首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Notch signaling has been reported to play an essential role in tumorigenesis. Several studies have suggested that Notch receptors could be oncoproteins or tumor suppressors in different types of human cancers. Emerging evidence has suggested that Notch pathway regulates cell growth, apoptosis, cell cycle, and metastasis. In the current study, we explore whether Notch-1 could regulate the cell invasion and migration as well as EMT (epithelial-mesenchymal transition) in prostate cancer cells. We found that overexpression of Notch-1 enhanced cell migration and invasion in PC-3 cells. However, downregulation of Notch-1 retarded cell migration and invasion in prostate cancer cells. Importantly, we observed that overexpression of Notch-1 led to EMT in PC-3 cells. Notably, we found that EMT-type cells are associated with EMT markers change and cancer stem cell phenotype. Taken together, we concluded that downregulation of Notch-1 could be a promising approach for inhibition of invasion in prostate cancer cells, which could be useful for the treatment of metastatic prostate cancer.  相似文献   

2.
Notch信号传导通路是影响细胞命运决定的重要通路之一,相邻细胞间通过Notch受体传递信号可以调节包括干细胞在内的多种细胞的分化、增殖和凋亡,影响器官形成和形态发生.Notch信号传导通路中某些分子的基因突变与多种疾病的发生发展有关.在深入研究Notch信号传导通路的基础上,以其作为靶点设计药物,对于治疗包括肿瘤、CADASIL等遗传性疾病在内的相关疾病,或发展干细胞医疗技术治疗阿尔茨海默症(Alzheimer!sdisease,AD)、帕金森病、糖尿病等细胞组织功能减退或受损性疾病具有重要的科学意义和应用价值.  相似文献   

3.
Notch pathway is crucial for stem/progenitor cell maintenance, growth and differentiation in a variety of tissues. Using a transgenic cell ablation approach, we found in our previous study that cells expressing Notch1 are crucial for prostate early development and re-growth. Here, we further define the role of Notch signaling in regulating prostatic epithelial cell growth and differentiation using biochemical and genetic approaches in ex vivo or in vivo systems. Treatment of developing prostate grown in culture with inhibitors of gamma-secretase/presenilin, which is required for Notch cleavage and activation, caused a robust increase in proliferation of epithelial cells co-expressing cytokeratin 8 and 14, lack of luminal/basal layer segregation and dramatically reduced branching morphogenesis. Using conditional Notch1 gene deletion mouse models, we found that inactivation of Notch1 signaling resulted in profound prostatic alterations, including increased tufting, bridging and enhanced epithelial proliferation. Cells within these lesions co-expressed both luminal and basal cell markers, a feature of prostatic epithelial cells in predifferentiation developmental stages. Microarray analysis revealed that the gene expression in a number of genetic networks was altered following Notch1 gene deletion in prostate. Furthermore, expression of Notch1 and its effector Hey-1 gene in human prostate adenocarcinomas were found significantly down-regulated compared to normal control tissues. Taken together, these data suggest that Notch signaling is critical for normal cell proliferation and differentiation in the prostate, and deregulation of this pathway may facilitate prostatic tumorigenesis.  相似文献   

4.
Breast cancer angiogenesis is elicited and regulated by a number of factors including the Notch signaling. Notch receptors and ligands are expressed in breast cancer cells as well as in the stromal compartment and have been implicated in carcinogenesis. Signals exchanged between neighboring cells through the Notch pathway can amplify and consolidate molecular differences, which eventually dictate cell fates. Notch signaling and its crosstalk with many signaling pathways play an important role in breast cancer cell growth, migration, invasion, metastasis and angiogenesis, as well as cancer stem cell (CSC) self-renewal. Therefore, significant attention has been paid in recent years toward the development of clinically useful antagonists of Notch signaling. Better understanding of the structure, function and regulation of Notch intracellular signaling pathways, as well as its complex crosstalk with other oncogenic signals in breast cancer cells will be essential to ensure rational design and application of new combinatory therapeutic strategies. Novel opportunities have emerged from the discovery of Notch crosstalk with inflammatory and angiogenic cytokines and their links to CSCs. Combinatory treatments with drugs designed to prevent Notch oncogenic signal crosstalk may be advantageous over λ secretase inhibitors (GSIs) alone. In this review, we focus on the more recent advancements in our knowledge of aberrant Notch signaling contributing to breast cancer angiogenesis, as well as its crosstalk with other factors contributing to angiogenesis and CSCs.  相似文献   

