首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis B virus X (HBX) protein is required for the productive infection of hepatitis B virus (HBV) in vivo and implicated in the development of hepatocellular carcinoma. We have previously shown that hTid-1 and Hdj1, the human Hsp40/DnaJ chaperone proteins, bind the HBV core protein and inhibit viral replication in cell culture system. Here, we report evidences to suggest that HBX is the major target of Hdj1 in the inhibition of HBV replication. Expression of Hdj1 in cultured human hepatoma HepG2 cells facilitated degradation of HBX by the proteasome pathway, and thereby inhibited replication of the wild-type HBV as well as that of the HBX-deficient mutant virus rescued by HBX supplied in trans. Mutational analyses indicated that J domain of Hdj1 is required for the process. These results might provide a molecular basis for the antiviral effect of cellular chaperones.  相似文献   

2.
3.
The X protein (HBX) of the hepatitis B virus (HBV) is not essential for the HBV life cycle in vitro but is important for productive infection in vivo. Our previous study suggests that interaction of HBX with the proteasome complex may underlie the pleiotropic functions of HBX. With the woodchuck model, we demonstrated that the X-deficient mutants of woodchuck hepatitis virus (WHV) are not completely replication defective, possibly behaving like attenuated viruses. In the present study, we analyzed the effects of the proteasome inhibitors on the replication of wild-type and X-negative HBV and WHV. Recombinant adenoviruses or baculoviruses expressing replicating HBV or WHV genomes have been developed as a robust and convenient system to study viral replication in tissue culture. In cells infected with either the recombinant adenovirus-HBV or baculovirus-WHV, the replication level of the X-negative construct was about 10% of that of the wild-type virus. In the presence of proteasome inhibitors, the replication of the wild-type virus was not affected, while the replication of the X-negative virus of either HBV or WHV was enhanced and restored to the wild-type level. Our data suggest that HBX affects hepadnavirus replication through a proteasome-dependent pathway.  相似文献   

4.
It has been shown that Hepatitis B virus (HBV) replication directly alters the expression of key cytoskeleton-associated proteins which play key roles in mechanochemical signal transduction. Nevertheless, little is known on the correlation between HBV replication and the subsequent adhesion mechanism of HBV-replicating cells. In this study, it is demonstrated that the lag time of adhesion contact evolution of HepG2 cells with HBV replication is significantly increased by two times compared to that of normal HepG2 cell on collagen coated substrate. During the initial 20 min of cell seeding, only diffuse forms of vinculin was detected in HBV replicating cells while vinculin-associated focal complexes were found in normal and control cells. Similar delay in cell adhesion in HBV-replicating cells was observed in cells transfected with HBX, the smallest HBV protein, suggesting its involvement in this cellular process. In addition, a proline rich region found in many SH3 binding proteins was identified in HBX. HBX was found to interact with the focal adhesion protein, vinexin-beta, through the SH3 binding. Furthermore, HepG2 cells with HBV replication showed evidence of cell rounding up, possibly resulting from cytoskeletal reorganizations associated with interaction between HBX and vinexin-beta. Taken together, our results suggest that HBX is involved in the cytoskeletal reorganization in response to HBV replication.  相似文献   

5.
Interfering with cellular signal transduction pathways is a common strategy used by many viruses to create a propitious intracellular environment for an efficient replication. Our group has been studying cellular signalling pathways activated by the orthopoxviruses Vaccinia (VACV) and Cowpox (CPXV) and their significance to viral replication. In the present study our aim was to investigate whether the GTPase Rac1 was an upstream signal that led to the activation of MEK/ERK1/2, JNK1/2 or Akt pathways upon VACV or CPXV'' infections. Therefore, we generated stable murine fibroblasts exhibiting negative dominance to Rac1-N17 to evaluate viral growth and the phosphorylation status of ERK1/2, JNK1/2 and Akt. Our results demonstrated that VACV replication, but not CPXV, was affected in dominant-negative (DN) Rac1-N17 cell lines in which viral yield was reduced in about 10-fold. Viral late gene expression, but not early, was also reduced. Furthermore, our data showed that Akt phosphorylation was diminished upon VACV infection in DN Rac1-N17 cells, suggesting that Rac1 participates in the phosphoinositide-3 kinase pathway leading to the activation of Akt. In conclusion, our results indicate that while Rac1 indeed plays a role in VACV biology, perhaps another GTPase may be involved in CPXV replication.  相似文献   

