首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Sickle cell disease patients receiving hydroxyurea (HU) therapy have shown increases in the production of nitric oxide (NO) metabolites, which include iron nitrosyl hemoglobin (HbNO), nitrite, and nitrate. However, the exact mechanism by which HU forms HbNO in vivo is not understood. Previous studies indicate that the reaction of oxyhemoglobin (oxyHb) or deoxyhemoglobin (deoxyHb) with HU are too slow to account for in vivo HbNO production. In this study, we show that the reaction of methemoglobin (metHb) with HU to form HbNO could potentially be fast enough to account for in vivo HbNO formation but competing reactions of either excess oxyHb or deoxyHb during the reaction reduces the likelihood that HbNO will be produced from the metHb-HU reaction. Using electron paramagnetic resonance (EPR) spectroscopy we have detected measurable amounts of HbNO and metHb during the reactions of oxyHb, deoxyHb, and metHb with excess hydroxylamine (HA). We also demonstrate HbNO and metHb formation from the reactions of excess oxyHb, deoxyHb, or metHb and HA, conditions that are more likely to mimic those in vivo. These results indicate that the reaction of hydroxylamine with hemoglobin produces HbNO and lend chemical support for a potential role for hydroxylamine in the in vivo metabolism of hydroxyurea.  相似文献   

2.
Although it has been shown that hydroxyurea (HU) therapy produces measurable amounts of nitric oxide (NO) metabolites, including iron nitrosyl hemoglobin (HbNO) in patients with sickle cell disease, the in vivo mechanism for formation of these is not known. Much in vitro data and some in vivo data indicates that HU is the NO donor, but other studies suggest a role for nitric oxide synthase (NOS). In this study, we confirm that the NO-forming reactions of HU with hemoglobin (Hb) or other blood constituents is too slow to account for NO production measured in vivo. We hypothesize that, in vivo, HU is partially metabolized to hydroxylamine (HA), which quickly reacts with Hb to form methemoglobin (metHb) and HbNO. We show that addition of urease, which converts HU to HA, to a mixture of blood and HU, greatly enhances HbNO formation.  相似文献   

3.
Hydroxyurea is a relatively new treatment for sickle cell disease. A portion of hydroxyurea's beneficial effects may be mediated by nitric oxide, which has also drawn considerable interest as a sickle cell disease treatment. Patients taking hydroxyurea show a significant increase in iron nitrosyl hemoglobin and plasma nitrite and nitrate within 2 h of ingestion, providing evidence for the in vivo conversion of hydroxyurea to nitric oxide. Hydroxyurea reacts with hemoglobin to produce iron nitrosyl hemoglobin, nitrite, and nitrate, but these reactions do not occur fast enough to account for the observed increases in these species in patients taking hydroxyurea. This report reviews recent in vitro studies directed at better understanding the in vivo nitric oxide release from hydroxyurea in patients. Specifically, this report covers: (1) peroxidase-mediated formation of nitric oxide from hydroxyurea; (2) nitric oxide production after hydrolysis of hydroxyurea to hydroxylamine; and (3) the nitric oxide-producing structure-activity relationships of hydroxyurea. Results from these studies should provide a better understanding of the nitric oxide donor properties of hydroxyurea and guide the development of new hydroxyurea-derived nitric oxide donors as potential sickle cell disease therapies.  相似文献   

4.
Jensen FB 《The FEBS journal》2008,275(13):3375-3387
The nitrite reductase activity of deoxyhemoglobin has received much recent interest because the nitric oxide produced in this reaction may participate in blood flow regulation during hypoxia. The present study used spectral deconvolution to characterize the reaction of nitrite with carp and rabbit hemoglobin at different constant oxygen tensions that generate the full range of physiological relevant oxygen saturations. Carp is a hypoxia-tolerant species with very high hemoglobin oxygen affinity, and the high R-state character and low redox potential of the hemoglobin is hypothesized to promote NO generation from nitrite. The reaction of nitrite with deoxyhemoglobin leads to a 1 : 1 formation of nitrosylhemoglobin and methemoglobin in both species. At intermediate oxygen saturations, the reaction with deoxyhemoglobin is clearly favored over that with oxyhemoglobin, and the oxyhemoglobin reaction and its autocatalysis are inhibited by nitrosylhemoglobin from the deoxyhemoglobin reaction. The production of NO and nitrosylhemoglobin is faster and higher in carp hemoglobin with high O(2) affinity than in rabbit hemoglobin with lower O(2) affinity, and it correlates inversely with oxygen saturation. In carp, NO formation remains substantial even at high oxygen saturations. When oxygen affinity is decreased by T-state stabilization of carp hemoglobin with ATP, the reaction rates decrease and NO production is lowered, but the deoxyhemoglobin reaction continues to dominate. The data show that the reaction of nitrite with hemoglobin is dynamically influenced by oxygen affinity and the allosteric equilibrium between the T and R states, and that a high O(2) affinity increases the nitrite reductase capability of hemoglobin.  相似文献   

