首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A mechanism suggested to cause injury to preserved organs is the generation of oxygen free radicals either during the cold-storage period or after transplantation (reperfusion). Oxygen free radicals can cause peroxidation of lipids and alter the structural and functional properties of the cell membranes. Methods to suppress generation of oxygen free radicals of suppression of lipid peroxidation may lead to improved methods of organ preservation. In this study we determined how cold storage of rat hepatocytes affected lipid peroxidation by measuring thiobarbituric acid reactive products (malondialdehyde, MDA). Hepatocytes were stored in the UW solution +/- glutathione (GSH) or +/- polyethylene glycol (PEG) for up to 96 h and rewarmed (resuspended in a physiologically balanced saline solution and incubated at 37 degrees C under an atmosphere of oxygen) after each day of storage. Hepatocytes rewarmed after storage in the UW solution not containing PEG or GSH showed a nearly linear increase in MDA production with time of storage and contained 1.618 +/- 0.731 nmol MDA/mg protein after 96 h. When the storage solution contained PEG and GSH there was no significant increase in MDA production after up to 72 h of storage and at 96 h MDA was 0.827 +/- 0.564 nmol/mg protein. When freshly isolated hepatocytes were incubated (37 degrees C) in the presence of iron (160 microM) MDA formation was maximally stimulated (3.314 +/- 0.941 nmol/mg protein). When hepatocytes were stored in the presence of PEG there was a decrease in the capability of iron to maximally stimulate lipid peroxidation. The decrease in iron-stimulated MDA production was dependent upon the time of storage in PEG (1.773 nmol/mg protein at 24 h and 0.752 nmol/mg protein at 48 h).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Our purpose was to determine whether lipid peroxidation of lung tissue, a reflection of O2 radical injury, occurs with endotoxin, and whether the degree of tissue change corresponds with the degree of increased protein permeability. Unanesthetized adult sheep with lung lymph fistulas were given Escherichia coli endotoxin at a dose of 2 micrograms/kg (n = 34). Tissue lipid peroxidation was measured using the thiobarbituric acid assay for malondialdehyde (MDA). The MDA content of lung tissue in nanomoles per gram increased from a control value of 48 +/- 8 to 98 +/- 18 at 5 h postendotoxin (2 micrograms/kg), whereas lung lymph protein transport (Cp), was increased 3- to 4-fold. The MDA content returned to base line with Cp by 24 h postendotoxin. Six sheep given endotoxin were pretreated with 12.5 mg/kg of ibuprofen, and six were infused with dimethylthiourea (DMTU) 0.75 g/kg. With ibuprofen, Cp was only increased 2.5- to 3-fold and MDA was increased to 69 +/- 15 nmol/g. With DMTU, the increase in Cp was comparable to that with endotoxin alone, as was the MDA of lung tissue with a value of 92 +/- 12 nmol/g. The correlation of tissue MDA with Cp in all animals was 0.83. We conclude that lipid peroxidation occurs in lung tissue after a moderately severe endotoxin injury with the degree of change corresponding to the degree of increased Cp.  相似文献   

3.
Alendronate causes serious gastrointestinal adverse effects. The aim of this study was to investigate whether octreotide, a synthetic somatostatin analogue, improves the alendronate-induced gastric injury. Rats were administered 20mg/kg alendronate by gavage for 4 days, either alone or following treatment with octreotide (0.1 ng/kg, i.p.). On the last day, following drug administration, pilor ligation was performed and 2h later, rats were killed and stomachs were removed. Gastric acidity and tissue ulcer index values, lipid peroxidation (as assessed by malondialdehyde, MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity as well as the histologic appearance of the stomach tissues were determined. Chronic oral administration of alendronate induced significant gastric damage, increasing lipid peroxidation (37.1+/-3.2 nmol/g) and myeloperoxidase activity (57.6+/-3.7 U/g), while tissue glutathione levels (09.+/-0.1 micromol/g) decreased. Treatment with octreotide prevented this damage as well as the changes in biochemical parameters (MDA: 23.4+/-1.3 nmol/g; MPO: 31.68 U/g; GSH: 15.+/-0.1 micromol/g). Findings of the present study suggest that alendronate induces oxidative gastric damage by a local irritant effect, and that octreotide ameliorates this damage by inhibiting neutrophil infiltration and reducing lipid peroxidation. Therefore, its therapeutic role as a "ulcer healing" agent must be further elucidated in alendronate-induced gastric mucosal injury.  相似文献   