6.
Autophagy is a cellular response activated by many pathogens, but the mechanism of activation is largely unknown. Recently we showed for the first time that rotavirus initiates the autophagy pathway through a calcium-mediated mechanism. Expression of the rotavirus-encoded NSP4, a pore-forming protein (viroporin), elicits the release of endoplasmic reticulum (ER) lumenal calcium into the cytoplasm of the infected cell. The increased cytoplasmic calcium activates a calcium signaling pathway involving calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) and 5′ adenosine monophosphate-activated protein kinase (AMPK) to trigger autophagy. Rotavirus further manipulates autophagy membrane trafficking to transport viral ER-associated proteins to viroplasms, sites of viral genome replication and immature particle assembly. Transport of viral proteins to viroplasms is required for assembly of infectious virus. Thus, NSP4, a multifunctional viral protein known to regulate infectious particle assembly, also modulates membrane trafficking by orchestrating the activation of autophagy to benefit viral replication.  相似文献   

7.
8.
9.
Id-1 is a member of the HLH protein family that regulates a wide range of cellular processes such as cell proliferation, apoptosis, senescence and overexpression of Id-1 was recently suggested to play roles in the development and progression of different cancers. Previously, Id-1 was shown to physically interact with the viral protein E1A. Meanwhile, Id-1 expression was found to be regulated by several of the virus-encoded proteins, suggesting that Id-1 may be a common cellular target of the viral proteins. Here, we report that Id-1 interacts with the Hepatitis-B virus (HBV)-encoded protein HBX and regulates its stability in hepatocellular carcinoma (HCC) cells. We found that in HCC cells, ectopic Id-1 expression significantly decreased the half-life of the HBX protein, indicating that HBX is destabilized by Id-1. Meanwhile, the Id-1-induced HBX degradation was found to be inhibited by treatment with proteasome inhibitor, suggesting that this process is mediated through the proteasome pathway. Interestingly, while Id-1 did not induce HBX-ubiquitination, we found that removal of all the lysine residues of the HBX protein protects it from the effect of Id-1, indicating that ubiquitination is still required for the Id-1-mediated HBX degradation. Meanwhile, we found that Id-1 binds to the proteasome subunit C8 and facilitates its interaction with the HBX protein and disruption of this interaction completely abolishes the negative effect of Id-1 on HBX protein stability. Taken together, our results demonstrated a novel function of Id-1 in regulating HBX protein stability through interaction with the proteasome.  相似文献   

10.
Guo D  Tan YC  Wang D  Madhusoodanan KS  Zheng Y  Maack T  Zhang JJ  Huang XY 《Cell》2007,128(2):341-355
The small GTPase Rac and the second messenger cGMP (guanosine 3',5'-cyclic monophosphate) are critical regulators of diverse cell functions. When activated by extracellular signals via membrane signaling receptors, Rac executes its functions through engaging downstream effectors such as p21-activated kinase (PAK), a serine/threonine protein kinase. However, the molecular mechanism by which membrane signaling receptors regulate cGMP levels is not known. Here we have uncovered a signaling pathway linking Rac to the increase of cellular cGMP. We show that Rac uses PAK to directly activate transmembrane guanylyl cyclases (GCs), leading to increased cellular cGMP levels. This Rac/PAK/GC/cGMP pathway is involved in platelet-derived growth factor-induced fibroblast cell migration and lamellipodium formation. Our findings connect two important regulators of cellular physiological functions and provide a general mechanism for diverse receptors to modulate physiological responses through elevating cellular cGMP levels.  相似文献   

11.
Akt1 belongs to the three-gene Akt family and functions as a serine-threonine kinase regulating phosphorylation of an array of substrates and mediating cellular processes such as cell migration, proliferation, survival, and cell cycle. Our previous studies have established the importance of Akt1 in angiogenesis and absence of Akt1 resulted in impaired integrin activation, adhesion, migration, and extracellular matrix assembly by endothelial cells and fibroblasts. In this study, we identify the downstream signaling pathways activated by Akt1 in the regulation of these cellular events. We demonstrate here that Akt1 is necessary for the growth factor stimulated activation of 14-3-3beta-Rac1-p21 activated kinase (Pak) pathway in endothelial cells and fibroblasts. While activation of Akt1 resulted in translocation of Rac1 to membrane ruffles, enhanced Rac1 activity, Pak1 phosphorylation, and lamellipodia formation, resulting in enhanced adhesion and assembly of fibronectin, inhibition of Akt1 resulted in inhibition of these processes due to impaired Rac1-Pak signaling. Formation of lamellipodia, adhesion, and fibronectin assembly by myristoylated Akt1 expression in NIH 3T3 fibroblasts was inhibited by co-expression with either dominant negative Rac1 or dominant negative Pak1. In contrast, impaired lamellipodia formation, adhesion, and fibronectin assembly by dominant negative-Akt1 expression was rescued by co-expression with either constitutively active-Rac1 or -Pak1. Moreover, previously reported defects in adhesion and extracellular matrix assembly by Akt1(-/-) fibroblasts could be rescued by expression with either active-Rac1 or -Pak1, implying the importance of Rac1-Pak signaling in growth factor stimulated cytoskeletal assembly, lamellipodia formation and cell migration in endothelial cells and fibroblasts downstream of Akt1 activation.  相似文献   

