首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 202 毫秒
1.
Abstract: Nicotine-induced catecholamine secretion in bovine adrenomedullary chromaffin cells is accompanied by rapid tyrosine phosphorylation of multiple cellular proteins, most notably the mitogen-activated protein kinases (MAPKs). The requirement for activation of tyrosine kinases and MAPKs in chromaffin cell exocytosis was investigated using a panel of tyrosine kinase inhibitors. Genistein and tyrphostin 23, two compounds that inhibit tyrosine kinases by distinct mechanisms, were found to inhibit secretion by >90% in cells stimulated by nicotine, 55 m M KCI, or the Ca2+ ionophore A23187. Inhibition of secretion induced by all three secretagogues correlated with a block in both protein tyrosine phosphorylation and activation of the MAPKs and their activators (MEKs) in situ. However, neither genistein nor tyrphostin 23 inhibited the activities of the MAPKs or MEKs in vitro. These results indicate that the target(s) of inhibition lie down-stream of Ca2+ influx and upstream of MEK activation. This Ca2+-activated tyrosine kinase activity could not be accounted for entirely by c-Src or Fyn (two nonreceptor tyrosine kinases that are expressed abundantly in chromaffin cells), because their in vitro kinase activities were not inhibited by tyrphostin 23 and only partially inhibited by genistein. These results demonstrate that an unidentified Ca2+-activated tyrosine kinase(s) is required for MAPK activation and exocytosis in chromaffin cells and suggest that MAPK participates in the regulation of secretion.  相似文献   

2.
The interactions between the integrated complex array of integral and peripheral cell adhesion molecules (CAMs) are tightly controlled by kinases such as Protein Kinase C (PKC) in response to changes in external or internal forces and/or signaling. Focusing on the complex of EpCAM-claudin-tetraspanin-driven ovarian cancer, we described a sequence of events by which role of PKCs located in the tetraspanin enriched microdomains affected on the interactions and performed immunoprecipitations in PKC activator and inhibitors-treated ovarian cancer cells and xenograft ovarian cancer mouse models. Activated PKC isoforms associated with tetraspanins and induced detectable changes in the claudin phosphorylation state. These results suggest that PKC targets claudin-4 ad -7. Phosphorylation, especially by PKC δ and η of claudins was important for the interactions between claudin-4, -7 and EpCAM. These results represent the direct evidence that phosphorylation of claudins by PKCs functions in the EpCAM-claudin-tetraspanin complex formation to allow these complexes to operate in ovarian cancer progression and metastasis in vitro and in vivo.  相似文献   

3.
4.
Abstract: The involvement of B-50, protein kinase C (PKC), and PKC-mediated B-50 phosphorylation in the mechanism of Ca2+-induced noradrenaline (NA) release was studied in highly purified rat cerebrocortical synaptosomes permeated with streptolysin-O. Under optimal permeation conditions, 12% of the total NA content (8.9 pmol of NA/mg of synaptosomal protein) was released in a largely (>60%) ATP-dependent manner as a result of an elevation of the free Ca2+ concentration from 10?8 to 10?5M Ca2+ The Ca2+ sensitivity in the micromolar range is identical for [3H]NA and endogenous NA release, indicating that Ca2+-induced [3H]NA release originates from vesicular pools in noradrenergic synaptosomes. Ca2+-induced NA release was inhibited by either N- or C-terminal-directed anti-B-50 antibodies, confirming a role of B-50 in the process of exocytosis. In addition, both anti-B-50 antibodies inhibited PKC-mediated B-50 phosphorylation with a similar difference in inhibitory potency as observed for NA release. However, in a number of experiments, evidence was obtained challenging a direct role of PKC and PKC-mediated B-50 phosphorylation in Ca2+-induced NA release. PKC pseudosubstrate PKC19-36, which inhibited B-50 phosphorylation (IC50 value, 10?5M), failed to inhibit Ca2+-induced NA release, even when added before the Ca2+ trigger. Similar results were obtained with PKC inhibitor H-7, whereas polymyxin B inhibited B-50 phosphorylation as well as Ca2+-induced NA release. Concerning the Ca2+ sensitivity, we demonstrate that PKC-mediated B-50 phosphorylation is initiated at a slightly higher Ca2+ concentration than NA release. Moreover, phorbol ester-induced PKC down-regulation was not paralleled by a decrease in Ca2+-induced NA release from streptolysin-O-permeated synaptosomes. Finally, the Ca2+- and phorbol ester-induced NA release was found to be additive, suggesting that they stimulate release through different mechanisms. In summary, we show that B-50 is involved in Ca2+-induced NA release from streptolysin-O-permeated synaptosomes. Evidence is presented challenging a role of PKC-mediated B-50 phosphorylation in the mechanism of NA exocytosis after Ca2+ influx. An involvement of PKC or PKC-mediated B-50 phosphorylation before the Ca2+ trigger is not ruled out. We suggest that the degree of B-50 phosphorylation, rather than its phosphorylation after PKC activation itself, is important in the molecular cascade after the Ca2+ influx resulting in exocytosis of NA.  相似文献   