4.
It has been previously reported that Nigella sativa oil (NSO) and thymoquinone (TQ), active constituent of N. sativa seeds oil, may prevent oxidative injury in various models. Therefore, we considered the possible effect of TQ and NSO on lipid peroxidation level following cerebral ischemia-reperfusion injury (IRI) in rat hippocampus. Male NMRI rats were divided into nine groups, namely, sham, control, ischemia and ischemia treated with NSO or TQ. TQ (2.5, 5 and 10 mg/kg), NSO (0.048, 0.192 and 0.384 mg/kg), phenytoin (50 mg/kg, as positive control) and saline (10 ml/kg, as negative control) were injected intraperitoneally immediately after reperfusion and the administration was continued every 24h for 72 h after induction of ischemia. The transient global cerebral ischemia was induced using four-vessel-occlusion method for 20 min. Lipid peroxidation level in hippocampus portion was measured as malondialdehyde (MDA) based on its reaction with thiobarbituric acid (TBA) following ischemic insult. The transient global cerebral ischemia induced a significant increase in TBA reactive substances (TBARS) level (p<0.001), in comparison with sham-operated animal. Pretreatment with TQ and NSO were resulted a significant decrease in MDA level as compared with ischemic group (66.9+/-1.5 vs. 297+/-2.5 nmol/g tissue for TQ, 10 mg/kg; p<0.001 and 153.5+/-1.3 nmol/g tissue for NSO, 0.384 mg/kg; p<0.001). Using a reversed-phase HPLC system, the amount of TQ in NSO was also quantified and was 0.58% w/w. These results suggest that TQ and NSO may have protective effects on lipid peroxidation process during IRI in rat hippocampus.  相似文献   

5.
Glutathione peroxidase (GSHPx), a seleno-enzyme, reduces lipid hydroperoxides while producing oxidized glutathione (GSSG), which can efflux from cells. To study the role of GSHPx in antioxidant defense, isolated lungs from selenium-deficient rats were perfused for 2 h with or without 1 mM paraquat. Perfusate GSSG was measured as an index of GSHPx activity, and malondialdehyde (MDA) as an index of lipid peroxidation. Selenium deficiency decreased lung GSHPx activity 75-80%. During perfusion control lungs showed GSSG efflux of 8.5 +/- 4.5 nmol/h and with paraquat 49.1 +/- 12.1 nmol/h. Selenium-deficient lungs with or without paraquat showed GSSG efflux of 16.4 +/- 5.3 and 13.7 +/- 8.9 nmol/h, respectively. MDA efflux occurred only in paraquat-perfused selenium-deficient lungs (7.8 +/- 2.7 nmol/h). Lung homogenates from this group had lower GSH + GSSG than the other three groups. These results indicate an inverse correlation between GSSG efflux and MDA accumulation from paraquat-perfused lungs and suggest that increased turnover of the GSHPx reaction protects paraquat-perfused lungs from lipid peroxidation.  相似文献   

6.
The lipid peroxidation (as malondialdehyde, MDA), activities of superoxide dismutase (SOD) and catalase (CAT), and benzo[a]pyrene (BaP) metabolites were investigated in sera and erythrocytes of male Sprague-Dawley rats treated with BaP (20 mg per rat). MDA levels were significantly increased in sera (16.98+/-3.29 nmol/ml serum, P<0.05) 12 h after BaP treatment and persisted up to 96 h (13.80+/-1. 65 nmol/ml serum, P<0.05), but no significant change in NIDA levels was observed in erythrocytes. SOD and CAT activities were significantly increased in erythrocytes shortly after BaP exposure, and they were slightly decreased in sera, indicating an inverse correlation between lipid peroxidation and antioxidant enzyme activity. BaP and BaP-quinones (BaP-1,6-quinone and BaP-3,6-quinone) were measured in sera during the study period. A rapid increase of unmetabolized BaP was observed in sera (41.27+/-4.14 pmol/ml serum) 3 h after BaP treatment, reaching a peak at 6 h (48.56+/-4.62 pmol/ml serum) followed by a sharp decrease. Formation of the BaP-1, 6-quinone and BaP-3,6-quinone started in sera 3 h after BaP treatment, reached a peak at 24 h (7.23+/-1.02 pmol/ml serum) and 12 h (9.20+/-0.98 pmol/ml serum), respectively, and then decreased gradually. The time-dependent pattern of serum lipid peroxidation and the level of erythrocyte antioxidant enzymes were shown to be related to the concentrations of the BaP-quinone metabolites. These results suggest that BaP treatment, probably via the formation of BaP-quinones, oxidatively altered lipids and antioxidant enzymes in the blood, and might be associated with BaP-related vascular toxicity including carcinogenesis.  相似文献   