12.
Like tumor cells, DNA viruses have had to evolve mechanisms that uncouple cellular replication from the many intra- and extracellular factors that normally control it. Here we show that adenovirus encodes two proteins that activate the mammalian target of rapamycin (mTOR) for viral replication, even under nutrient/growth factor-limiting conditions. E4-ORF1 mimics growth factor signaling by activating PI3-kinase, resulting in increased Rheb.GTP loading and mTOR activation. E4-ORF4 is redundant with glucose in stimulating mTOR, does not affect Rheb.GTP levels and is the major mechanism whereby adenovirus activates mTOR in quiescent primary cells. We demonstrate that mTOR is activated through a mechanism that is dependent on the E4-ORF4 protein phosphatase 2A-binding domain. We also show that mTOR activation is required for efficient S-phase entry, independently of E2F activation, in adenovirus-infected quiescent primary cells. These data reveal that adenovirus has evolved proteins that activate the mTOR pathway, irrespective of the cellular microenvironment, and which play a requisite role in viral replication.  相似文献   

13.
We have recently identified a specific signaling pathway that regulates actin reorganization in malignant human breast and prostate epithelial cells associated with FAK, PI-3K and Rac1 activation. Here we report that this pathway operates in MCF7 cells upon activation of membrane androgen receptors (mAR). Stimulation of mAR by the non-permeable testosterone-BSA conjugate resulted in early actin reorganization documented by quantitative measurements of actin dynamics and morphological analysis of microfilament organization. This effect was regulated by early phosphorylation of FAK and subsequent PI-3K and Rac1 activation. The functional role of this pathway was further shown in A375 melanoma cells. Treatment with the opioid antagonist alpha(s1) casomorphin resulted in rapid and potent actin remodeling in A375 cells, regulated by rapid activation of the FAK/PI-3K/Rac1 signaling. Pretreatment of both cell lines with the specific PI-3K inhibitor wortmannin blocked actin reorganization. Interestingly, wound healing assays revealed that testosterone-BSA and alpha (s1) casomorphin significantly inhibited MCF7 and A375 cell motility respectively. These effects were abrogated through blockade of PI-3K signaling by wortmannin. The results presented here indicate that actin reorganization through FAK/PI3-K/Rac-1 activation operates in various human cancer cell systems supporting a functional role for FAK/PI-3K/Rac1/actin signaling in controlling cell motility.  相似文献   

14.
15.
Opportunistic infections, common in HIV-1-infected patients, increase HIV replication; however, the intracellular signaling mechanisms involved are not clearly known. We have shown that Toll-like receptor 2 (TLR2), TLR4, and TLR9 mediate microbial Ag-induced HIV-long terminal repeat (HIV-LTR) trans-activation and HIV-1 replication, and that LPS-induced HIV-LTR trans-activation is mediated through myeloid differentiation adapter protein. Recently, Toll-IL-1R domain-containing adapter protein (TIRAP) has been identified as an adapter molecule that mediates responses to TLR2 and TLR4 ligands, and TIRAP was suggested to provide signaling specificity for different TLRs. Rac1, a small GTP-binding protein that is activated upon LPS stimulation of macrophages, activates phosphatidylinositol 3-kinase and Akt and leads to NF-kappaB activation. The roles of Rac1 and TIRAP in LPS activation of HIV replication is not known. In the present study we show that LPS stimulation of human microvessel endothelial cells leads to Rac1 activation. Constitutively active Rac1 (Rac1V12) simulated the effect of LPS to activate HIV-LTR, whereas the expression of dominant negative Rac1 (Rac1N17) partially blocked LPS-induced HIV-LTR trans-activation. Rac1V12-induced HIV-LTR activation was independent of myeloid differentiation adapter protein, and dominant negative TIRAP blocked Rac1V12-induced HIV-LTR trans-activation. In this study we show for the first time that activation of Rac1 leads to HIV-LTR trans-activation, and this is mediated through TIRAP. Together these results underscore the importance of Rac1 and TIRAP in TLR4 activation of HIV replication and help delineate the signaling pathways induced by TLRs to mediate microbial Ag-induced HIV replication and HIV pathogenesis.  相似文献   

