首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Abstract An new water-soluble Pd(II) complex, 2,2'-bipyridin n-butyl dithiocarbamato Pd(II) nitrate has been synthesized. The Pd(II) complex has been characterized by elemental analysis and conductivity measurements as well as spectroscopic methods such as infrared, 1H NMR, and ultraviolet-visible. The interaction between this new design Pd(II)-complex, an anti-tumor component, with carrier proteins of β-lactoglobulin-A and -B (BLG-A and -B) were studied at different temperatures of 27, 37, 42, and 47 °C by fluorescence spectroscopy and far-UV circular dichroism (CD) spectrophotometric techniques. A strong fluorescence quenching interaction of Pd(II) complex with BLG-A and -B was observed at different temperatures. The binding parameters were evaluated by fluorescence quenching method. The thermodynamic parameters, including ΔH°, ΔS°, and ΔG° were calculated by fluorescence quenching method indicated that the electrostatic and hydrophobic forces might play a major role in the interactions of Pd(II) complex with BLG-A and -B, respectively. The distances between donors (Trps of the BLG-A and -B) and acceptor (Pd(II) complex) were obtained according to the fluorescence resonance energy transfer (FRET). Far-UV CD studies showed that the Pd(II) complex did not represent any significant changes in the secondary structures of BLG- A and -B. The difference in the interaction properties observed for BLG-A and -B with Pd(II) complex is related to the difference in the amino acid sequences between these two variants.  相似文献   

2.
An new water soluble palladium (II) complex of formula [Pd(bpy)(Oct-Gly)]NO(3), (where bpy is 2,2'-bipyridine and Oct-Gly is octylglycine) have been synthesised. The Pd(II) complex has been characterized by elemental analysis and conductivity measurements as well as spectroscopic methods such as infrared, (1)H NMR, and ultraviolet-visible. The interaction between the new Pd(II)-complex (2,2'-bipyridin octylglycinato Pd(II) nitrate), an anti-tumor component, with beta-lactoglobulin-A and -B (BLG-A and -B) was studied by fluorescence spectroscopy and far and near-UV circular dichroism (CD) spectrophotometric techniques. A strong fluorescence quenching interaction of Pd(II) complex with BLG-A and -B was observed. The quenching constant was determined using the modified Stern-Volmer equation. The calculated binding constants of Pd(II) complex with BLG-A and -B were 0.51 and 0.28 (x 10(6) M(-1)) and the corresponding average number of binding sites were 2.8 and 1.5, respectively. Far-UV CD studies showed that the Pd(II) complex can significantly change the secondary structure of BLG-A and -B via an increase in the content of alpha-helix structure, which stabilizes the secondary structure of the proteins. Near-UV CD data clearly indicate the alteration in the tertiary structure of BLG-A and -B due to the interaction with Pd(II) complex. Pd(II) complex can change and stabilize both the secondary and tertiary structures of BLG-A more than BLG-B. These conformational changes may be considered to be a deleterious effect of the designed ligand on the protein structures. The difference in the interaction properties observed for BLG-A and -B with Pd(II) complex is due to the difference in the amino acid sequences between these two variants.  相似文献   

3.
Abstract

An new water-soluble Pd(II) complex, 2,2′-bipyridin n-butyl dithiocarbamato Pd(II) nitrate has been synthesized. The Pd(II) complex has been characterized by elemental analysis and conductivity measurements as well as spectroscopic methods such as infrared, 1H NMR, and ultraviolet-visible. The interaction between this new design Pd(II)-complex, an anti-tumor component, with carrier proteins of β-lactoglobulin-A and -B (BLG-A and -B) were studied at different temperatures of 27, 37, 42, and 47 °C by fluorescence spectroscopy and far-UV circular dichroism (CD) spectrophotometric techniques. A strong fluorescence quenching interaction of Pd(II) complex with BLG-A and -B was observed at different temperatures. The binding parameters were evaluated by fluorescence quenching method. The thermodynamic parameters, including ΔH°, ΔS°, and ΔG° were calculated by fluorescence quenching method indicated that the electrostatic and hydrophobic forces might play a major role in the interactions of Pd(II) complex with BLG-A and -B, respectively. The distances between donors (Trps of the BLG-A and -B) and acceptor (Pd(II) complex) were obtained according to the fluorescence resonance energy transfer (FRET). Far-UV CD studies showed that the Pd(II) complex did not represent any significant changes in the secondary structures of BLG- A and -B. The difference in the interaction properties observed for BLG-A and -B with Pd(II) complex is related to the difference in the amino acid sequences between these two variants.  相似文献   

