首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Gynodioecy, the co‐occurrence of females and hermaphrodites, is often due to conflicting interactions between cytoplasmic male sterility genes and nuclear restorers. Although gynodioecy often occurs in self‐compatible species, the effect of self‐pollination, inbreeding depression, and pollen limitation acting differently on females and hermaphrodites remains poorly known in the case of nuclear‐cytoplasmic gynodioecy (NCG). In this study, we model NCG in an infinite population and we study the effect of selfing rate, inbreeding depression, and pollen limitation on the maintenance of gynodioecy and on sex ratios at equilibrium. We found that selfing and inbreeding depression have a strong impact, which depends on whether restorer cost acts on male or female fitness. When cost affects male fitness, the strength of cost has no effect, whereas selfing and inbreeding depression only impact gynodioecy by modifying the value of the female advantage. When cost affects female fitness, selfing facilitates NCG and reduces the role of strength of the cost, even when no inbreeding depression occurs, whereas inbreeding depression globally restricts the maintenance of the polymorphism. Finally, we found that pollen limitation could additionally strongly modify the dynamic of gynodioecy. We discuss our findings in the light of empirical data available in gynodioecious species.  相似文献   

2.
In many gynodioecious species, sex determination involves both cytoplasmic male‐sterility (CMS) genes and nuclear genes that restore male function. Differences in fitness among genotypes affect the dynamics of those genes, and thus that of gynodioecy. We used a molecular marker to discriminate between hermaphrodites with and without a CMS gene in gynodioecious Raphanus sativus. We compared fitness through female function among the three genotypes: females, hermaphrodites with the CMS gene and those without it. Although there was no significant difference among the genotypes in seed size, hermaphrodites without the CMS gene produced significantly more seeds, and seeds with a higher germination rate than the other genotypes, suggesting no fitness advantage for females and no benefit to bearing the CMS gene. Despite the lack of fitness advantage for females in the parameter values we estimated, a theoretical model of gynodioecy shows it can be maintained if restorer genes impose a cost paid in pollen production. In addition, we found that females invest more resources into female reproduction than hermaphrodites when they become larger. If environmental conditions enable females to grow larger this would facilitate the dynamics of CMS genes.  相似文献   

3.
Abstract.— Models allowing the coexistence of females and hermaphrodites in gynodioecious populations assume a simple genetic system of sex determination, a seed fitness advantage of females (compensation), and a negative pleiotropic effect of nuclear sex-determining genes on fitness (cost of restoration). In Lobelia siphilitica , sex is determined by both mitochondrial genes causing cytoplasmic male sterility (CMS) and nuclear genes that restore fertility when present with specific CMS haplotypes (nuclear restorers). I tested for a cost of restoration in L. siphilitica by measuring restored hermaphrodites for five fitness components and estimating the number of nuclear restorers by crosses with females carrying CMS1 and CMS2. A cost of restoration appears as a significant negative coefficient (B) in the regression model explaining fitness. I found that hermaphrodites carrying more nuclear restorer genes for CMS2 (or restorer genes of greater effect) have lower pollen viability (B =– 1.08, P = 0.001). This pollen viability cost of restoration in L. siphilitica supports the theoretical prediction that negative pleiotropic effects of restorers will exist in populations of gynodioecious species containing females. The existence of such a cost supports the view that gynodioecy can be a stable breeding system in nature.  相似文献   

4.
In gynodioecious plant species with nuclear‐cytoplasmic sex determination, females and hermaphrodites plants can coexist whenever female have higher seed fitness than hermaphrodites. Although the effect of self fertilization on seed fitness in hermaphrodites has been considered theoretically, this effect is far from intuitive, because it can either increase the relative seed fitness of the females (if it leads hermaphrodites to produce inbred, low quality offspring) or decrease it (if it provides reproductive assurance to hermaphrodites). Hence, empirical investigation is needed to document whether relative seed fitness varies with whether pollen is or is not limiting to seed production. In the current study, we measured fruit set and seed production in both females and hermaphrodites and the selfing rate in hermaphrodites in two experimental patches that differed in sex ratios in the gynodioecious plant Silene nutans. We found an impact of plant gender, patch, and their interaction, with females suffering from stronger pollen limitation when locally frequent. In the most pollen‐limited situation, the selfing rate of hermaphrodites increased and provided hermaphrodites with a type of reproductive assurance that is not available to females. By integrating both the beneficial (reproductive assurance) and costly effects (through inbreeding depression) of self‐pollination, we showed that whether females did or did not exhibit higher seed fitness depended on the degree of pollen limitation on seed production.  相似文献   