5.
The present study aimed to characterize the role of protein kinase C (PKC) on the dynamics of tight junction (TJ) opening and closing in the frog urinary bladder. The early events of TJ dynamics were evaluated by the fast Ca++ switch assay (FCSA), which consisted in opening the TJs by removing basolateral Ca++ ([Ca++] bl ), and closing them by returning [Ca++] bl to normal values. Changes in TJ permeability can be reliably gauged through changes of transepithelial electrical conductance (G) determined in the absence of apical Na+. The FCSA allows the appraisal of drugs and procedures acting upon the mechanism controlling the TJs. The time courses of TJ opening and closing in an FCSA were shown to follow single exponential time courses. PKC inhibition by H7 (100 μm) caused a reduction of the rate of junction opening in response to removing [Ca++] bl , without affecting junction closing, indicating that PKC is a key element in the control of TJ opening dynamics in this preparation. H7 at 250 μm almost completely inhibits TJ opening in response to basolateral Ca++ withdrawal. Subsequent H7 removal caused a prompt inhibition release characterized by a sharp G increase which, however, once started cannot be stopped by H7 reintroduction, Ca++ being necessary to allow TJ recovery. A step rise of apical Ca++ concentration ([Ca++] ap ) causes a reduction of the rate of TJ opening in a FCSA, an effect that is believed to be mediated by apical Ca++ entering the open TJs. The specific condition of having Ca++ only in the apical solution and the TJs located midway between the Ca++ source (apical solution) and the Ca++-binding sites presumably located at the zonula adhaerens, might configure a situation in which a control feedback loop is set up. A rise of [Ca++] ap during the phase of G increase in an FCSA causes a transient recovery of G followed by a subsequent escape phase where G increases again. Oscillations of G also appear in response to a rise of apical Ca++. Both escape and oscillations result from the properties of the TJ regulatory feedback loop. In conclusion, the present results indicate that PKC plays a key role in TJ opening in response to extracellular Ca++ withdrawal without major effect on the reverse process. In addition, PKC inhibition by H7 not only prevents TJ opening in response to basolateral Ca++ removal but induces a prompt blockade of TJ oscillations induced by apical Ca++, oscillations which reappear again when H7 is removed. Received: 9 May 2000/Revised: 30 August 2000  相似文献   

6.
This study focuses, in A6 cell monolayers, on the role of protein kinases in the dynamics of tight junction (TJ) opening and closing. The early events of TJ dynamics were evaluated by the fast Ca++-switch assay (FCSA), which consisted of opening the TJs by removing basolateral Ca++ (Ca++ bl), and closing them by returning Ca++ bl to normal values. Changes in TJ permeability can be reliably gauged through changes of transepithelial electrical conductance (G) determined in the absence of apical Na+. The FCSA allows the evaluation of the effects of drugs and procedures acting upon the mechanism controlling the TJs. The time courses of TJ opening and closing in response to the FCSA followed single-exponential time courses. A rise of apical Ca++ (Ca++ ap) causes a reduction of TJ opening rate in an FCSA or even a partial recuperation of G, an effect that is interpreted as mediated by Ca++ ap entering the open TJs. Protein kinase C (PKC) inhibition by H7 at low concentrations caused a reduction of the rate of junction opening in response to Ca++ bl removal, without affecting junction closing, indicating that PKC in this preparation is a key element in the control of TJ opening dynamics. H7 at 100 μm completely inhibits TJ opening in response to Ca++ bl withdrawal. Subsequent H7 removal caused a prompt inhibition release characterized by a sharp G increase, a process that can be halted again by H7 reintroduction into the bathing solution. Differently from the condition in which Ca++ is absent from the apical solution, in which H7 halts the process of G increase in response to a FCSA, when Ca++ is present in the apical solution, addition of H7 during G increase in an FCSA not only induces a halt of the G increase but causes a marked recuperation of the TJ seal, indicated by a drop of G, suggesting a cooperative effect of Ca++ and H7 on the TJ sealing process. Staurosporine, another PKC inhibitor, differently from H7, slowed both G increase and G decrease in an FCSA. Even at high concentrations (400 nm) staurosporine did not completely block the effect of Ca++ withdrawal. These discrepancies between H7 and staurosporine might result from distinct PKC isoforms participating in different steps of TJ dynamics, which might be differently affected by these inhibitors. Immunolocalizations of TJ proteins, carried out in conditions similar to the electrophysiological experiments, show a very nice correlation between ZO-1 and claudin-1 localizations and G alterations induced by Ca++ removal from the basolateral solution, both in the absence and presence of H7. Received: 18 April 2001/Revised: 16 July 2001  相似文献   