4.
Butyldithiocarbamate sodium salt (Bu-dtcNa) and its two complexes, [M(bpy)(Bu-dtc)]NO3 (M=Pt(II) or Pd(II) and bpy=2,2'-bipyridine), have been synthesized and characterized on the basis of elemental analysis, molar conductivities, IR, 1H NMR, and UV-vis spectra. In these complexes, the dithiocarbamato ligand coordinates to Pt(II) or Pd(II) center as bidentate with two sulfur atoms. These complexes show 50% cytotoxic concentration (Cc(50)) values against chronic myelogenous leukemia cell line, K562, much lower than that of cisplatin. The interaction of these complexes with calf thymus DNA was extensively investigated by a variety of spectroscopic techniques. These studies showed that both complexes presumably intercalate in DNA. UV-vis studies imply that they cooperatively bind with DNA and unexpectedly denature the DNA at very low concentrations (approximately 100 microL). Palladium complex breaks the DNA into two unequal fragments and binds stronger to the lighter fragment than to the heavier one. In the interaction studies between the Pt(II) and Pd(II) complexes with DNA, several binding and thermodynamic parameters have been determined, which may provide deeper insights into the mechanism of action of these types of complexes with nucleic acids.  相似文献   

5.
The pharmacokinetics and pharmacodynamics of any drug will depend, largely, on the interaction that has with human serum albumin (HSA), the most abundant plasma protein. The interaction between newly synthesized Pd(II) complexe, 2,2'-bipyridin Butylglycinato Pd(II) nitrate, an anti-tumor component, with HSA was studied at different temperatures by fluorescence, far UV circular dichroism (CD), UV-visible spectrophotometry and theoretical approaches. The Pd(II) complex has a strong ability to quench the intrinsic fluorescence of HSA through a dynamic quenching procedure. The binding parameters and thermodynamic parameters, including δH°, δS° and δG° were calculated by fluorescence quenching method, indicated that hydrophobic forces play a major role in the interaction of Pd(II) complex with HSA. Based on Autodock, FRET (fluorescence resonance energy transfer) and fluorescence quenching data, it may be concluded that one of the binding sites in the complex of HSA is near the only one Trp of HSA (Trp214) in sub domain IIA of the protein. Far-UV-CD results indicated that Pd(II)-complex induced increase in the α-helical content of the protein. The anti-tumor property of the synthesized Pd(II) complex was studied by testing it on human tumor cell line K562. The 50% cytotoxic concentration (Cc??) of complex was determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Also, fluorescence staining with DAPI (4,6-diamidino-2-phenylindole) revealed some typical nuclear changes that are characteristic of apoptosis which is induced at Cc?? concentration of Pd(II) complex in K562 cell line after 24?h incubation. Our results suggest that Pd(II) complex is a promising anti-proliferative agent and should execute its biological effects by inducing apoptosis.  相似文献   

6.
The biological evaluation of a new synthesized Pt(II)-complex, 2,2'-bipyridin Butylglycinato Pt(II) nitrate, an anti-tumor component, was studied at different temperatures by fluorescence and far UV circular dichroism (CD) spectroscopic methods. Human serum albumin (HSA) and human tumor cell line K562 were as targets. The Pt(II)-complex has a strong ability to quench the intrinsic fluorescence of HSA. Binding and thermodynamic parameters of the interaction were calculated by fluorescence quenching method. Far-UV-CD results showed that Pt(II)-complex induced increasing in content of α helical structure of the protein and stabilized it. The 50% cytotoxic concentration (Cc(50)) of complex was determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay at different incubation times. Also, fluorescence staining with DAPI (4,6-diamidino-2-phenylindole) revealed some typical nuclear changes, which are characteristic of apoptosis. Above results suggest that Pt (II) complex is a promising anti-proliferative agent and should execute its biological effects by inducing apoptosis.  相似文献   