5.
Nuclear-cytoplasmic gynodioecy is a breeding system of plants in which females and hermaphrodites co-occur in populations, and gender is jointly determined by cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. Persistent polymorphism at both CMS and nuclear-restorer loci is necessary to maintain this breeding system. Theoretical models have explained how nuclear-cytoplasmic gynodioecy can be stable for certain assumptions. However, recent advances in our understanding of the genetics, population biology, and molecular mechanisms of sex determination in nuclear-cytoplasmic gynodioecious species suggest the utility of new models with different underlying assumptions. In this article, we examine different negative pleiotropic fitness effects of nuclear restorers (costs of restoration) using genetic and population assumptions based on recent literature. Specifically, we model populations with two CMS types and separate nuclear restorer loci for each CMS type. Under these assumptions, both overdominance for fitness and frequency-dependent selection at nuclear-restorer loci can support nuclear-cytoplasmic gynodioecy. Costs of restoration can be either dependent or independent of the cytoplasmic background. Seed fitness costs are more vulnerable to fixation of CMS types than pollen costs. Survivorship costs are effective at maintaining polymorphism even when total reproductive effects are low. Overall, our models display differences in the stability of nuclear-cytoplasmic gynodioecy and predicted population sex ratios that should be informative to researchers studying gynodioecy in the wild.  相似文献   

6.
In gynodioecious species, in which hermaphroditic and female plants co-occur, the maintenance of sexual polymorphism relies on the genetic determination of sex and on the relative fitness of the different phenotypes. Flower production, components of male fitness (pollen quantity and pollen quality) and female fitness (fruit and seed set) were measured in gynodioecious Beta vulgaris spp. maritima, in which sex is determined by interactions between cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. The results suggested that (i) female had a marginal advantage over hermaphrodites in terms of flower production only, (ii) restored CMS hermaphrodites (carrying both CMS genes and nuclear restorers) suffered a slight decrease in fruit production compared to non-CMS hermaphrodites and (iii) restored CMS hermaphrodites were poor pollen producers compared to non-CMS hermaphrodites, probably as a consequence of complex determination of restoration. These observations potentially have important consequences for the conditions of maintenance of sexual polymorphism in B. vulgaris and are discussed in the light of existing theory on evolutionary dynamics of gynodioecy.  相似文献   

7.
Gynodioecy, a genetic dimorphism of females and hermaphrodites, is pertinent to an understanding of the evolution of plant gender, mating and genetic variability. Classical models of nuclear gynodioecy attribute the maintenance of the dimorphism to frequency-dependent selection in which the female phenotype has a fitness advantage at low frequency owing to a doubled ovule fertility. Here, I analyse explicit genetic models of nuclear gynodioecy that expand on previous work by allowing partial male sterility in combination with either fixed or dynamically evolving mutational inbreeding depression. These models demonstrate that partial male sterility causes fitness underdominance at the mating locus, which can prevent the spread of females. However, if partial male sterility is compensated by a change in selfing rate, overdominance at the mating locus can cause the spread of females. Overdominance at introduction of the male sterility allele can be caused by high inbreeding depression and a lower selfing rate in the heterozygote, by purging of mutations by a higher selfing rate in the heterozygote, and by low inbreeding depression and a higher selfing rate in the heterozygote. These processes might be of general importance in the maintenance of mating polymorphisms in plants.  相似文献   