5.
The kinetics of the reaction of hydroxyurea (HU) with myoglobin (Mb), hemin, sickle cell hemoglobin (HbS), and normal adult hemoglobin (HbA) were determined using optical absorption spectroscopy as a function of time, wavelength, and temperature. Each reaction appeared to follow pseudo-first order kinetics. Electron paramagnetic resonance spectroscopy (EPR) experiments indicated that each reaction produced an FeNO product. Reactions of hemin and the ferric forms of HbA, HbS, and myoglobin with HU also formed the NO adduct. The formation of methemoglobin and nitric oxide-hemoglobin from these reactions may provide further insight into the mechanism of how HU benefits sickle cell patients.  相似文献   

6.
We have added nitric oxide (NO) to hemoglobin in 0.1 M and 0.01 M phosphate buffers as well as to whole blood, all as a function of hemoglobin oxygen saturation. We found that in all these conditions, the amount of nitrosyl hemoglobin (HbNO) formed follows a model where the rates of HbNO formation and methemoglobin (metHb) formation (via hemoglobin oxidation) are independent of oxygen saturation. These results contradict those of an earlier report where, at least in 0.01 M phosphate, an elevated amount of HbNO was formed at high oxygen saturations. A radical rethink of the reaction of oxyhemoglobin with NO under physiological conditions was called for based on this previous proposition that the primary product is HbNO rather than metHb and nitrate. Our results indicate that no such radical rethink is called for.  相似文献   

7.
We have added nitric oxide (NO) to hemoglobin in 0.1 M and 0.01 M phosphate buffers as well as to whole blood, all as a function of hemoglobin oxygen saturation. We found that in all these conditions, the amount of nitrosyl hemoglobin (HbNO) formed follows a model where the rates of HbNO formation and methemoglobin (metHb) formation (via hemoglobin oxidation) are independent of oxygen saturation. These results contradict those of an earlier report where, at least in 0.01 M phosphate, an elevated amount of HbNO was formed at high oxygen saturations. A radical rethink of the reaction of oxyhemoglobin with NO under physiological conditions was called for based on this previous proposition that the primary product is HbNO rather than metHb and nitrate. Our results indicate that no such radical rethink is called for.  相似文献   

8.
Hydroxyurea is an approved treatment for sickle cell disease. Oxidation of hydroxyurea results in the formation of nitric oxide (NO), which also has drawn considerable interest as a sickle cell disease therapy. Although patients on hydroxyurea demonstrate elevated levels of nitric oxide-derived metabolites, little information regarding the site or mechanism of the in vivo conversion of hydroxyurea to nitric oxide exists. Chemiluminescence detection experiments show the ability of crude rat liver homogenate to convert hydroxyurea to nitrite/nitrate, evidence for NO production. Nitrite/nitrate form at therapeutic concentrations of hydroxyurea in a clinically relevant time frame. Electron paramagnetic resonance (EPR) studies show the formation of iron nitrosyl complexes during this incubation and experiments with labeled hydroxyurea show the NO derives from the drug. Gas chromatography-mass spectrometry measurements indicate the hydrolysis of hydroxyurea to hydroxylamine in this system. Incubation of hydroxylamine with crude rat liver homogenate also generates nitrite/nitrate and iron nitrosyl complexes. A line of evidence including inhibitor studies, EPR spectroscopy, and nitrite/nitrate detection identifies catalase as a possible oxidant for the conversion of hydroxyurea to NO. These results reveal the ability of liver tissue to convert hydroxyurea to nitric oxide and provide insight into the metabolism of this drug.  相似文献   