7.
Protein kinases C (PKCs) comprise closely related Ser/Thr kinases, ubiquitously present in animal tissues; they respond to second messengers, e.g., Ca2+ and/or diacylglycerol, to express their activities. Two PKCs have been sequenced from Geodia cydonium, a member of the lowest multicellular animals, the sponges (Porifera). One sponge G. cydonium PKC, GCPKC1, belongs to the ``novel' (Ca2+-independent) PKC (nPKC) subfamily while the second one, GCPKC2, has the hallmarks of the ``conventional' (Ca2+-dependent) PKC (cPKC) subfamily. The alignment of the Ser/Thr catalytic kinase domains, of the predicted aa sequences for these cDNAs with respective segments from previously reported sequences, revealed highest homology to PKCs from animals but also distant relationships to Ser/Thr kinases from protozoa, plants, and bacteria. However, a comparison of the complete structures of the sponge PKCs, which are—already—identical to those of nPKCs and cPKCs from higher metazoa, with the structures of protozoan, plant, and bacterial Ser/Thr kinases indicates that the metazoan PKCs have to be distinguished from the nonmetazoan enzymes. These data indicate that metazoan PKCs have a universal common ancestor which they share with the nonmetazoan Ser/Thr kinases with respect to the kinase domain, but they differ from them in overall structural composition. Received: 10 January 1996 / Accepted: 12 March 1996  相似文献   

8.
The voltage-gated potassium channel, Kv1.3, which is highly expressed in a number of immune cells, contains concensus sites for phosphorylation by protein kinase C (PKC). In lymphocytes, this channel is involved in proliferation—through effects on membrane potential, Ca2+ signalling, and interleukin-2 secretion—and in cytotoxic killing and volume regulation. Because PKC activation (as well as increased intracellular Ca2+) is required for T-cell proliferation, we have studied the regulation of Kv1.3 current by PKC in normal (nontransformed) human T lymphocytes. Adding intracellular ATP to support phosphorylation, shifted the voltage dependence of activation by +8 mV and inactivation by +17 mV, resulting in a 230% increase in the window current. Inhibiting ATP production and action with ``death brew' (2-deoxyglucose, adenylylimidodiphosphate, carbonyl cyanide-m-chlorophenyl hydrazone) reduced the K+ conductance (G K ) by 41 ± 2%. PKC activation by 4β-phorbol 12,13-dibutyrate, increased G K by 69 ± 6%, and caused a positive shift in activation (+9 mV) and inactivation (+9 mV), which resulted in a 270% increase in window current. Conversely, several PKC inhibitors reduced the current. Diffusion into the cell of inhibitory pseudosubstrate or substrate peptides reduced G K by 43 ± 5% and 38 ± 8%, respectively. The specific PKC inhibitor, calphostin C, potently inhibited Kv1.3 current in a dose- and light-dependent manner (IC50∼ 250 nm). We conclude that phosphorylation by PKC upregulates Kv1.3 channel activity in human lymphocytes and, as a result of shifts in voltage dependence, this enhancement is especially prevalent at physiologically relevant membrane potentials. This increased Kv1.3 current may help maintain a negative membrane potential and a high driving force for Ca2+ entry in the presence of activating stimuli. Received: 12 July 1996/Revised: 21 October 1996  相似文献   