7.
We studied whether changes in lung function after burns (1- to 12-h period) were due to changes in lung water or airways resistance and the relationship of the changes to prostanoid and O2 radical activity (measured as lipid peroxidation). Twenty-five anesthetized mechanically ventilated adult sheep were given a 40% of body surface scald burn and resuscitated to restore and maintain base-line filling pressures. Dynamic lung compliance (Cdyn) decreased by 40% from 38 +/- 5 to 24 +/- 4 ml/cmH2O at 12 h. Venous thromboxane B2 transiently increased from 210 +/- 40 to 1,100 +/- 210 pg/ml, and the value in lung lymph increased from 180 +/- 80 to 520 +/- 80 pg/ml. Prostacyclin levels in lung lymph and plasma remained at base line. Protein-poor lung lymph flow increased two- to threefold, but postmortem lung analysis revealed no increase in lung water from the control of 3.5 +/- 0.3 g H2O/g dry wt. No increase in protein permeability was seen. However, the lipid peroxidation of lung tissue measured as malondialdehyde was significantly increased from the control value of 56 +/- 4 nmol/g lung to a value of 69 +/- 6. Ibuprofen pretreatment (12.5 mg/kg) markedly attenuated the decrease in Cdyn, with the value at 12 h being 90% of base line. Ibuprofen also decreased the amount of lung lipid peroxidation but did not decrease the lung lymph response. We conclude that the decrease in Cdyn seen early postburn is not due to increased lung water, but, rather, is due to a mediator-induced bronchoconstriction, attenuated by ibuprofen; the mediator being either thromboxane or a byproduct of O2 radicals as evidenced by increased lipid peroxide production in lung tissue.  相似文献   

8.
Unilamellar liposomes are used as a simple two-compartment model to study the interaction of antioxidants. The vesicle membrane can be loaded with lipophilic compounds such as carotenoids or tocopherols, and the aqueous core space with hydrophilic substances like glutathione (GSH) or ascorbate, mimicking the interphase between an aqueous compartment of a cell and its surrounding membrane.

Unilamellar liposomes were used to investigate the interaction of GSH with the carotenoids lutein, β-carotene and lycopene in preventing lipid peroxidation. Lipid peroxidation was initiated with 2,2'-azo-bis-[2,4-dimethylvaleronitrile] (AMVN). Malondialdehyde (MDA) formation was measured as an indicator of oxidation; additionally, the loss of GSH was followed. In liposomes without added antioxidant, MDA levels of 119 ± 6 nmol/mg phospholipid were detected after incubation with AMVN for 2 h at 37°C. Considerably lower levels of 57 ± 8 nmol MDA/mg phospholipid were found when the liposomal vesicles had been loaded with GSH. Upon incorporation of β-carotene, lycopene or lutein, the resistance of unilamellar liposomes towards lipid peroxidation was further modified. An optimal further protection was observed with 0.02 nmol β-carotene/mg phospholipid or 0.06 nmol lycopene/mg phospholipid. At higher levels both these carotenoids exhibited prooxidant effects. Lutein inhibited lipid peroxidation in a dose-dependent manner between 0.02 and 2.6 nmol/mg phospholipid. With increasing levels of lycopene and lutein the consumption of encapsulated GSH decreased moderately, and high levels of β-carotene led to a more pronounced loss of GSH.