9.
In addition to its capacity to increase fetal hemoglobin levels, other mechanisms are implicated in hydroxyurea's ability to provide beneficial effects to patients with sickle cell disease. We hypothesize that the reaction of hemoglobin with hydroxyurea may play a role. It is shown that hydroxyurea reacts with deoxy-sickle cell hemoglobin (Hb) to form methemoglobin (metHb) and nitrosyl hemoglobin (HbNO). The products of the reaction as well as the kinetics are followed by absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. Analysis of the kinetics shows that the reaction can be approximated by a pseudo-first order rate constant of 3.7x10(-4) (1/(s.M)) for the disappearance of deoxy-sickle cell hemoglobin. Further analysis shows that HbNO is formed at an observed average rate of 5.25x10(-5) (1/s), three to four times slower than the rate of formation of metHb. EPR spectroscopy is used to show that the formation of HbNO involves the specific transfer of NO from the NHOH group of hydroxyurea. The potential importance of this reaction is discussed in the context of metHb and HbNO being able to increase the delay time for sickle cell hemoglobin polymerization and HbNO's vasodilating capabilities through conversion to S-nitrosohemoglobin.  相似文献   

10.
Recent studies reveal a novel role for hemoglobin as an allosterically regulated nitrite reductase that may mediate nitric oxide (NO)-dependent signaling along the physiological oxygen gradient. Nitrite reacts with deoxyhemoglobin in an allosteric reaction that generates NO and oxidizes deoxyhemoglobin to methemoglobin. NO then reacts at a nearly diffusion-limited rate with deoxyhemoglobin to form iron-nitrosyl-hemoglobin, which to date has been considered a highly stable adduct and, thus, not a source of bioavailable NO. However, under physiological conditions of partial oxygen saturation, nitrite will also react with oxyhemoglobin, and although this complex autocatalytic reaction has been studied for a century, the interaction of the oxy- and deoxy-reactions and the effects on NO disposition have never been explored. We have now characterized the kinetics of hemoglobin oxidation and NO generation at a range of oxygen partial pressures and found that the deoxy-reaction runs in parallel with and partially inhibits the oxy-reaction. In fact, intermediates in the oxy-reaction oxidize the heme iron of iron-nitrosyl-hemoglobin, a product of the deoxy-reaction, which releases NO from the iron-nitrosyl. This oxidative denitrosylation is particularly striking during cycles of hemoglobin deoxygenation and oxygenation in the presence of nitrite. These chemistries may contribute to the oxygen-dependent disposition of nitrite in red cells by limiting oxidative inactivation of nitrite by oxyhemoglobin, promoting nitrite reduction to NO by deoxyhemoglobin, and releasing free NO from iron-nitrosyl-hemoglobin.  相似文献   

11.
The kinetics and equilibrium of the redox reactions of hemoglobin A, hemoglobin M Iwate, and hemoglobin M Hyde Park using the iron (II) and iron (III) complexes of trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetate (CDTA4-) as the reducing and oxidizing agents have been studied. With respect to the equilibrium it was found that hemoglobin M Iwate (where the beta chains were reduced) was more readily reduced than hemoglobin M Hyde Park (where the alpha chains are reduced). This difference was shown to be a result of a difference in the rate constant for reduction but not oxidation. The observed rate contants for the reduction of all three hemoglobins were shown to decrease with increasing pH. This was attributed to a decrease in the [T]/[R] ratio. The observed rate contants for the oxidation reaction were shown to increase with increasing pH. Accompanying this increase was a change in the kinetic profile for hemoglobin A from pseudo first order to one in which the rate increased as the extent of reaction increased. Inositol hexaphosphate had no effect on the rate of oxidation of deoxyhemoglobin A. This was a result of binding of FeCDTA2- or HCDTA3- to the protein. However, in the presence of inositol hexaphosphate, the reduction of methemoglobin A exhibited biphasic kinetics. This result was interpreted in terms of the production of a small amount of a conformation which was more readily reduced.  相似文献   

12.
Nitric oxide has been used as a chain-specific, spin label of unliganded heme groups present in kinetic mixtures of human hemoglobin and n-butyl isocyanide. In these experiments, deoxyhemoglobin was reacted with n-butyl isocyanide for a controlled time and then mixed rapidly with a high concentration of nitric oxide to fill residual, unoccupied heme sites. The final mixture was frozen immediately after formation to prevent any displacement of bound isonitrile. The EPR spectrum of the frozen sample was resolved into alpha and beta nitric oxide components; these reflect the relative proportions of alpha- and beta-heme sites which were unoccupied by n-butyl isocyanide. Individual time courses for the alpha and beta subunits were obtained by varying the time between the formation of the isonitrile/hemoglobin mixture and its reaction with nitric oxide. At pH 7.0 only the beta chain time course exhibits an initial rapid phase; the alpha chain time course is monophasic, exhibiting almost, exponential behavior. This result shows unequivocally that the beta-hemes within deoxyhemoglobin react much more rapidly with n-butyl isocyanide than the alpha hemes.  相似文献   