9.
Abstract: Previous studies have demonstrated that bovine chromaffin cells cultured in medium with 10 nM insulin-like growth factor-I (IGF-I) secrete about twofold more catecholamine when exposed to secretory stimuli than do cells cultured without IGF-I. The purpose of this study was to determine whether protein kinase C (PKC) is involved in the effect of IGF-I on secretion from these cells. PKC was down-regulated in the cells by 16–18 h of treatment with β-phorbol didecanoate (β-PDD; 100 nM). Such treatment had no effect on high-K+-stimulated secretion from cells cultured without IGF-I; however, secretion from cells cultured with IGF-I was reduced to a level comparable to that in cells cultured without the peptide. The inactive isomer, α-PDD (100 nM), had no effect on secretion from untreated or IGF-I-treated chromaffin cells. The effect of β-PDD was time and concentration dependent, with 100 nM β-PDD producing a maximal effect in 8–10 h. In situ PKC activity measured in permeabilized cells treated with PMA (300 nM) was decreased by~40% by 10 h and was reduced to almost basal levels by 18 h. Immunoblotting experiments demonstrated that both α-and ε-PKC were lost from the cells with time courses similar to that seen in the in situ PKC assay. Overnight treatment with the PKC inhibitor H7 (100 μM) prevented the enhanced secretion normally seen in IGF-l-treated cells, whereas HA1004 had no effect. High-K+-stimulated 45Ca2+ uptake in IGF-I-treated cells was attenuated by long-term treatment with β-PDD (200 nM) or H7 (100 μM). Together these observations suggest that PKC is required for IGF-I-enhanced secretion from chromaffin cells.  相似文献   

10.
Abstract: To study the involvement of the protein kinase C (PKC) substrate B-50 [also known as growth-associated protein-43 (GAP-43), neuromodulin, and F1] in presynaptic cholecystokinin-8 (CCK-8) release, highly purified synaptosomes from rat cerebral cortex were permeated with the bacterial toxin streptolysin O (SL-O). CCK-8 release from permeated synaptosomes, determined quantitatively by radioimmunoassay, could be induced by Ca2+ in a concentration-dependent manner (EC50 of ~10-5M). Ca2+-induced CCK-8 release was maximal at 104M Ca2+, amounting to ~10% of the initial 6,000 ± 550 fmol of CCK-8 content/mg of synaptosomal protein. Only 30% of the Caa+-induced CCK-8 release was dependent on the presence of exogenously added ATP. Two different monoclonal anti-B-50 antibodies were introduced into permeated synaptosomes to study their effect on Ca2+-induced CCK-8 release. The N-terminally directed antibodies (NM2), which inhibited PKC-mediated B-50 phosphorylation, inhibited Ca2+-induced CCK-8 release in a dose-dependent manner, whereas the C-terminally directed antibodies (NM6) affected neither B-50 phosphorylation nor CCK-8 release. The PKC inhibitors PKC19–36 and 1 ?(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), which inhibited B-50 phosphorylation in permeated synaptosomes, had no effect on Ca2+-induced CCK-8 release. Our data strongly indicate that B-50 is involved in the mechanism of presynaptic CCK-8 release, at a step downstream of the Ca2+ trigger. As CCK-8 is stored in large densecored vesicles, we conclude that B-50 is an essential factor in the exocytosis from this type of neuropeptide-containing vesicle. The differential effects of the monoclonal antibodies indicate that this B-50 property is localized in the N-terminal region of the B-50 molecule, which contains the PKC phosphorylation site and calmodulin-binding domain.  相似文献   

11.
Kumar  Raj  Holian  Oksana  Cook  Brian  Roshani  Pash 《Neurochemical research》1997,22(1):1-10
Lipid soluble psychotropics inhibit brain PKC-catalyzed phosphorylation of exogenous and endogenous proteins to varying degrees. These drugs were better inhibitors of Ca2+/PL-dependent phosphorylation of histones (H) than that of Ca2+/PL-independent protamine sulfate (PrSO4): antidepressants/antipsychotics displayed IC50 of 0.1 to 0.16 mM towards H and 0.3 to 4.0 mM towards PrSO4 phosphorylation. Sedatives/anesthetics were less efficient inhibitors with much higher IC50 of 1.3 to 40 mM. Phosphorylation of a Ca2+-dependent but PL-independent p80 protein and of a cluster of Ca2+/PL-dependent proteins, p16-20, in brain was also inhibited by the antidepressants/antipsychotics but not by the sedatives/anesthetics. Phorbol ester binding studies revealed that these inhibitors do not compete for DAG binding site(s) on PKC. However, both drug-PL and drug-PKC interactions seem to be relevant in their mechanism of action. Furthermore, our data suggest that the hydrophobic nature of the propanamine side chain or its N-methylated version as well as the tricyclic nucleus influence drug-PKC interaction. Although many of these drugs have other accepted modes of action, modulation of PKC activity in brain, may be yet another aspect to be considered in their mechanism of action.  相似文献   

