些机制激活背根神经节CGRPmRNA的转录,使CGRP合成增加,以作为CGRP大量释放的重要补充来源。  相似文献   

13.
Summary The co-existence of immunoreactivities to substance P (SP), calcitonin gene-related peptide (CGRP), cholecystokinin (CCK) and dynorphin (DYN) in neurons of the dorsal root ganglion (DRG) of guinea-pigs has been investigated with a double-labelling immunofluorescence procedure. Four main populations of neurons could be identified that contained different combinations of these peptides and had distinctive peripheral projections: (1) Neurons that contained immunoreactivity to SP, CGRP, CCK and DYN were distributed mainly to the skin. (2) Neurons with immunoreactivity to SP, CGPR and CCK, but not DYN, were distributed mainly to the small blood vessels of skeletal muscles. (3) Neurons with immunoreactivity to SP, CGRP and DYN, but not CCK, were distributed mainly to pelvic viscera and airways. (4) Neurons containing immunoreactivity to SP and CGRP, but not CCK and DYN, were distributed mainly to the heart, systemic blood vessels, blood vessels of the abdominal viscera, airways and sympathetic ganglia. Other small populations of DRG neurons containing SP, CGRP or CCK alone also were detected. Perikarya containing these combinations of neuropeptides were not found in autonomic ganglia. The peripheral axons of neurons containing immunoreactivity to at least SP and CGRP were damaged by chronic treatment with capsaicin. However, some sensory neurons containing CCK alone were not affected morphologically by capsaicin.These results clearly show that individual DRG neurons can contain many different neuropeptides. Furthermore, the combination of neuropeptides found in any particular neuron is related to its peripheral projection.  相似文献   

14.
Vasko MR  Guo C  Thompson EL  Kelley MR 《DNA Repair》2011,10(9):942-952
Although exposure to ionizing radiation (IR) can produce significant neurotoxicity, the mechanisms mediating this toxicity remain to be determined. Previous studies using neurons isolated from the central nervous system show that IR produces reactive oxygen species and oxidative DNA damage in those cells. Because the base excision DNA repair pathway repairs single-base modifications caused by ROS, we asked whether manipulating this pathway by altering APE1 expression would affect radiation-induced neurotoxicity. In cultures of adult hippocampal and sensory neurons, IR produces DNA damage as measured by phosphorylation of histone H2A.X and results in dose-dependent cell death. In isolated sensory neurons, we demonstrate for the first time that radiation decreases the capsaicin-evoked release of the neuropeptide CGRP. Reducing APE1 expression in cultured cells augments IR-induced neurotoxicity, whereas overexpressing APE1 is neuroprotective. Using lentiviral constructs with a neuronal specific promoter that selectively expresses APE1s different functions in neurons, we show that selective expression of the DNA repair competent (redox inactive) APE1 constructs in sensory neurons resurrects cell survival and neuronal function, whereas use of DNA-repair deficient (redox active) constructs is not protective. Use of an APE1 redox-specific inhibitor, APX3330, also facilitates neuronal protection against IR-induced toxicity. These results demonstrate for the first time that the repair function of APE1 is required to protect both hippocampal and DRG neuronal cultures--specifically neuronal cells--from IR-induced damage, while the redox activity of APE1 does not appear to be involved.  相似文献   

15.
The present study investigated: (1) the distribution and chemical coding of primary sensory neurons supplying the vas deferens in juvenile pigs by the use of retrograde tracing combined with double-labelling immunofluorescence, (2) nerve pathways from dorsal root ganglia (DRG) to the vas deferens by means of denervation procedures involving transection of the hypogastric or pelvic nerve combined with a retrograde tracing method, and (3) possible interactions of the substance P (SP)/calcitonin gene-related peptide (CGRP)-immunoreactive varicose nerve fibres on vas deferens projecting neurons (VDPN) in the anterior pelvic ganglion (APG). The vast majority of VDPN were found mainly in the lumbar L2, L3 and sacral S2, S3 pairs of DRG and showed a clear ipsilaterally organized projection pattern. Immunohistochemistry revealed that most of these neurons contained SP and/or CGRP, occasionally coexpressed with galanin. Interestingly, pronounced differences in the expression of SP and/or CGRP were observed between the lumbar and sacral VDPN in that most of the lumbar but less than half of the sacral neurons stained for these peptides. Denervation experiments showed that the neurons located within the lumbar DRG project through the ipsilateral hypogastric nerve, whereas those found within the sacral DRG send their processes through the ipsilateral and contralateral pelvic nerve. In the nerve-lesioned animals, especially in those with the hypogastric nerve cut, a dramatic reduction in the number of SP and/or CGRP-containing nerve terminals surrounding the efferent VDPN within the APG was observed. This study has disclosed the distribution and, for the first time, chemical coding and nerve pathways of vas deferens-projecting primary sensory neurons in a mammalian species, the pig. The results obtained also provide some novel information about the possible morphological and functional relationship between vas deferens-projecting primary sensory and pelvic efferent nerve cells.  相似文献   