5.
6.
Since Notch signaling plays a critical role in stem cells and oncogenesis, we hypothesized that Notch signaling might play roles in cancer stem cells and cancer cells with a stem cell phenotype. In this study, we accessed potential functions of the Notch pathway in the formation of cancer stem cells using human glioma. Using RT-PCR, we found that most human astrogliomas of different grades expressed moderate to high level of Notch receptors and ligands. mRNA of Hes5 but not Hes1, both of which are major downstream molecules of the Notch pathway, was also detected. In human glioma cell lines BT325, U251, SHG-44, and U87, mRNA encoding different types of Notch receptors were detected, but active form of Notch1 (NIC) was only detected in SHG-44 and U87 by Western blot. Interestingly, proliferation of these two glioma cell lines appeared faster than that of the other two lines in which NIC was not detected. We have over-expressed NIC of Notch1 in SHG-44 cells by constitutive transfection to evaluate the effects of Notch signaling on glioma cells. Our results showed that over-expression of NIC in SHG-44 cells promoted the growth and the colony-forming activity of SHG-44 cells. Interestingly, over-expression of NIC increased the formation neurosphere-like colonies in the presence of growth factors. These colonies expressed nestin, and could be induced to cells expressing neuron-, astrocyte-, or oligodendrocyte-specific markers, consistent with phenotypes of neural stem cells. These data suggest that Notch signaling promote the formation of cancer stem cell-like cells in human glioma. Xue-Ping Zhang, Gang Zheng and Lian Zou are contributed equally to this study.  相似文献   

7.
Notch signalling is implicated in the pathogenesis of a variety of cancers, but its role in prostate cancer is poorly understood. However, selected Notch pathway members are overrepresented in high‐grade prostate cancers. We comprehensively profiled Notch pathway components in prostate cells and found prostate cancer‐specific up‐regulation of NOTCH3 and HES6. Their expression was particularly high in androgen responsive lines. Up‐ and down‐regulating Notch in these cells modulated expression of canonical Notch targets, HES1 and HEY1, which could also be induced by androgen. Surprisingly, androgen treatment also suppressed Notch receptor expression, suggesting that androgens can activate Notch target genes in a receptor‐independent manner. Using a Notch‐sensitive Recombination signal binding protein for immunoglobulin kappa J region (RBPJ) reporter assay, we found that basal levels of Notch signalling were significantly lower in prostate cancer cells compared to benign cells. Accordingly pharmacological Notch pathway blockade did not inhibit cancer cell growth or viability. In contrast to canonical Notch targets, HES6, a HES family member known to antagonize Notch signalling, was not regulated by Notch signalling, but relied instead on androgen levels, both in cultured cells and in human cancer tissues. When engineered into prostate cancer cells, reduced levels of HES6 resulted in reduced cancer cell invasion and clonogenic growth. By molecular profiling, we identified potential roles for HES6 in regulating hedgehog signalling, apoptosis and cell migration. Our results did not reveal any cell‐autonomous roles for canonical Notch signalling in prostate cancer. However, the results do implicate HES6 as a promoter of prostate cancer progression.  相似文献   

8.
Notch signaling in cancer   总被引:3,自引:0,他引:3  
The evolutionarily conserved developmental pathway driven by Notch receptors and ligands has acquired multiple post-natal homeostatic functions in vertebrates. Potential roles in human physiology and pathology are being studied by an increasingly large number of investigators. While the canonical Notch signaling pathway is deceptively simple, the consequences of Notch activation on cell fate are complex and context-dependent. The manner in which other signaling pathways cross-talk with Notch signaling appears to be extraordinarily complex. Recent observations have demonstrated the importance of endocytosis, multiple ubiquitin ligases, non-visual beta-arrestins and hypoxia in modulating Notch signaling. Structural biology is shedding light on the molecular mechanisms whereby Notch interacts with its nuclear partners. Genomics is slowly unraveling the puzzle of Notch target genes in several systems. At the same time, interest in modulating Notch signaling for medical purposes has dramatically increased. Over the last few years we have learned much about Notch signaling in cancer, immune disorders, neurological disorders and most recently, stroke. The role of Notch signaling in normal and transformed stem cells is under intense investigation. Some Notch-modulating drugs are already in clinical trials, and others at various stages of development. This review will focus on the most recent findings on Notch signaling in cancer and discuss their potential clinical implications.  相似文献   

9.
The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation and involution, a process controlled by stem cells. The last decade much progress has been made in the identification of signaling pathways that function in these stem cells to control self-renewal, lineage commitment and epithelial differentiation in the normal mammary gland. The same signaling pathways that control physiological mammary development and homeostasis are also often found deregulated in breast cancer. Here we provide an overview on the functional and molecular identification of mammary stem cells in the context of both normal breast development and breast cancer. We discuss the contribution of some key signaling pathways with an emphasis on Notch receptor signaling, a cell fate determination pathway often deregulated in breast cancer. A further understanding of the biological roles of the Notch pathway in mammary stem cell behavior and carcinogenesis might be relevant for the development of future therapies.  相似文献   