The data demonstrate that interactions between GSH and carotenoids may improve resistance of biological membranes towards lipid peroxidation. Different carotenoids exhibit specific properties, and the level for optimal protection varies between the carotenoids.  相似文献   

9.
10.
The most abundant thiol in beans (Phaseolus vulgaris L. cv. Saxa) is the tripeptide homoglutathione (hGSH) rather than glutathione (GSH). At the whole-plant level the GSH content is less than 0.5% of the hGSH content. In the present study GSH was supplied to the roots of bean seedlings to test whether GSH can be taken up by roots and transported to the shoot. Therefore, 12-day-old plants were exposed to 1 mmol/L GSH for 4, 8 and 24 h prior to harvest. In response to this GSH exposure, elevated GSH contents were found in all tissues. After 4 h the GSH content increased in the roots from 1 +/- 1 to 22 +/- 2 nmol GSH g(-1) fresh weight (FW), in the leaves from 2 +/- 1 to 9 +/- 4 nmol GSH g(-1) FW, and in the apex from 30 +/- 5 to 75 +/- 4 nmol GSH g(-1) FW. These data indicate that GSH is taken up by bean roots and is transported to above above-ground parts of the plants. Roots exposed to GSH for 24 h contained 2-fold higher cysteine (Cys) and hGSH contents than the controls. Apparently, GSH taken up by the roots is not only loaded into the xylem but also partially degraded and used for hGSH synthesis.  相似文献   

11.
Reactive oxygen species (ROS) are implicated in the mechanism of biological aging and exercise-induced oxidative damage. The present study examined the effect of an acute bout of exercise on intracellular ROS production, lipid and protein peroxidation, and GSH status in the skeletal muscle of young adult (8 mo, n = 24) and old (24 mo, n = 24) female Fischer 344 rats. Young rats ran on a treadmill at 25 m/min and 5% grade until exhaustion (55.4 +/- 2.7 min), whereas old rats ran at 15 m/min and 5% grade until exhaustion (58.0 +/- 2.7 min). Rate of dichlorofluorescin (DCFH) oxidation, an indication of ROS and other intracellular oxidants production in the homogenate of deep vastus lateralis, was 77% (P < 0.01) higher in rested old vs. young rats. Exercise increased DCFH oxidation by 38% (P < 0.09) and 50% (P < 0.01) in the young and old rats, respectively. DCFH oxidation in isolated deep vastus lateralis mitochondria with site 1 substrates was elevated by 57% (P < 0.01) in old vs. young rats but was unaltered with exercise. Significantly higher DCFH oxidation rate was also found in aged-muscle mitochondria (P < 0.01), but not in homogenates, when ADP, NADPH, and Fe(3+) were included in the assay medium without substrates. Lipid peroxidation in muscle measured by malondialdehyde content showed no age effect, but was increased by 20% (P < 0.05) with exercise in both young and old rats. Muscle protein carbonyl formation was unaffected by either age or exercise. Mitochondrial GSH/ GSSG ratio was significantly higher in aged vs. young rats (P < 0.05), whereas exercise increased GSSG content and decreased GSH/GSSG in both age groups (P < 0.05). These data provided direct evidence that oxidant production in skeletal muscle is increased in old age and during prolonged exercise, with both mitochondrial respiratory chain and NADPH oxidase as potential sources. The alterations of muscle lipid peroxidation and mitochondrial GSH status were consistent with these conclusions.  相似文献   

12.
Female C57Bl/6J mice were given drinking water containing 0.05% propylthiouracil to induce a hypothyroid condition. Mitochondrial glycerol-3-phosphate dehydrogenase activity, used as an index of hypothyroidism, was 57.1 +/- 4.5 and 29.4 +/- 3.8 nmol/min per mg of protein for control and propylthiouracil-treated animals respectively. Administration of tri-iodothyronine resulted in an approx. 4.5-fold increase in dehydrogenase activity in propylthiouracil-treated animals. A dose-dependent increase in hepatic GSH S-transferase activity in propylthiouracil-treated animals was observed at tri-iodothyronine concentrations ranging from 2 to 200 micrograms/100 g body wt. This increase in transferase activity was seen only when 1,2-epoxy-3-(p-nitrophenoxy)propane was used as substrate for the transferase. Transferase activity with 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene as substrate was decreased by tri-iodothyronine. Administration of actinomycin D (75 micrograms/100 g body wt.) inhibited the tri-iodothyronine induction of transferase activity. Results of these studies strongly suggest that tri-iodothyronine administration markedly affected the activities of GSH S-transferase by inducing a specific isoenzyme of GSH S-transferase and suppressing other isoenzymic activities.  相似文献   