16.
Epoxyeicosatrienoic acids (EETs) are bioactive eicosanoids produced from arachidonic acid by cytochrome P450 epoxygenases. We previously described the expression of cytochrome P450-2J epoxygenase in rat trigeminal ganglion neurons and that EETs signaling is involved in cerebrovascular dilation resulting from perivascular nerve stimulation. In this study, we evaluate the presence of the EETs signaling pathway in trigeminal ganglion neurons and their role in modulating the release of calcitonin gene-related peptide (CGRP) by trigeminal ganglion neurons. Liquid chromatography tandem mass spectrometry identified the presence of each of the four EETs regio-isomers within primary trigeminal ganglion neurons. Stimulation for 1 h with the transient receptor potential vanilloid-1 channel agonist capsaicin (100 nmol/L) or depolarizing K(+) (60 mmol/L) increased CGRP release as measured by ELISA. Stimulation-evoked CGRP release was attenuated by 30 min pre-treatment with the EETs antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, 10 μmol/L). K(+) stimulation elevated CGRP release 2.9 ± 0.3-fold above control levels, whereas in the presence of 14,15-EEZE K(+)-evoked CGRP release was significantly reduced to 1.1 ± 0.2-fold above control release (p < 0.01 anova, n = 6). 14,15-EEZE likewise attenuated capsaicin-evoked CGRP release from trigeminal ganglion neurons (p < 0.05 anova, n = 6). Similarly, pre-treatment with the cytochrome P450 epoxygenase inhibitor attenuated stimulation-evoked CGRP release. These data demonstrate that EETs are endogenous constituents of rat trigeminal ganglion neurons and suggest that they may act as intracellular regulators of neuropeptide release, which may have important clinical implications for treatment of migraine, stroke and vasospasm after subarachnoid hemorrhage.  相似文献   

17.
Mechanisms of proton-induced stimulation of CGRP release from rat antrum   总被引:1,自引:0,他引:1  
Mechanisms of acid-evoked CGRP release from gastric afferent nerves were investigated in rat antral mucosal/submucosal tissues. Low pH (pH 4.0, 5.0 and 6.0) stimulated antral CGRP release significantly and dose-dependently from rat antral fragments. Removal of extracellular calcium from the incubation medium resulted in significant inhibition (59%, P < 0.001) of acid (pH 4.0)-stimulated CGRP release. Conotoxin (1 x 10(-7) M), the selective blocker of N-type calcium channels, also significantly inhibited proton (pH 4.0)-induced CGRP release to values that were 74% below net stimulated levels. Neither nifedipine (1 x 10(-6) M), the L-type Ca(2+)-channel antagonist, nor indomethacin (1 x 10(-5) M), inhibitor of prostaglandin synthesis, altered acid-induced CGRP release. In contrast, ruthenium red (1 x 10(-5) M), capsaicin antagonist, almost completely prevented acid (pH 4.0)-stimulated CGRP release. Capsazepine (1 x 10(-4) M), a specific capsaicin receptor antagonist, also completely abolished acid-induced CGRP release. In conclusion, the results of these studies indicate that hydrogen ions are capable of evoking CGRP release from peripheral sensory neurons in rat antral mucosal/submucosal tissues. Proton-evoked CGRP release requires extracellular calcium and involves N-type calcium channels. Furthermore, acid appears to exert a capsaicin-like effect to evoke sensory neuropeptide release that is sensitive to capsazepine and ruthenium red. These data suggest that proton-induced antral CGRP release represents a direct action of hydrogen ions on mucosal/submucosal sensory dendritic nerve endings to effect local release of neuropeptide.  相似文献   

18.
This study shows that explants of quail neural crest cultured in a medium containing serum and chick embryo extract give rise to large numbers of cells expressing immunoreactivity for substance P (SP), a neuropeptide found in sensory neurons. These cells arise from cycling precursors, but do not appear to divide after expressing SP. The SP-positive cells in cranial neural crest cultures express both neurofilament and the Q211 antigen, but those in trunk cultures express only the Q211 antigen. In both cranial and trunk cultures, large subpopulations of the SP-positive cells express tyrosine hydroxylase and/or choline acetyltransferase, neurotransmitter markers characteristic of autonomic neurons. This finding argues against the idea that SP expression necessarily indicates commitment to the sensory neuron lineage. I further show that embryonic dorsal root ganglion (DRG) cells retain the ability to coexpress SP and tyrosine hydroxylase in vitro although to a lesser extent than do neural crest cells.  相似文献   

19.
20.
Primary cultures of adult rat dorsal root ganglia (DRG) sensory neurons were used to determine whether bradykinin and prostaglandins E? (PGE?), E? (PGE?) or I? (PGI?) stimulate long-term calcitonin gene-related peptide (CGRP) mRNA accumulation and peptide release. Treatment (24 h) of neurons with either bradykinin or PGE?, significantly increased CGRP mRNA content and iCGRP release. However, PGE? or PGI? was without effect. Exposure of the cultured neurons to increasing concentrations of bradykinin or PGE? demonstrated that the stimulation of CGRP expression was concentration-dependent, while time-course studies showed that maximal levels of CGRP mRNA accumulation and peptide release were maintained for at least 48 h. Treatment of the neuronal cultures with a bradykinin B? receptor antagonist significantly inhibited the bradykinin-induced increase in CGRP expression and release. In addition, preincubation of neuronal cultures with the cyclooxygenase inhibitor indomethacin did not alter the PGE?-mediated stimulation of CGRP but blocked completely the bradykinin-induced increase in CGRP production. Therefore, these data indicate that bradykinin and PGE? can regulate the synthesis and release of CGRP in DRG neurons and that the stimulatory effects of bradykinin on CGRP are mediated by a cyclooxygenase product(s). Thus, these findings suggest a direct relationship between chronic alterations in bradykinin/prostaglandin production that may arise from pathophysiological causes and long-term changes in CGRP expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号