8.
Gynodioecious species are defined by the co-occurrence of two clearly separated categories of plants: females and hermaphrodites. The hermaphroditic category may, however, not be homogeneous, as male fitness may vary among hermaphrodites as a result of many biological factors. In this study, we analysed estimates of pollen quantity and viability in the gynodioecious Beta vulgaris ssp. maritima, comparing hermaphrodites bearing a male-fertile cytotype and hermaphrodites bearing cytoplasmic male sterility (CMS) genes, which are counteracted by nuclear restoration factors. We show that: (i) pollen quantity continuously varies among restored hermaphrodites, suggesting a complex genetic determination of nuclear restoration; (ii) pollen viability was lower in restored (CMS) hermaphrodites than in non-CMS hermaphrodites, probably because of incomplete restoration in some of these plants; and (iii) pollen quantity and viability also varied among hermaphrodites with male-fertile cytotypes, possibly a result of a silent cost of restoration. Finally, we discuss the consequences of these results for pollen flow and the dynamics of gynodioecy.  相似文献   

9.
Variation among individuals in reproductive success is advocated as a major process driving evolution of sexual polymorphisms in plants, such as gynodioecy where females and hermaphrodites coexist. In gynodioecious Beta vulgaris ssp. maritima, sex determination involves cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. Both restored CMS and non-CMS hermaphrodites co-occur. Genotype-specific differences in male fitness are theoretically expected to explain the maintenance of cytonuclear polymorphism. Using genotypic information on seedlings and flowering plants within two metapopulations, we investigated whether male fecundity was influenced by ecological, phenotypic and genetic factors, while taking into account the shape and scale of pollen dispersal. Along with spatially restricted pollen flow, we showed that male fecundity was affected by flowering synchrony, investment in reproduction, pollen production and cytoplasmic identity of potential fathers. Siring success of non-CMS hermaphrodites was higher than that of restored CMS hermaphrodites. However, the magnitude of the difference in fecundity depended on the likelihood of carrying restorer alleles for non-CMS hermaphrodites. Our results suggest the occurrence of a cost of silent restorers, a condition supported by scarce empirical evidence, but theoretically required to maintain a stable sexual polymorphism in gynodioecious species.  相似文献   

10.
After over a half century of empirical and theoretical research regarding the evolution and maintenance of gynodioecy in plants, unexplored factors influencing the relative fitnesses of females and hermaphrodites remain. Theoretical studies suggest that hermaphrodite self-fertilization (selfing) rate influences the maintenance of gynodioecy and we hypothesized that population sex ratio may influence hermaphrodite selfing rate. An experimental test for frequency-dependent self-fertilization was conducted using replicated populations constructed with different sex ratios of the gynodioecious plant Silene vulgaris . We found that hermaphrodite selfing increased with decreased hermaphrodite frequency, whereas evidence for increased inbreeding depression was equivocal. We argue that incorporation of context dependent inbreeding into future models of the evolution of gynodioecy is likely to yield novel insights into sex ratio evolution.  相似文献   

11.
Gynodioecy is a dimorphic breeding system in which hermaphrodite and female individuals coexist in populations. Theoretical models have shown that if nuclear genes control sex expression, then gynodioecy can evolve only when females have large advantages in one or more fitness components. These female advantages must be large enough that females' expected lifetime production of viable seeds is more than twice that of hermaphrodites. Previous studies have found that cytoplasmic inheritance and/or a large offspring-vigor advantage of females (caused by hermaphrodite self-pollination and inbreeding depression of selfed seeds) account for this breeding system's evolution. This paper reports studies of gynodioecy in Phacelia linearis, an insect-pollinated annual plant in which gender inheritance appears to be nuclear. Twenty-six P. linearis populations surveyed in northern Utah, USA, contain a majority of perfect-flowered hermaphrodites, but most (22) also contain male-sterile individuals (females), at frequencies of up to 0.16. The hermaphrodite selfing rate is low (0.00–0.20 in four populations). Maternal gender does not consistently affect components of offspring vigor, such as seed size, germination rate, seedling survivorship, and vegetative size. Plants of the two genders do not differ in number of seeds per fruit or mean seed mass. Females produce significantly more fruits and seeds than hermaphrodites in natural populations. The ratio of the mean lifetime seed production of females to the mean lifetime seed production of hermaphrodites ranged from 1.31 to 2.52 in six natural populations. Females have greater shoot biomass than hermaphrodites and produce more seeds at any given shoot biomass than hermaphrodites, suggesting that their seed-production advantage arises from gender-specific patterns of resource allocation to growth and reproduction. The gender difference in plant size varies across environments and across genetic backgrounds. In this species nuclear gynodioecy appears to be evolutionarily stable mainly because of resource compensation by females, without a large outcrossing advantage of females.  相似文献   