13.
A Nonaka  T Manabe  T Tobe 《Life sciences》1990,47(21):1933-1939
Oxygen-derived free radicals have been implicated as mediators of cellular injury in several model systems. In order to clarify the role of oxygen radicals in endotoxemia, we measured the serial lipid peroxide changes resulting from systemic radical reactions using a newly developed colormetric method. To determine the effect of a free radical scavenger on mortality in endotoxemia, a new synthetic scavenger, 2-Octadecylascorbic acid (CV-3611), which overcome the detrimental properties (circulation half-life and cell penetration) of native SOD, was used in the model of mouse endotoxemia induced by the i.p. administration of E-coli endotoxin (10 mg/kg). Serial LPO (Lipid Peroxide) changes revealed significant elevations from the basal level of 4.52 +/- 0.79 nmol/ml to 10.5 +/- 2.04 nmol/ml at 2h (P less than 0.05), 12.0 +/- 2.44 nmol/ml at 8h (P less than 0.05), 32.8 +/- 12.5 nmol/ml at 12h (P less than 0.05) and 13.6 +/- 2.40 nmol/ml at 24h (P less than 0.05) following i.p. administration of E-coli. The circulation half life of CV-3611 was checked by a reversed-phase HPLC after 10 mg/kg s.c. administration. The level of CV-3611 reached peak levels of 0.54 +/- 0.10 micrograms/ml at 1h and 0.52 +/- 0.20 micrograms/ml at 2h then gradually decreased to the level of 0.04 +/- 0.004 micrograms/ml at 6h and to a non-detectable level at 24h after s.c. administration. Increased survival was seen at 2 days (P less than 0.001) after E-coli endotoxin administration in the CV-3611 treated group compared to the control group. These results suggest that oxygen derived free radicals contribute to mortality in mouse endotoxemia and that antioxidants such as CV-3611 may provide a new therapeutic avenue by improving survival of patients with gram-negative bacterial sepsis.  相似文献   

14.
Unilamellar liposomes are used as a simple two-compartment model to study the interaction of antioxidants. The vesicle membrane can be loaded with lipophilic compounds such as carotenoids or tocopherols, and the aqueous core space with hydrophilic substances like glutathione (GSH) or ascorbate, mimicking the interphase between an aqueous compartment of a cell and its surrounding membrane.

Unilamellar liposomes were used to investigate the interaction of GSH with the carotenoids lutein, β-carotene and lycopene in preventing lipid peroxidation. Lipid peroxidation was initiated with 2,2′-azo-bis-[2,4-dimethylvaleronitrile] (AMVN). Malondialdehyde (MDA) formation was measured as an indicator of oxidation; additionally, the loss of GSH was followed. In liposomes without added antioxidant, MDA levels of 119 ± 6 nmol/mg phospholipid were detected after incubation with AMVN for 2 h at 37°C. Considerably lower levels of 57 ± 8 nmol MDA/mg phospholipid were found when the liposomal vesicles had been loaded with GSH. Upon incorporation of β-carotene, lycopene or lutein, the resistance of unilamellar liposomes towards lipid peroxidation was further modified. An optimal further protection was observed with 0.02 nmol β-carotene/mg phospholipid or 0.06 nmol lycopene/mg phospholipid. At higher levels both these carotenoids exhibited prooxidant effects. Lutein inhibited lipid peroxidation in a dose-dependent manner between 0.02 and 2.6 nmol/mg phospholipid. With increasing levels of lycopene and lutein the consumption of encapsulated GSH decreased moderately, and high levels of β-carotene led to a more pronounced loss of GSH.