13.
Release of hemoglobin from the erythrocyte during intravascular hemolysis contributes to the pathology of a variety of diseased states. This effect is partially due to the enhanced ability of cell-free plasma hemoglobin, which is primarily found in the ferrous, oxygenated state, to scavenge nitric oxide. Oxidation of the cell-free hemoglobin to methemoglobin, which does not effectively scavenge nitric oxide, using inhaled nitric oxide has been shown to be effective in limiting pulmonary and systemic vasoconstriction. However, the ferric heme species may be reduced back to ferrous hemoglobin in plasma and has the potential to drive injurious redox chemistry. We propose that compounds that selectively convert cell-free hemoglobin to ferric, and ideally iron-nitrosylated heme species that do not actively scavenge nitric oxide, would effectively treat intravascular hemolysis. We show here that nitroxyl generated by Angeli's salt (sodium alpha-oxyhyponitrite, Na2N2O3) preferentially reacts with cell-free hemoglobin compared to that encapsulated in the red blood cell under physiologically relevant conditions. Nitroxyl oxidizes oxygenated ferrous hemoglobin to methemoglobin and can convert the methemoglobin to a more stable, less toxic species, iron-nitrosyl hemoglobin. These results support the notion that Angeli's salt or a similar compound could be used to effectively treat conditions associated with intravascular hemolysis.  相似文献   

14.
The reaction between nitrite and hemoglobin has been studied for over a century. However, recent evidence indicating nitrite is a latent vasodilatory agent that can be activated by its reaction with deoxyhemoglobin has led to renewed interest in this reaction. In this review we survey, in the context of our own recent studies, the chemical reactivity of nitrite with oxyhemoglobin, deoxyhemoglobin and methemoglobin, and place these reactions in both a physiological and pharmacological/therapeutic context.  相似文献   

15.
Sesamol (3,4-methylenedioxyphenol), a monophenolic antioxidant in sesame iol, produced methemoglobin from hemoglobin A (oxyhemoglobin and deoxyhemoglobin) and from red cells. The activity of the compound was more extensive than the polyphenolic compounds. The profiles of the methemoglobin formation by the compound were compared with those by nitrite and hydroxylamine. The formation of methemoglobin from oxyhemoglobin by the compound was rather slowly progressed, but the amount of methemoglobin formed was proportional to the concentration of oxyhemoglobin even when the concentration of the compound was low. The sesamol-induced methemoglobin formation was influenced by inositol hexaphosphate, an allosteric effector of hemoglobin. Thus, the phosphate enhanced the transformation of oxyhemoglobin and inhibited the transformation of deoxyhemoglobin.  相似文献   

16.
17.
Salhany JM 《Biochemistry》2008,47(22):6059-6072
The reaction of deoxyhemoglobin with nitrite was characterized in the presence of dithionite using hemoglobin in solution or bound to the cytoplasmic domain of band 3 (CDB3). Deoxyhemoglobin was generated by predeoxygenation (nitrogen flushing followed by addition of dithionite), or transiently, by rapidly mixing oxyhemoglobin with nitrite and dithionite simultaneously. Wavelength-dependent kinetic studies confirmed the formation of nitrosyl hemoglobin. Furthermore, the rate of reaction was independent of dithionite concentration, indicating that dithionite does not reduce nitrite to nitric oxide directly. Model simulation studies showed that superoxide anion generated by dithionite reduction of molecular oxygen was not a factor in the reaction kinetics. CDB3-bound hemoglobin reacted faster with nitrite than did hemoglobin in solution. This difference was most pronounced for predeoxygenated hemoglobin and least pronounced for rapidly deoxygenated hemoglobin. The smaller difference observed in the rapid deoxygenation experiment was associated with much faster kinetics compared to the predeoxygenation experiment. Model simulation studies showed, and literature evidence indicates, that faster kinetics in the rapid deoxygenation experiment were related to the initial presence of R-state Hb(II)O 2 alphabeta dimers, both in dilute solution and when bound to CDB3. Thus, rapidly deoxygenated CDB3-bound hemoglobin alphabeta dimers react 5-fold faster with nitrite than predeoxygenated tetrameric hemoglobin in solution. Faster nitrite reductase kinetics for CDB3-bound hemoglobin suggests the possibility of preferential nitric oxide generation at the inner surface of the erythrocyte membrane, thus coupling the release of oxygen from hemoglobin to the production and successful release of nitric oxide from the erythrocyte, and the regulation of blood flow.  相似文献   