12.
The selective maintenance of gynodioecy depends on the relative fitness of the male-sterile (female) and hermaphroditic morphs. Females may compensate for their loss of male fitness by reallocating resources from male function (pollen production and pollinator attraction) to female function (seeds and fruits), thus increasing seed production. Females may also benefit from their inability to self-fertilize if selfing and inbreeding depression reduce seed quality in hermaphrodites. We investigated how differences in floral resource allocation (flower size) between female and hermaphroditic plants affect two measures of female reproductive success, pollinator visitation and pollen receipt, in gynodioecious populations of Geranium richardsonii in Colorado. Using emasculation treatments in natural populations, we further examined whether selfing by autogamy and geitonogamy comprises a significant proportion of pollen receipt by hermaphrodites. Flowers of female plants are significantly smaller than those of hermaphrodites. The reduction in allocation to pollinator-attracting structures (petals) is correlated with a significant reduction in pollinator visitation to female flowers in artificial arrays. The reduction in attractiveness is further manifested in significantly less pollen being deposited on the stigmas of female flowers in natural populations. Autogamy is rare in these protandrous flowers, and geitonogamy accounts for most of the difference in pollen receipt between hermaphrodites and females. Female success at receiving pollen was negatively frequency dependent on the relative frequency of females in populations. Thus, two of the prerequisites for the maintenance of females in gynodioecious populations, differences in resource allocation between floral morphs and high selfing rates in hermaphrodites, occur in G. richardsonii.  相似文献   

13.
One evolutionary pathway from plants with combined male and female functions (hermaphroditism) to those with separate sexes (dioecy) involves females coexisting with hermaphrodites (gynodioecy). The research presented here explores sex allocation in Fragaria virginiana (a gynodioecious wild strawberry), within the context of theory on the gynodioecy–dioecy transition. By growing clonally replicated plants in the greenhouse and surveying six populations in situ, I evaluated the effects of plant size, genotype, sexual identity, population of origin and female frequency on sex allocation. I found significant positive effects of plant size on most sex allocation traits studied. In addition to strong sex-specific allocation patterns, I found significant broad-sense heritabilities for all traits, suggesting that plants could respond to selection. Moreover, there was a negative genetic correlation between pollen production and fruit set per flower within hermaphrodites, lending support to a basic assumption of sex allocation theory. On the other hand, several sex allocation traits, namely pollen and ovules per flower in hermaphrodites, were positively genetically correlated, suggesting that they may act to constrain the evolution of sexual dimorphism. Populations differed in the frequency of females, and females were more prevalent on sites with lower soil moisture and where hermaphrodites were least likely to produce fruit, suggesting that females’ seed fitness relative to that of hermaphrodites may be strongly environment-dependent in this species.  相似文献   

14.

Background

The ‘gynodioecy–dioecy pathway’ is considered to be one of the most important evolutionary routes from hermaphroditism to separate sexes (dioecy). Despite a large accumulation of evidence for female seed fertility advantages in gynodioecious species (females and hermaphrodites coexist) in support of the first step in the gynodioecy–dioecy pathway, we still have very little evidence for the second step, i.e. the transition from gynodioecy to dioecy.

Scope

We review the literature to evaluate whether basic predictions by theory are supported. To establish whether females'' seed fertility advantage and frequencies are sufficient to favour the invasion of males, we review these for species along the gynodioecy–dioecy pathway published in the last 5 years. We then review the empirical evidence for predictions deriving from the second step, i.e. hermaphrodites'' male fertility increases with female frequency, selection favours greater male fertility in hermaphrodites in gynodioecious species, and, where males and hermaphrodites coexist with females (subdioecy), males have greater male fertility than hermaphrodites. We review how genetic control and certain ecological features (pollen limitation, selfing, plasticity in sex expression and antagonists) influence the trajectory of a population along the gynodioecy–dioecy pathway.