The data demonstrate that interactions between GSH and carotenoids may improve resistance of biological membranes towards lipid peroxidation. Different carotenoids exhibit specific properties, and the level for optimal protection varies between the carotenoids.  相似文献   

15.
BACKGROUND AND AIMS: Acetaminophen (APAP) or paracetamol is a hepatotoxic drug through mechanisms involving oxidative stress. To know whether mammalian cells possess inducible pathways for antioxidant defense, we have to study the relationship between heme metabolism and oxidative stress. METHODS: fasted female Wistar rats received a single injection of APAP (3.3 mmol kg(-1) body weight) and then were killed at different times. Heme oxygenase-1 (HO), delta-aminolevulinic acid (ALA) synthase, ALA dehydratase, and porphobilinogenase activities, lipid peroxidation, GSH, catalase and glutathione peroxidase, were measured in liver homogenates. The antioxidant properties of bilirubin and S-adenosyl-L-methionine were also evaluated. RESULTS: APAP increased lipid peroxidation (115% +/- 6; S.E.M., n=12 over control values) 1 h after treatment. GSH reached a minimum at 3 h (38% +/- 5) increasing thereafter. At the same time antioxidant enzymes reached minimum values (catalase, 5. 6 +/- 0.4 pmol mg(-1) protein, glutathione peroxidase, 0.101 +/- 0.006 U mg(-1) protein). HO induction was observed 6 h after treatment reaching a maximum value of 2.56 +/- 0.12 U mg(-1) protein 15 after injection. ALA synthase (ALA-S) induction occurred after enhancement of HO, reaching a maximum at 18 h (three-fold the control). ALA dehydratase activity was first inhibited (31 +/- 3%) showing a profile similar to that of GSH, while porphobilinogenase activity was not modified along the whole period of the assay. Administration of bilirubin (5 micromol kg(-1) body weight) or S-adenosyl L-methionine (46 micromol kg(-1) body weight) 2 h before APAP treatment entirely prevented the increase in malondialdehyde (MDA) content, the decrease in GSH levels as well as HO and ALA-S induction. CONCLUSION: This study shows that oxidative stress produced by APAP leads to increase in ALA-S and HO activities, indicating that toxic doses of APAP affect both heme biosynthesis and degradation.  相似文献   

16.
Rats with streptozotocin-induced diabetes mellitus (DM) are resistant to aminoglycoside (AG) nephrotoxicity presumably because of defective transport and accumulation of drug by proximal tubular cells. To test this hypothesis we injected DM rats with saline or with gentamicin, 100, 200, and 400 mg/kg per day for 6 days, to determine if the renal cortical concentration of gentamicin could be raised to toxic levels. Nephrotoxicity was assessed by monitoring for evidence of accelerated lipid peroxidation in the renal cortex, for elevation of the serum creatinine concentration, and for evidence of proximal tubular cell injury and necrosis by light and electron microscopy. At 100 mg/kg per day renal cortical gentamicin was 454 +/- 85 micrograms/g. Except for an increase in renal cortical phospholipids these rats manifested no evidence of accelerated lipid peroxidation or elevation of serum creatinine. At 200 mg/kg per day renal cortical gentamicin rose to 636 +/- 20 micrograms/g. These rats manifested mild functional and morphological evidence of toxicity. At 400 mg/kg renal cortical gentamicin rose to 741 +/- 43 micrograms/g. These rats developed severe nephrotoxic injury as manifested by a marked increase of lipid peroxidation evident by an increase of malondialdehyde from a control level of 0.48 +/- 0.02 to 1.72 +/- 0.12 nmole/mg protein, a shift from unsaturated to saturated fatty acids esterified in renal cortical phospholipids, depression of superoxide dismutase and catalase, and a shift from reduced to oxidized glutathione. The serum creatinine rose from a baseline level of 0.24 +/- 0.01 to 0.46 +/- 0.05 mg/dl. Light and electron microscopy revealed enlarged lysosomes distended with typical myeloid bodies and extensive proximal tubular cell necrosis. These observations provide compelling evidence in support of the view that the resistance of DM rats to AG nephrotoxicity is causally linked to the low rate of drug uptake by renal proximal tubular cells. When the renal cortical concentration reaches a critical level, it elicits a pattern of toxic injury indistinguishable from that of nondiabetic rats. Thus, there is nothing inherent to the diabetic state that prevents AGs from causing their usual adverse effects on the metabolism of renal proximal tubular cells once they gain access in sufficient quantity into these cells.  相似文献   