10.
Notch信号是广泛存在于各种动物细胞中高度保守的信号途径,在干细胞生物学功能中发挥重要作用。心脏干细胞(cardiac stem cells,CSCs)是存在于心脏特殊微环境下的多潜能干细胞,其表面存在Notch受体,而与其相邻的细胞可表达Notch配体,提示心脏干细胞中的Notch信号在某些条件下可被活化。该文从Notch信号通路的组成和激活、CSCs的界定与来源、CSCs主要类型的一般生物学特征及Notch信号通路与CSCs形成、分化和增殖的关系等方面进行综述,并展望了基于CSCs在心肌再生相关转化医学研究中的前景。  相似文献   

11.
Notch signaling is involved in a variety of cellular processes, such as cell fate specification, differentiation, proliferation, and survival. Notch‐1 over‐expression has been reported in prostate cancer metastases. Likewise, Notch ligand Jagged‐1 was found to be over‐expressed in metastatic prostate cancer compared to localized prostate cancer or benign prostatic tissues, suggesting the biological significance of Notch signaling in prostate cancer progression. However, the mechanistic role of Notch signaling and the consequence of its down‐regulation in prostate cancer have not been fully elucidated. Using multiple cellular and molecular approaches such as MTT assay, apoptosis assay, gene transfection, real‐time RT‐PCR, Western blotting, migration, invasion assay and ELISA, we found that down‐regulation of Notch‐1 or Jagged‐1 was mechanistically associated with inhibition of cell growth, migration, invasion and induction of apoptosis in prostate cancer cells, which was mediated via inactivation of Akt, mTOR, and NF‐κB signaling. Consistent with these results, we found that the down‐regulation of Notch‐1 or Jagged‐1 led to decreased expression and the activity of NF‐κB downstream genes such as MMP‐9, VEGF, and uPA, contributing to the inhibition of cell migration and invasion. Taken together, we conclude that the down‐regulation of Notch‐1 or Jagged‐1 mediated inhibition of cell growth, migration and invasion, and the induction of apoptosis was in part due to inactivation of Akt, mTOR, and NF‐κB signaling pathways. Our results further suggest that inactivation of Notch signaling pathways by innovative strategies could be a potential targeted approach for the treatment of metastatic prostate cancer. J. Cell. Biochem. 109: 726–736, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Prostate tumorigenesis is associated with loss of PTEN gene expression. We and others have recently reported that PTEN is regulated by Notch‐1 signaling. Herein, we tested the hypothesis that alterations of the Notch‐1 signaling pathway are present in human prostate adenocarcinoma and that Notch‐1 signaling regulates PTEN gene expression in prostate cells. Prostate adenocarcinoma cases were examined by immunohistochemistry for ligand cleaved (activated) Notch‐1 protein. Tumor foci exhibited little cleaved Notch‐1 protein, but expression was observed in benign tissue. Both tumor and benign tissue expressed total (uncleaved) Notch‐1. Reduced Hey‐1 expression was seen in tumor foci but not in benign tissue, confirming loss of Notch‐1 signaling in prostate adenocarcinoma. Retroviral expression of constitutively active Notch‐1 in human prostate tumor cell lines resulted in increased PTEN gene expression. Incubation of prostate cell lines with the Notch‐1 ligand, Delta, resulted in increased PTEN expression indicating that endogenous Notch‐1 regulates PTEN gene expression. Chromatin immunoprecipitation demonstrated that CBF‐1 was bound to the PTEN promoter. These data collectively indicate that defects in Notch‐1 signaling may play a role in human prostate tumor formation in part via a mechanism that involves regulation of the PTEN tumor suppressor gene. J. Cell. Biochem. 107: 992–1001, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Sushi repeat‐containing protein X‐linked 2 (SRPX2), a novel chondroitin sulfate proteoglycan, is reported to play a critical role in tumorigenesis. However, the expression and functional role of SRPX2 in prostate cancer have not been defined. Thus, the aim of this study was to investigate the expression and functional role of SRPX2 in human prostate cancer. Our results showed that the expression of SRPX2 was obviously increased in human prostate cancer tissues and cell lines. In addition, knockdown of SRPX2 inhibited the proliferation, migration, and invasion of prostate cancer cells, as well as prevented the epithelial‐mesenchymal transition process in prostate cancer cells. Mechanically, knockdown of SRPX2 efficiently inhibited the activation of PI3K/Akt/mTOR pathway in prostate cancer cells. Taken together, these data demonstrated that knockdown of SRPX2 inhibits the proliferation and metastasis in human prostate cancer cells, partly through the PI3K/Akt/mTOR signaling pathway. Thus, SRPX2 may be a novel therapeutic target for the treatment of prostate cancer.  相似文献   