12.
Protein kinase C (PKC) is a family of kinases that regulate numerous cellular functions. They are classified into three subfamilies, i.e., conventional PKCs, novel PKCs, and atypical PKCs, that have different domain structures. Generally, PKCs exist as a soluble protein in the cytosol in resting cells and they are recruited to target membranes upon stimulation. In the present study, we found that PKCη tagged with EGFP distributed in lipid droplets (LD) and induced a significant reduction in LD size. Two other novel PKCs, PKCδ and PKCε, also showed some concentration around LDs, but it was less distinct and less frequent than that of PKCη. Conventional and atypical PKCs (α, βII, γ, and ζ) did not show any preferential distribution around LDs. 1,2-Diacylglycerol, which can activate novel PKCs without an increase of Ca2+ concentration, is the immediate precursor of triacylglycerol and exists in LDs. The present results suggest that PKCη modifies lipid metabolism by phosphorylating unidentified targets in LDs.  相似文献   

13.
The organization of filamentous actin (F-actin) in the synaptic pedicle of depolarizing bipolar cells from the goldfish retina was studied using fluorescently labeled phalloidin. The amount of F-actin in the synaptic pedicle relative to the cell body increased from a ratio of 1.6 ± 0.1 in the dark to 2.1 ± 0.1 after exposure to light. Light also caused the retraction of spinules and processes elaborated by the synaptic pedicle in the dark.Isolated bipolar cells were used to characterize the factors affecting the actin cytoskeleton. When the electrical effect of light was mimicked by depolarization in 50 mM K+, the actin network in the synaptic pedicle extended up to 2.5 μm from the plasma membrane. Formation of F-actin occurred on the time scale of minutes and required Ca2+ influx through L-type Ca2+ channels. Phorbol esters that activate protein kinase C (PKC) accelerated growth of F-actin. Agents that inhibit PKC hindered F-actin growth in response to Ca2+ influx and accelerated F-actin breakdown on removal of Ca2+.To test whether activity-dependent changes in the organization of F-actin might regulate exocytosis or endocytosis, vesicles were labeled with the fluorescent membrane marker FM1-43. Disruption of F-actin with cytochalasin D did not affect the continuous cycle of exocytosis and endocytosis that was stimulated by maintained depolarization, nor the spatial distribution of recycled vesicles within the synaptic terminal. We suggest that the actions of Ca2+ and PKC on the organization of F-actin regulate the morphology of the synaptic pedicle under varying light conditions.  相似文献   

14.
MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [P32]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 μM PD 098059 (IC50=51 μM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 μM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 μM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 μM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [H3]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but not for its insulin secretory response with respect to major initiators and modulators of insulin release. The data indicate that MAP kinase is active and under the control of MAP kinase. PKC is upstream of a genisteinsensitive tyrosine kinase and probably downstream of a PI3-kinase in INS-1 cells.  相似文献   

15.
Abstract: Several lines of evidence indicate that a rapid loss of protein kinase C (PKC) activity may be important in the delayed death of neurons following cerebral ischemia. However, in primary neuronal cultures, cytotoxic levels of glutamate have been reported not to cause a loss in PKC as measured by immunoblot and conventional activity methods. This apparent contradiction has not been adequately addressed. In this study, the effects of cytotoxic levels of glutamate, NMDA, and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) on membrane PKC activity was determined in cortical neurons using an assay that measures only PKC that is active in isolated membranes, which can be used to differentiate active enzyme from that associated with membranes in an inactive state. A 15-min exposure of day 14–18 cortical neurons to 100 µM glutamate, AMPA, or NMDA caused a rapid and persistent loss in membrane PKC activity, which by 4 h fell to 30–50% of that in control cultures. However, the amount of enzyme present in these membranes remained unchanged during this period despite the loss in enzyme activity. The inactivation of PKC activity was confirmed by the fact that phosphorylation of the MARCKS protein, a PKC-selective substrate, was reduced in intact neurons following transient glutamate treatment. By contrast, activation of metabotropic glutamate receptors by trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid was not neurotoxic and induced a robust and prolonged activation of PKC activity in neurons. PKC inactivation by NMDA and AMPA was dependent on extracellular Ca2+, but less so on Na+, although cell death induced by these agents was dependent on both ions. The loss of PKC activity was likely effected by Ca2+ entry through specific routes because the bulk increase in intracellular free [Ca2+] effected by the Ca2+ ionophore ionomycin did not cause the inactivation of PKC. The results indicate that the pattern of PKC activity in neurons killed by glutamate, NMDA, and AMPA in vitro is consistent with that observed in neurons injured by cerebral ischemia in vivo.  相似文献   