16.
17.
We have previously demonstrated that the human papillomavirus (HPV) genome replicates effectively in U2OS cells after transfection using electroporation. The transient extrachromosomal replication, stable maintenance, and late amplification of the viral genome could be studied for high- and low-risk mucosal and cutaneous papillomaviruses. Recent findings indicate that the cellular DNA damage response (DDR) is activated during the HPV life cycle and that the viral replication protein E1 might play a role in this process. We used a U2OS cell-based system to study E1-dependent DDR activation and the involvement of these pathways in viral transient replication. We demonstrated that the E1 protein could cause double-strand DNA breaks in the host genome by directly interacting with DNA. This activity leads to the induction of an ATM-dependent signaling cascade and cell cycle arrest in the S and G2 phases. However, the transient replication of HPV genomes in U2OS cells induces the ATR-dependent pathway, as shown by the accumulation of γH2AX, ATR-interacting protein (ATRIP), and topoisomerase IIβ-binding protein 1 (TopBP1) in viral replication centers. Viral oncogenes do not play a role in this activation, which is induced only through DNA replication or by replication proteins E1 and E2. The ATR pathway in viral replication centers is likely activated through DNA replication stress and might play an important role in engaging cellular DNA repair/recombination machinery for effective replication of the viral genome upon active amplification.  相似文献   

18.
19.
Iba1 is a macrophage/microglia-specific calcium-binding protein that is involved in RacGTPase-dependent membrane ruffling and phagocytosis. In this study, we introduced Iba1 into Swiss 3T3 fibroblasts and demonstrated the enhancement of platelet-derived growth factor (PDGF)-induced membrane ruffling and chemotaxis. Wortmannin treatment did not completely suppressed this enhanced membrane ruffling in Iba1-expressing cells, whereas it did in Iba1-nonexpressing cells, suggesting that the enhancement is mediated through a phosphatidylinositol 3-kinase (PI3K)-independent signaling pathway. Porcine aorta endothelial cells transfected with expression constructs of Iba1 and PDGF receptor add-back mutants were used to analyze the signaling pathway responsible for the Iba1-induced enhancement of membrane ruffling. In the absence of Iba1 expression, PDGF did not induced membrane ruffling in cells expressing the Tyr-1021 receptor mutant, which is capable of activating phospholipase C-gamma (PLC-gamma) but not PI3K. In contrast, in the presence of Iba1 expression, membrane ruffling was formed in cells expressing the Tyr-1021 mutant. In addition, Rac was shown to be activated during membrane ruffling in cells expressing Iba1 and the Tyr-1021 mutant. Furthermore, dominant negative forms of PLC-gamma completely suppressed PDGF-induced Iba1-dependent membrane ruffling and Rac activation. These results indicate the existence of a novel signaling pathway where PLC-gamma activates Rac in a manner dependent on Iba1.  相似文献   

20.
The B cell adaptor molecule of 32 kDa (Bam32) is an adaptor that links the B cell antigen receptor (BCR) to ERK and JNK activation and ultimately to mitogenesis. After BCR cross-linking, Bam32 is recruited to the plasma membrane and accumulates within F-actin-rich membrane ruffles. Bam32 contains one Src homology 2 and one pleckstrin homology domain and is phosphorylated at a single site, tyrosine 139. To define the function of Bam32 in membrane-proximal signaling events, we established human B cell lines overexpressing wild-type or mutant Bam32 proteins. The basal level of F-actin increased in cells expressing wild-type or myristoylated Bam32 but decreased in cells expressing either an Src homology-2 or Tyr-139 Bam32 mutant. Overexpression of wild-type Bam32 also affected BCR-induced actin remodeling, which was visualized as increases in F-actin-rich membrane ruffles. In contrast, Bam32 mutants largely blocked the BCR-induced increase in cellular F-actin. The positive and negative effects of Bam32 variants on F-actin levels were closely mirrored by their effects on the activation of the GTPase Rac1, which is known to regulate actin remodeling in lymphocytes. Bam32-deficient DT40 B cells showed decreased Rac1 activation and a failure of Rac1 to co-localize with the BCR, whereas cells overexpressing Bam32 had increased constitutive Rac1 activation. These results suggest that Bam32 regulates the cytoskeleton through Rac1. Bam32 variants also affected downstream signaling to JNK in a manner similar to that of Rac1, suggesting that the effect of Bam32 on JNK activation may be at least partially mediated through Rac1. Our results demonstrate a novel phosphorylation-dependent function of Bam32 in regulating Rac1 activation and actin remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号