7.
Palladium(II) and platinum(II) complexes of general empirical formula, [M(NS)(2)] (NS=uninegatively charged acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate; M=Pt(II) and Pd(II)) have been prepared and characterized by a variety of physicochemical techniques. Based on conductance, IR and electronic spectral evidence, a square-planar structure is assigned to these complexes. The crystal and molecular structure of the [Pd(asme)(2)] complex (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) has been determined by X-ray diffraction. The complex has a distorted cis-square planar structure with the ligands coordinated to the palladium(II) ions as uninegatively charged bidentate NS chelating agents via the azomethine nitrogen and the mercaptide sulfur atoms. The distortion from a regular square-planar geometry is attributed to the restricted bite angles of the ligands. Antimicrobial tests indicate that the Schiff bases exhibit strong activities against the pathogenic bacteria, Bacillus subtilis (mutant defective DNA repair), methicillin-resistant Staphylococcus aureus, B. subtilis (wild type) and Pseudomonas aeruginosa and the fungi, Candida albicans (CA), Candida lypotica (2075), Saccharomyces cerevisiae (20341) and Aspergillus ochraceous (398)-the activities exhibited by these compounds being greater than that of the standard antibacterial and antifungal drugs, streptomycin and nystatin, respectively. The palladium(II) and platinum(II) complexes are inactive against most of these organisms but, the microbe, Pseudomonas aeruginosa shows strong sensitivity to the platinum(II) complexes. Screening of the compounds for their cytotoxicities against T-lymphoblastic leukemia cancer cells has shown that the acetone Schiff base of S-methyldithiocarbazate (Hasme) exhibits a very weak activity, whereas the S-benzyl derivative (Hasbz) is inactive. However, the palladium(II) complexes exhibit strong cytotoxicities against this cancer; their activities being more than that of the standard anticancer drug, tamoxifen. The [Pt(asme)(2)] complex exhibits a very weak cytotoxicity, whereas [Pt(asbz)(2)] is inactive against leukemic cells.  相似文献   

8.
Some amino acid derivatives, such as R-glycine, have been synthesized together with their full spectroscopic characterization. The sodium salts of these bidentate amino acid ligands have been interacted with [M(bpy)(H2O)2](NO3)2 giving the corresponding some new complexes with formula [M(bpy)(R-gly)]NO3 (where M is Pt(II) or Pd(II), bpy is 2,2′-bipyridine and R-gly is butyl-, hexyl- and octyl-glycine). Due to less solubility of octyl derivatives, the biological activities of butyl and hexyl derivatives have been tested against chronic myelogenous leukemia cell line, K562. The interaction of these complexes with highly polymerized calf thymus DNA has been extensively studied by means of electronic absorption, fluorescence and other measurements. The experimental results suggest that these complexes positive cooperatively bind to DNA presumably via groove binding. Molecular dynamic results show that the DNA structure is largely maintained its native structure in hexylglycine derivative–water mixtures and at lower temperatures. The simulation data indicates that the more destabilizing effect of butylglycine is induced by preferential accumulation of these molecules around the DNA and due to their more negative free energy of binding via groove binding.  相似文献   

9.
Twenty new bioactive complexes of Mn(III), Fe(III), Ni(II), Cu(II) and Zn(II) have been prepared containing Schiff bases of N,N-diethylaminodithio- carbamate as ligands. These complexes have been characterized by elemental analyses, IR and UV-Vis spectroscopy as well as by magnetic susceptibility measurements. The spectra of the complexes suggest that the ligands are coordinated to the metal ions via the sulfur atoms of the dithiocarbamato group.  相似文献   