16.
A possible role for protein kinases in the regulation of GABA exocytosis in nerve endings was investigated. The effect on the release of the radioactive neurotransmitter ([3H]GABA) from mouse brain synaptosomes of several protein kinase inhibitors was estimated after treatment with 37 mM K+ in the absence of external Na+, a condition under which [3H]GABA release is completely Ca2+ dependent. Among the inhibitors one group inhibit the kinases by binding to the catalytic site (i.e. staurosporine and H7) and others (TFP, sphingosine and W7) act on the regulatory site of protein kinases. The compounds of the second group, which are reported to inhibit calmodulin dependent events and the increase in cytosolic Ca2+ (Ca i ) induced by high K+ depolarization, were the most efficient inhibitors of [3H]GABA release. The selective inhibitor of CaMPK II, KN-62, also markedly diminished [3H]GABA release as well as the increase in Ca i induced by high K+. The kinase inhibitors from the first group that are unable to diminish the increase in Ca i induced by high K+ were also less efficient inhibitors of [3H]GABA release even at high concentrations. The present results indicate that at the doses tested all the drugs inhibit to some extent the release of the Ca2+ dependent fraction of [3H]GABA perhaps by inhibiting a CaMPK II mediated phosphorylation step triggered by depolarization and facilitated by the elevation of Ca i . In addition, the second group of antagonists and KN-62 inhibit the elevation of Ca i to high K+ thus exhibiting a higher efficiency on [3H]GABA release than the first group of antagonists.  相似文献   

17.
In the present study, we examined the effect of vasopressin on the induction of the low-molecular-weight heat shock proteins heat shock protein 27 (HSP27) and αB-crystallin in an aortic smooth muscle cell line, A10 cells. Vasopressin induced a time-dependent accumulation of HSP27 and αB-crystallin. The stimulatory effects of vasopressin were dose-dependent over the range 0.1 nmol/L to 0.1 μmol/L. The EC50values for vasopressin were 2 (HSP27) and 4 nmol/L (αB-crystallin). Vasopressin induced increases in the levels of the mRNAs for HSP27 and αB-crystallin. 12-O-Tetradecanoylphorbol 13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester, induced an accumulation of HSP27 (EC50, 20 nmol/L) and αB-crystallin (EC50, 2 nmol/L). In contrast, 4α-phorbol 12,13-didecanoate, a non-PKC-activating phorbol ester, had no such effect. Staurosporine and calphostin C, inhibitors of PKC, significantly reduced the vasopressin-induced accumulation of HSP27 and αB-crystallin as well as that induced by TPA. BAPTA/AM and TMB-8, inhibitors of intracellular Ca2+mobilization, significantly reduced the vasopressin-induced accumulation of HSP27 and αB-crystallin. These results strongly suggest that vasopressin stimulates the induction of HSP27 and αB-crystallin via PKC activation in vascular smooth muscle cells and that this effect of vasopressin is dependent on intracellular Ca2+mobilization.  相似文献   

18.
Investigations with protein kinase C (PKC) isoform-specific antisera, revealed distinct profiles of PKC isoform content amongst pituitary tissues. Western analysis revealed the and isoforms of PKC are present in rat anterior and posterior pituitary tissue as well as in the GH3 somatomammotrophic cell line. AtT-20/D16-V corticotrophic and T3-1 gonadotrophic murine cell lines contained no PKC-. The or isoforms were undetected in any pituitary tissue. PKC activity measurements revealed Ca2+-independent PKCs in T3-1 and GH3 cells which were more sensitive to activation by phorbol-dibutyrate (PDBu) than the corresponding PKC activity found in COS cells. However, Ca2+-dependent PKC activities were of similar sensitivity to PDBu in GH3, T3-1 and COS cells, indicating that functional differences observed in PDBu-sensitivity in these cells may be due to differential activation of Ca2+-independent PKC isoforms. Moreover, substrate-specificity of these PKCs were also compared indicating that the amount of Ca2+-dependency of the observed PKC activity from the same pituitary tissue is dependent upon the substrate utilized by the PKC isotypes present. These findings explain differential sensitivities of PKC-mediated actions that have previously been observed in a range of pituitary cells. (Mol Cell Biochem 000-000, 1999)  相似文献   