17.
Increased lipid peroxidation, enhanced nuclear factor kappa-B (NF-kappaB) activation and augmented tumor necrosis factor-alpha (TNF-alpha) production have been implicated in cerulein-induced pancreatitis. We investigated whether lipid peroxidation inhibition might reduce NF-kappaB activation and the inflammatory response in cerulein-induced pancreatitis. Male Sprague-Dawley rats of 230-250g body weight received administration of cerulein (80 microg/kg s.c. for each of four injections at hourly intervals). A control group received four s.c. injections of 0.9% saline at hourly intervals. Animals were randomized to receive either raxofelast, an inhibitor of lipid peroxidation (20 mg/kg i.p. administered with the first cerulein injection) or its vehicle (1 ml/kg of a 10% DMSO/NaCl solution). All these rats were sacrificed 2 h after the last injection of either cerulein or its vehicle. Raxofelast administration (20 mg/kg i.p. with the first cerulein) significantly reduced malondialdehyde (MDA) levels, an index of lipid peroxidation (CER + DMSO = 3.075 +/- 0.54 micromol/g; CER + raxofelast = 0.693 +/- 0.18 micromol/g; p < 0.001), decreased myeloperoxidase (MPO) activity (CER + DMSO = 22.2 +/- 3.54 mU/g; CER + raxofelast = 9.07 +/- 2.05 mU/g, p < 0.01), increased glutathione levels (GSH) (CER + DMSO = 5.21 +/- 1.79 micromol/g; CER + raxofelast = 15.71 +/- 2.14 micronol/g; p < 0.001), and reduced acinar cell damage evaluated by means of histology and serum levels of both amylase (CER + DMSO = 4063 +/- 707.9 U/l; CER + raxofelast = 1198 +/- 214.4 U/l; p < 0.001), and lipase (CER + DMSO = 1654 +/- 330 U/l; CER + raxofelast = 386 +/- 118.2 U/l; p < 0.001), Furthermore, raxofelast reduced pancreatic NF-kappaB activation and the TNF-alpha mRNA levels and tissue content of mature protein in the pancreas. Indeed, lipid peroxidation inhibition might be considered a potential therapeutic approach to prevent the severe damage in acute pancreatitis.  相似文献   

18.
Intoxication of NMRI Albino mice with bromobenzene is often followed by the appearance of neurological symptoms. The possibility was investigated that the intoxication results in glutathione (GSH) depletion in central nervous systems as seen in other tissues, and that such a depletion is followed by the development of lipid peroxidation. 18-20 hours after bromobenzene administration (15 mmoles/Kg, p.o.) GSH content of prosencephalic and metencephalic regions was depleted by 39 and 55%, respectively. Lipid peroxidation (measured by the tissue content of malonildialdehyde) was observed only when GSH content reached a threshold value, which was different for prosencephalon as compared to metencephalon (2-1.5 mumoles GSH/g and 1.2-0.7 mumoles GSH/g, respectively). Possible mechanisms underlying the phenomenon are discussed.  相似文献   

19.
Paint thinner is a commonly used industrial solvent with considerable potential for abuse by inhalation. Paint thinner is taken into the body by inhalation or by contact with the skin. Paint thinner is oxidized gradually by cytochrome P450-dependent monooxygenase and consequently free radicals are produced. In the present study we measured plasma malondialdehyde (MDA, a product of lipid peroxidation) levels as an indicator of oxidative damage and activity levels of antioxidant enzymes gluthatione peroxidase (GSH-Px) and superoxide dismutase (SOD) in erythrocytes of a group of people (n = 18) working with paint thinner. The control group was composed of 18 healthy adults. There was a statistically significant (p < 0.001) increase in MDA (2.0+/-0.7 nmol ml(-1)) and GSH-Px (86.5+/-16.6 U g(-1) Hb) activity levels in people working with paint thinner compared with control subjects (MDA: 1.0+/-0.3 nmol ml(-1); GSH-Px: 53.9+/-14.5 U g(-1) Hb). Similarly, there was also an increase (p < 0.05) in the SOD levels (1079+/-214.6 U g(-1) Hb) of people working with paint thinner compared with controls (953.3+/-46.7 U g(-1) Hb). Based on our results, it can be concluded that paint thinner inhalation may increase lipid peroxidation and consequently induce antioxidant enzymes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号