10.
The complexes of 2-aminomethyl benzimidazole, 2-(beta-aminoethyl)benzimidazole, and 2-(alpha-aminoethy-l)benzimidazole with Pt(II) and Pd(II) have been prepared. The molecular structure of the free ligands and their complexes were studied by IR and 1H NMR. It was concluded that the substituted benzimidazole derivatives behave as bidentate ligands, being bound to the metal atoms via the nitrogen of the -N = group and the amino group of the side chain of the benzimidazole ring. The metal complexes were tested for antineoplastic activity both in cultures of neoplastic cells (MEL-745, K-562, Colon 205, IMP-32, SK-N-SH) and in vivo in rodents bearing L-1210 leukemia. The antiproliferative activity of these agents was compared to that of cis-platin.  相似文献   

11.
Cisplatin is one of the most effective chemotherapy drugs, and has been widely employed for more than four decades in the treatment of different forms of human tumors. In recent years, various examples of metal complex-based compounds have been used for medicinal purposes. In this context, the novel palladium(II) complex, [Pd(non-dtc)(bpy)]NO3, (non-dtc = nonyldithiocarbamate and bpy = 2,2′- bipyridine) has been synthesized and characterized by means of elemental analysis, conductivity measurements, FT-IR, 1H NMR, 13C NMR, and electronic spectroscopy studies. The 50% cytotoxic concentrations (Ic50) of this Pd(II) complex (0.53 mM) and cisplatin (154 mM) against human cell tumor line (K562) indicates its interaction with DNA of cancer cell at quite low concentration. Thus, binding characteristics of this compound to calf thymus DNA (CT-DNA) has been investigated by UV–vis absorption spectroscopy and fluorescence spectra. The exciting observation of this work in the UV–visible studies was that the Pd(II) complex exhibit two or more types of interaction with CT-DNA. Such properties have rarely been observed in the literature. This complex cooperatively binds with DNA and denatures it too. Fluorescence studies proved the intercalation mode of binding and the other modes seems to be hydrophobic and electrostatic interactions. Binding parameters and thermodynamics of the interaction with CT-DNA are also described. Finally, multifunctional interactions of [Pd(non-dtc)(bpy)]NO3 make it suitable to interact with DNA of cancer cell at quite low concentration and if it is used as anticancer agent, very low doses will be needed which may have fewer side effects.  相似文献   

12.
The precursors [M(ESDTM)Cl(2)] (M=Pt(II), Pd(II); ESDTM=EtO(2)CCH(2)(CH(3))NCS(2)Me, S-methyl(ethylsarcosinedithiocarbamate)) were synthesized as previously reported [J. Inorg. Biochem. 83 (2001) 31] and used to obtain [M(ESDT)Cl](n) (ESDT=ethylsarcosinedithiocarbamate anion) species. The complexes formed through reaction between [M(ESDT)Cl](n) and the two chiral amino-alcohols synephryne (Syn) and norphenylephrine (Nor) have been synthesized, with the ultimate goal of preparing mixed dithiocarbamate/amino metal complexes of the type [M(ESDT)(Am)Cl] (Am=Syn, Nor). These compounds have been isolated, purified and characterized by means of FT-IR, mono- and bidimensional NMR spectroscopy and mass spectrometry ESI/MS (electronspray mass spectra). The experimental data suggest that in all cases coordination of the dithiocarbamate ligand (ESDT) takes a place through the two sulfur atoms, the -NCSS moiety acting as a symmetrical bidentate chelating group, in a square-planar geometry around the M(II) ion, while the other two coordination positions are occupied by the chlorine atom and the amino-alcohol ligand, respectively. In particular, synephrine and norphenylephrine appear to be bound to the metal atom through the amino nitrogen atom by means of a dative bond. Finally, the biological activity of the new complexes has been studied by MTT (tetrazolio salt reduction) test and by detecting the inhibition of DNA synthesis and of clonal growth in various cancer cell lines. All Pd(II) derivatives showed a noticeable activity very close to that of cisplatin, used as reference drug. Moreover, they showed significantly reduced cross-resistance to cisplatin in a pair of cell lines (2008/C13*) with known acquired cisplatin resistance mechanisms.  相似文献   