Conclusions

Females tend to have greater seed fertility advantages over hermaphrodites where the two coexist, and this advantage is positively correlated with female frequency across species, as predicted by theory. A limited number of studies in subdioecious species have demonstrated that males have an advantage over hermaphrodites, as also predicted by theory. However, less evidence exists for phenotypic selection to increase male traits of hermaphrodites or for increasing male function of hermaphrodites in populations with high female frequency. A few key case studies underline the importance of examining multiple components of male fertility and the roles of pollen limitation, selfing and plasticity, when evaluating advantages. We conclude that we do not yet have a full understanding of the transition from gynodioecy to dioecy.  相似文献   

15.
Many flowering plant species exhibit a variety of distinct sexual morphs, the two most common cases being the co-occurrence of females and males (dioecy) or the co-occurrence of hermaphrodites and females (gynodioecy). In this study, we compared DNA sequence variability of the three genomes (nuclear, mitochondrial and chloroplastic) of a gynodioecious species, Silene nutans, with that of a closely related dioecious species, Silene otites. In the light of theoretical models, we expect cytoplasmic diversity to differ between the two species due to the selective dynamics that acts on cytoplasmic genomes in gynodioecious species: under an epidemic scenario, the gynodioecious species is expected to exhibit lower cytoplasmic diversity than the dioecious species, while the opposite is expected in the case of balancing selection maintaining sterility cytoplasms in the gynodioecious species. We found no difference between the species for nuclear gene diversity, but, for the cytoplasmic loci, the gynodioecious S. nutans had more haplotypes, and higher nucleotide diversity, than the dioecious relative, S. otites, even though the latter has a relatively high rate of mitochondrial synonymous substitutions, and therefore presumably a higher mutation rate. Therefore, as the mitochondrial mutation rate cannot account for the higher cytoplasmic diversity found in S. nutans, our findings support the hypothesis that gynodioecy in S. nutans has been maintained by balancing selection rather than by epidemic-like dynamics.  相似文献   

16.
Floral features related to the breeding system were studied for 11 species of Hawaiian Bidens. Protandry and male sterility promote outcrossing, while self-compatibility and geitonogamy contribute to inbreeding. The combination of these floral mechanisms results in a mixed mating system in all species studied. Outcrossing rates of 15 populations of these species ranged from 0.43 to 0.88, averaging 0.65. Apparent selling rates of females ranged from 0 to 0.25 in seven gynodioecious populations surveyed, suggesting that there is variation in the level of biparental inbreeding among populations. The presence of females increased the level of outcrossing by an average of 9% in gynodioecious populations. This study indicates that the efficiency of gynodioecy as an outcrossing mechanism largely depends on the current outcrossing rate of hermaphrodites, the frequency of females, and the extent of genetic substructuring in populations. On average, autogamy contributed 4%, geitonogamy contributed 24%, and consanguineous mating contributed 15% to the realized selfing rate (43%) in the hermaphrodites of these species.  相似文献   

17.
A negative pleiotropic effect on fitness of nuclear sex‐determining genes (cost of restoration) could explain nuclear–cytoplasmic gynodioecy but rarely has been demonstrated empirically. In a gynodioecious Phacelia dubia population, maternal lineages produce only hermaphroditic progenies irrespective of the pollen parent (N) or can segregate females (S). Natural progenies of N maternal plants had lower seed viability than that of S. Full‐sib progenies of unrelated hermaphrodites from all possible matings between N and S lineages had similar pollen filling but differed in sporophyte performance, mainly at seed germination stage. A discrete multivariate analysis reveals that the performance of N × S progeny at early stages of development was significantly lower than that of the other three types of mating in agreement with the silent‐cost‐of‐restoration hypothesis, affecting the sporophyte. The restoration cost and male sterility appear to be dominant and consequence of nuclear–cytoplasmic incompatibilities that may maintain nuclear–cytoplasmic polymorphism by frequency‐dependent selection.  相似文献   