19.
Abstract: Hydrogen peroxide (H2O2) is a potent stimulator of signal-responsive phospholipase A2 (PLA2) in vascular smooth muscle and cultured endothelial cells. We investigated whether H2O2 plays a similar regulatory role in neurons. H2O2 did not stimulate a release of arachidonic acid from cultured neurons when applied alone but strongly enhanced the liberation of arachidonic acid evoked by maximally effective concentrations of either glutamate, the glutamate receptor agonist N-methyl-d -aspartate (NMDA), the muscarinic receptor agonist carbachol, the Na+-channel opener veratridine, or the Ca2+-ionophore ionomycin. The potentiating effects of H2O2 were strongly inhibited in the presence of the PLA2 inhibitor mepacrine, suggesting that the site of action was within the signal responsive arachidonic acid cascade. The enhancing effect of H2O2 was not reversed by protein kinase C inhibitors (chelerythrine chloride or GF 109203X) nor was it mimicked by phorbol ester treatment. H2O2 alone strongly enhanced the levels of immunodetectable activated mitogen-activated protein kinase (activated MAP kinases ERK1 and ERK2) in a Ca2+-dependent manner and this effect was additive with increases in the levels of activated MAP kinase evoked by glutamate. The enhanced release of arachidonic acid, however, was not clearly reversed by the MAP kinase kinase (MEK) inhibitor PD 98059, although this treatment effectively abolished H2O2 activation of MAP kinase. Thus, MAP kinase activation and Ca2+-dependent arachidonic acid release are regulated by oxidative stress in cultured striatal neurons.  相似文献   

20.
Abstract : Phosphorylation of specific amino acid residues is believed to be crucial for the agonist-induced regulation of several G protein-coupled receptors. This is especially true for the three types of opioid receptors (μ, δ, and α), which contain consensus sites for phosphorylation by numerous protein kinases. Protein kinase C (PKC) has been shown to catalyze the in vitro phosphorylation of μ- and δ-opioid receptors and to potentiate agonist-induced receptor desensitization. In this series of experiments, we continue our investigation of how opioid-activated PKC contributes to homologous receptor down-regulation and then expand our focus to include the exploration of the mechanism(s) by which μ-opioids produce PKC translocation in SH-SY5Y neuroblastoma cells. [d Ala2,N-Me-Phe4,Gly-ol]enkephalin (DAMGO)-induced PKC translocation follows a time-dependent and biphasic pattern beginning 2 h after opioid addition, when a pronounced translocation of PKC to the plasma membrane occurs. When opioid exposure is lengthened to >12 h, both cytosolic and particulate PKC levels drop significantly below those of control-treated cells in a process we termed “reverse translocation.” The opioid receptor antagonist naloxone, the PKC inhibitor chelerythrine, and the L-type calcium channel antagonist nimodipine attenuated opioid-mediated effects on PKC and μ-receptor down-regulation, suggesting that this is a process partially regulated by Ca2+-dependent PKC isoforms. However, chronic exposure to phorbol ester, which depletes the cells of diacylglycerol (DAG) and Ca2+-sensitive PKC isoforms, before DAMGO exposure, had no effect on opioid receptor down-regulation. In addition to expressing conventional (PKC-α) and novel (PKC-ε) isoforms, SH-SY5Y cells also contain a DAG-and Ca2+-independent, atypical PKC isozyme (PKC-ξ), which does not decrease in expression after prolonged DAMGO or phorbol ester treatment. This led us to investigate whether PKC-ξ is similarly sensitive to activation by μ-opioids. PKC-ξ translocates from the cytosol to the membrane with kinetics similar to those of PKC-α and ε in response to DAMGO but does not undergo reverse translocation after longer exposure times. Our evidence suggests that direct PKC activation by μ-opioid agonists is involved in the processes that result in μ-receptor down-regulation in human neuroblastoma cells and that conventional, novel, and atypical PKC isozymes are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号