13.
Organometallic Ru(II) compounds are among the most widely studied anticancer agents. Functionalizing metal centers with biomolecule-derived ligands has been shown to be a promising strategy to improve the antiproliferative activity of metal-based chemotherapeutics. Herein, the synthesis of a series of novel 3-hydroxypyridin-2-one-derived ligands and their M(II) (η(6) -p-cymene) half-sandwich complexes (M=Ru, Os) is described. The compounds were characterized by 1D- and 2D-NMR spectroscopy, and elemental analysis.  相似文献   

14.
The fluorinated thioether compounds [C6H4Br-2-(CH2SRF)] (SRF = SC6F5 (1), SC6F4-4-H (2), SC6H4-2-F (3), SC6H4-3-F (4), SC6H4-4-F (5)) were synthesized and the reactivity of (1) was explored with transition metal complexes of the group 10. The results obtained indicate that the reactivity of these ligands is strongly dependent on the oxidation state of the metal center on the complex. Thus, products of the coordination of Pd(II) and Pt(II) to the sulfur moiety were obtained and unequivocally characterized by single crystal X-ray diffraction analyses. While spectroscopic evidence indicates that reaction of the Pt(0) compound [Pt(PEt3)3] leads to the formation of C–Br activation products, it is worth noting that similar reactions with Ni(0) and Pd(0) compounds only afford complex mixtures that in most of the cases indicate desulfurization of the ligands and decomposition of the metallic starting materials.  相似文献   

15.
Oxidative addition reactions between [M(PPh(3))(4)] (M=Pt and Pd) and N1-methylthymine (t)/3',5'-di-O-acetylthymidine (T) were carried out to give [M(II)(PPh(3))(2)Cl t (or T)] complexes, in which the metal is coordinated to the N3 of the base. All complexes were characterized by spectroscopic analyses (IR, NMR) and Fast Atom Bombardment mass spectrometry (FAB-MS); X-ray data for the thymine complexes and elemental analysis for the thymidine complexes are reported. The antiproliferative activity of the complexes was tested on human chronic myelogenous leukaemia K562 cells. Arrested polymerase-chain reaction analysis was carried on to correlate antiproliferative activity and inhibition of DNA replication. All Pd and Pt complexes exhibit antiproliferative activity, Pd complexes resulting always more active than Pt complexes. Arrested PCR data are strongly in agreement with the effects on cell growth, suggesting that inhibition of the DNA replication by the synthesized compounds is the major basis for their in vitro antiproliferative activity.  相似文献   

16.
《Inorganica chimica acta》1986,124(3):127-132
The barium dithiocarbamate derivates of the α-amino acids glycine, DL-alanine, DL-2-amino- butyric acid, DL-norvaline and DL-norleucine have been synthesized. The crystal structure of the glycine derivative was determined. The anions were used to obtain the corresponding nickel(II) complexes in acid form. The complexes are diamagnetic, and coordination takes place in a near-square planar geometry around the Ni(II) ion through the sulphur atoms of the dithiocarbamate moiety, the structure having been confirmed by IR, 1H NMR, UV-Vis spectroscopies and chemical analysis.  相似文献   

17.
The new square-planar Pt(II) and Pd(II) complexes with cytokinin-derived compounds Bohemine and Olomoucine, having the formulae [Pt(BohH(+))Cl(3)].H(2)O (1), [Pt(Boh)(2)Cl(2)].3H(2)O (2), [Pt(Boh-H)Cl(H(2)O)(2)].H(2)O (3), [Pt(OloH(+))Cl(3)].H(2)O (4), [Pd(BohH(+))Cl(3)].H(2)O (5), [Pd(Boh)Cl(2)(H(2)O)] (6), [Pd(Boh-H)Cl(H(2)O)].EtOH (7) and [Pd(OloH(+))Cl(3)].H(2)O (8), where Boh=6-(benzylamino)-2-[(3-(hydroxypropyl)amino]-9-isopropylpurine and Olo=6-(benzylamino)-2-[(2-(hydroxyethyl)amino]-9-methylpurine, have been synthesized. The complexes have been characterized by elemental analyses, IR, FAB+ mass, 1H, 13C and 195Pt NMR spectra, and conductivity data. The molecular structure of the complex [Pt(BohH(+)-N7)Cl(3)].9/5H(2)O has been determined by an X-ray diffraction study. Results from physical studies show that both Bohemine and Olomoucine are coordinated to transition metals through the N(7) atom of purine ring in all the complexes. The prepared compounds have been tested in vitro for their possible cytotoxic activity against G-361 (human malignant melanoma), HOS (human osteogenic sarcoma), K-562 (human chronic myelogenous leukemia) and MCF-7 (human breast adenocarcinoma) cell lines and IC(50) values have been also determined for all the complexes. IC(50) values estimated for the Pt(II)-Bohemine complexes (2.1-16 microM) allow us to conclude that they could find utilization in antineoplastic therapy. Thus, from a pharmacological point of view, Pt(II) complexes of Bohemine may represent compounds for a new class of antitumor drugs.  相似文献   