18.
Abstract In gynodioecious plants, hermaphrodite and female plants co‐occur in the same population. In these systems gender typically depends on whether a maternally inherited cytoplasmic male sterility factor (CMS) is counteracted by nuclear restorer alleles. These restorer alleles are often genetically dominant. Although plants of the female morph are obligatorily outcrossing, hermaphrodites may self. This selfing increases homozygosity and may thus have two effects: (1) it may decrease fitness (i.e. result in inbreeding depression) and (ii) it may increase homozygosity of the nuclear restorer alleles and therefore increase the production of females. This, in turn, enhances outcrossing in the following generation. In order to test the latter hypothesis, experimental crosses were conducted using individuals derived from four natural populations of Silene vulgaris, a gynodioecious plant. Treatments included self‐fertilization of hermaphrodites, outcrossing of hermaphrodites and females using pollen derived from the same source population as the pollen recipients, and outcrossing hermaphrodites and females using pollen derived from different source populations. Offspring were scored for seed germination, survivorship to flowering and gender. The products of self‐fertilization had reduced survivorship at both life stages when compared with the offspring of outcrossed hermaphrodites or females. In one population the fitness of offspring produced by within‐population outcrossing of females was significantly less than the fitness of offspring produced by crossing females with hermaphrodites from other populations. Self‐fertilization of hermaphrodites produced a smaller proportion of hermaphroditic offspring than did outcrossing hermaphrodites. Outcrossing females within populations produced a smaller proportion of hermaphrodite offspring than did crossing females with hermaphrodites from other populations. These results are consistent with a cytonuclear system of sex determination with dominant nuclear restorers, and are discussed with regard to how the mating system and the genetics of sex determination interact to influence the evolution of inbreeding depression.  相似文献   

19.
Dioecy (gonochorism) is dominant within the Animalia, although a recent review suggests hermaphroditism is also common. Evolutionary transitions from dioecy to hermaphroditism (or vice versa) have occurred frequently in animals, but few studies suggest the advantage of such transitions. In particular, few studies assess how hermaphroditism evolves from dioecy or whether androdioecy or gynodioecy should be an “intermediate” stage, as noted in plants. Herein, these transitions are assessed by documenting the numbers of androdioecious and gynodioecious animals and inferring their ancestral reproductive mode. Both systems are rare, but androdioecy was an order of magnitude more common than gynodioecy. Transitions from dioecious ancestors were commonly to androdioecy rather than gynodioecy. Hermaphrodites evolving from sexually dimorphic dioecious ancestors appear to be constrained to those with female‐biased sex allocation; such hermaphrodites replace females to coexist with males. Hermaphrodites evolving from sexually monomorphic dioecious ancestors were not similarly constrained. Species transitioning from hermaphroditic ancestors were more commonly androdioecious than gynodioecious, contrasting with similar transitions in plants. In animals, such transitions were associated with size specialization between the sexes, whereas in plants these transitions were to avoid inbreeding depression. Further research should frame these reproductive transitions in a theoretical context, similar to botanical studies.  相似文献   

20.
Recent theoretical models have addressed the influence of metapopulation dynamics on the fitness of females and hermaphrodites in gynodioecious plants. In particular, selection is thought to favor hermaphrodites during population establishment because that sex should be less prone to pollen limitation, especially if self-fertilization is possible. However, inbreeding depression could limit this advantage. In this experimental study of Silene vulgaris, a weedy gynodioecious plant, the fitness of females and hermaphrodites was estimated from seed production in both mixed-sex populations and for individuals isolated from these populations by 20, 40, 80, or 160 m. In mixed populations females display statistically significant greater per capita seed production owing to higher capsule production and higher rates of seed germination. The fitness of both sexes declines with increasing isolation, but at different rates, such that in the 160-m treatment hermaphrodites are by far the more fit sex. Allozyme studies suggest that this differential decline is because the selfing rate in hermaphrodites increases as a function of isolation, at least partially compensating for a decline in the availability of outcross pollen. Overall, the negative effects of pollen limitation on females far outweighs the negative effects of inbreeding depression following selfing in hermaphrodites. Thus, extinction/recolonization dynamics would appear to favor hermaphrodites as long as seed dispersal events exceed some critical distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号