14.
The identification of stem cells and differentiation programs regulating the development and maintenance of the normal prostate epithelium is essential for the identification of the cell type(s) and molecular alterations involved in the development and propagation of prostate cancer (CaP). The p53-homologue p63 is highly expressed in normal prostate basal cells and is a clinically useful biomarker for the diagnosis of CaP. Importantly, p63 has been shown to play a critical role in prostate development. Recent experimental evidence also suggests that this gene is essential for normal stem cell function in the prostate as well as other epithelial organs. Future studies aimed at better defining the role of p63 in the renewal of the adult prostate epithelium are likely to shed new light on the mechanisms involved in prostate carcinogenesis.  相似文献   

15.
Notch信号通路是一个在进化中高度保守的信号通道,具有调控细胞增殖、分化及凋亡的作用。近年来,随着研究的不断深入,发现Notch信号通路与生殖干细胞的增殖分化及干细胞微环境的作用机理密切关联,Notch信号通路在生殖系统发育及疾病治疗中的作用机制逐渐引起人们的广泛关注。该文综合论述了Notch信号通路的生理特性及功能,重点阐述Notch信号通路在精原干细胞、卵巢生殖干细胞及生殖干细胞微环境系统中的调控机制。  相似文献   

16.
17.
The Notch3 signaling pathway is thought to play a critical role in cancer development, as evidenced by the Notch3 amplification and rearrangement observed in human cancers. However, the molecular mechanism by which Notch3 signaling contributes to tumorigenesis is largely unknown. In an effort to identify the molecular modulators of the Notch3 signaling pathway, we screened for Notch3-intracellular domain (N3-ICD) interacting proteins using a human proteome microarray. Pathway analysis of the Notch3 interactome demonstrated that ubiquitin C was the molecular hub of the top functional network, suggesting the involvement of ubiquitination in modulating Notch3 signaling. Thereby, we focused on functional characterization of an E3 ubiquitin-protein ligase, WWP2, a top candidate in the Notch3 interactome list. Co-immunoprecipitation experiments showed that WWP2 interacted with N3-ICD but not with intracellular domains from other Notch receptors. Wild-type WWP2 but not ligase-deficient mutant WWP2 increases mono-ubiquitination of the membrane-tethered Notch3 fragment, therefore attenuating Notch3 pathway activity in cancer cells and leading to cell cycle arrest. The mono-ubiquitination by WWP2 may target an endosomal/lysosomal degradation fate for Notch3 as suggested by the fact that the process could be suppressed by the endosomal/lysosomal inhibitor. Analysis of The Cancer Genome Atlas dataset showed that the majority of ovarian carcinomas harbored homozygous or heterozygous deletions in WWP2 locus, and there was an inverse correlation in the expression levels between WWP2 and Notch3 in ovarian carcinomas. Furthermore, ectopic expression of WWP2 decreased tumor development in a mouse xenograft model and suppressed the Notch3-induced phenotypes including increase in cancer stem cell-like cell population and platinum resistance. Taken together, our results provide evidence that WWP2 serves as a tumor suppressor by negatively regulating Notch3 signaling in ovarian cancer.  相似文献   

18.
19.
PTENless means more   总被引:10,自引:0,他引:10  
Recent studies indicate that certain key molecules that are vital for various developmental processes, such as Wnt, Shh, and Notch, cause cancer when dysregulated. PTEN, a tumor suppressor that antagonizes the PI3 kinase pathway, is the newest one on the list. The biological function of PTEN is evolutionarily conserved from C. elegans to humans, and the PTEN-controlled signaling pathway regulates cellular processes crucial for normal development, including cell proliferation, soma growth, cell death, and cell migration. In this review, we will focus on the function of PTEN in murine development and its role in regulating stem cell self-renewal and proliferation. We will summarize the organomegaly phenotypes associated with Pten tissue-specific deletion and discuss how PTEN controls organ size, a fundamental aspect of development. Last, we will review the role of PTEN in hormone-dependent, adult-onset mammary and prostate gland development.  相似文献   

20.
Notch家族是一组进化上高度保守的跨膜蛋白,可以广泛调节细胞的发育和分化.越来越多的研究发现,Notch信号通路可以通过调节多种免疫细胞的发育和功能来调节机体的免疫功能.本文综述了Notch家族的组成,其调控因素及其靶基因,Notch信号通路对造血干细胞、固有免疫细胞和适应性免疫细胞的调节作用以及Notch信号通路参与的免疫相关疾病.Notch信号通路对造血干细胞、巨噬细胞、树突状细胞、肥大细胞、T和B淋巴细胞的发育和功能的发挥都有重要的调节作用,并参与肿瘤、病毒感染、炎症反应和自身免疫疾病等免疫相关疾病的发生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号