18.
The [M(ESDT)Cl](n) (M=Pt(II), Pd(II); ESDT=EtO(O)CCH(2)N(CH(3))CS(2)(-), ethylsarcosinedithiocarbamate ion) species have been reacted with 2- or 3-picoline in dichloromethane in order to obtain mixed ligand complexes of the type [M(ESDT)(L)Cl] (L=2-picoline, 3-picoline). The synthesized compounds have been isolated, purified and characterized by means of elemental analyses, (1)H-/(13)C-/(1)H(13)C-HMBC (heteronuclear multiple bonding coherence) NMR and FT-IR spectroscopy. The biological activity of the compounds reported here has been then determined in terms of cell growth inhibition, DNA synthesis inhibition, detection of interstrand cross-links and DNA-protein cross-links, and micronuclei (MN) detection on a panel of tumor cell lines both sensitive and resistant to cisplatin. On the basis of the experimental results, coordination in the above mentioned complexes takes place in a near square-planar geometry, the dithiocarbamate moiety acting as a chelating agent, whereas the two remaining coordination sites are occupied by a chlorine atom and an amino ligand. Above all, [Pt(ESDT)(2-picoline)Cl] complex has shown very encouraging cytotoxicity levels higher or, at least, comparable to those exerted by cisplatin in the same experimental conditions.  相似文献   

19.
This work reports on the synthesis, characterization and biological activity of new coordination compounds of the type [M(TSDTM)X(2)] (M=Pt(II), Pd(II); X=Cl, Br; TSDTM=ter-butylsarcosine(S-methyl)dithiocarbamate) and [Pd(TSDT)X](n) (TSDT=ter-butylsarcosinedithiocarbamate) in order to study their behavior as potential antitumor agents. All the synthesized compounds were characterized by means of elemental analysis, FT-IR, (1)H and (13)C-NMR spectroscopy and thermogravimetric analysis, suggesting a chelate S,S' structure of the TSDTM/TSDT ligand in a square-planar geometry. Finally, the synthesized complexes have been tested for in vitro cytotoxic activity against human leukemic HL60 and adenocarcinoma HeLa cells; the most active compound [Pt(TSDTM)Br(2)], characterized by IC(50) values very similar to those of the reference compound (cisplatin), was also tested for in vitro nephrotoxicity showing a very low renal cytotoxicity as compared to cisplatin itself.  相似文献   

20.
Abstract

The synthesis and chemical characterization of two structurally related platinum(II) and palladium(II) complexes, [M(2,2′-bipyridine)(morpholinedithiocarbamate)]NO3 or [M(bpy) (mor-dtc)]NO3, where M = Pt(II) or Pd(II), are described. Studies of anti-tumor activities of these complexes against human cell tumor lines (K562) have been carried out. They show 50% cytotoxic concentration (Cc50) values much lower than that of cisplatin. Both of these water soluble complexes have been shown to interact with calf thymus DNA (ct-DNA) using difference absorption-, fluorescence-, and circular dichroism-titration techniques. These studies showed that both complexes exhibit cooperative binding and presumably intercalate in DNA. These complexes unexpectedly denature DNA at very low concentrations (50–100 μM). Several binding and thermodynamic parameters are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号