18.
A spectrophotometric method has been developed that uses extracellular hemoglobin (Hb) to trap nitric oxide (NO) released during denitrification as nitrosyl hemoglobin (HbNO). The rate of complexation of NO with Hb is about at the diffusion controlled limit for protein molecules and the product, HbNO, is essentially stable. Hb was added to an anaerobic bacterial suspension and denitrification was initiated with either KNO2 or KNO3. HbNO formation was observed for six species of denitrifying bacteria and showed isosbestic points at 544, 568, and 586 nm. Cellular NO production, presumably by nitrite reductase, was kinetically distinct from the much slower chemical reaction of Hb with KNO2 to form methemoglobin and HbNO. The rate of HbNO formation was proportional to cell density, essentially independent of pH from 6.8 to 7.4, nearly zero order in [Hb] and, at least with Paracoccus denitrificans, strongly inhibited by rotenone and antimycin A. The Cu chelator, diethyldithiocarbamate, had no effect on HbNO formation by Pa. denitrificans, but abolished that by Achromobacter cycloclastes which uses a Cu-containing nitrite reductase known to be inactivated by the chelator. HbNO formation did not occur with non-denitrifying bacteria. The stoichiometry at high [Hb] for conversion of Hb to HbNO was 1.3-1.8 KNO2 per Hb for Pa. denitrificans, Pseudomonas aeruginosa, and A. cycloclastes and about 3.4 for Pseudomonas stutzeri. The former range of values corresponds to a partition of about 2 N atoms in 3 toward trapping and 1 in 3 toward reduction on the pathway to N2. Nitrogen not trapped appeared largely as N2O in presence of acetylene. The results are consistent with a model in which NO is a freely diffusible intermediate between nitrite and N2O, providing that nitric oxide reductase is or nearly is a diffusion controlled enzyme.  相似文献   

19.
The homodimeric hemoglobin from the mollusk Scapharca inaequivalvis possesses a single reactive cysteine residue per monomer, Cys92, which is located in the subunit interface in the vicinity of the heme group. The interplay between the heme iron and Cys92 towards the reaction with NO has been investigated by the combined use of electrospray mass spectrometry, FTIR and UV-Visible spectroscopy. When the ferrous liganded or unliganded protein reacts with free NO in solution Cys92 is not modified, but undergoes nitrosation when the hemoglobin is exposed to the nitric oxide releaser S-nitrosocysteine. When the ferric protein reacts with free NO under anaerobic conditions the heme iron is reduced and Cys92 is nitrosated. At variance with other hemeproteins investigated to date, in Scapharca HbI the heme-iron NO driven reduction is not accompanied by the formation of a ferric iron nitrosyl intermediate in detectable amounts. The results are consistent with the hypothesis that the nitrosating agent is the NO(+) species, which is generated during the NO driven reduction of the ferric heme iron. The possible reaction mechanism is discussed in comparison with recent findings on human hemoglobin and myoglobin.  相似文献   

20.
The reaction of human hemoglobin and some of its derivatives with aliphatic and aromatic compounds carrying from two to six carboxylate groups has been studied. The effect of the polycarboxylates as well as of three co-ordinate anions (respectively tri-, tetra- and pentavalent) on the oxygenation and oxidation-reduction equilibria and optical spectra have been compared to those of 2,3-diphosphoglycerate and inositol hexaphosphate.All the polyvalent anions raise the P0.53 and the Em values of human hemoglobin and are thus bound more strongly to deoxyhemoglobin than to oxy- or methemoglobin. Binding of benzene hexacarboxylate and benzene pentacarboxylate to oxyhemoglobin is demonstrated through a study of oxygenation curves, that of these reagents, and ferrocyanide, to methemoglobin through their effect on redox potential as well as on optical spectra. Methemoglobin and oxyhemoglobin are shown to bind more than one molecule of the carboxylates at high anion concentrations. Results bearing on the anion binding site for deoxy- as well as for methemoglobin are reported.Two appropriate human hemoglobin derivatives, namely HbBME and HbNES desArg have been examined in search of relations between the effect of anions on oxygen equilibria and that on quaternary structure: in both of these derivatives the chemical modifications inhibit quaternary conformational change that would result from oxygen binding, the deoxy structure being strongly destabilized. Several of the polyanions significantly raise the P0.5 values of these derivatives but do not modify the quaternary structure, as judged from the absence of characteristic spectral changes. The results imply that anion binding by these proteins somehow inhibits the change in tertiary structure produced by oxygen binding; similar considerations may also apply in the case of the normal hemoglobin-diphosphoglycerate complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号