首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
We illuminated bacteriorhodopsin crystals at 210K to produce, in a photostationary state with 60% occupancy, the earliest M intermediate (M1) of the photocycle. The crystal structure of this state was then determined from X-ray diffraction to 1.43 A resolution. When the refined model is placed after the recently determined structure for the K intermediate but before the reported structures for two later M states, a sequence of structural changes becomes evident in which movements of protein atoms and bound water are coordinated with relaxation of the initially strained photoisomerized 13-cis,15-anti retinal. In the K state only retinal atoms are displaced, but in M1 water 402 moves also, nearly 1A away from the unprotonated retinal Schiff base nitrogen. This breaks the hydrogen bond that bridges them, and initiates rearrangements of the hydrogen-bonded network of the extracellular region that develop more fully in the intermediates that follow. In the M1 to M2 transition, relaxation of the C14-C15 and C15=NZ torsion angles to near 180 degrees reorients the retinylidene nitrogen atom from the extracellular to the cytoplasmic direction, water 402 becomes undetectable, and the side-chain of Arg82 is displaced strongly toward Glu194 and Glu204. Finally, in the M2 to M2' transition, correlated with release of a proton to the extracellular surface, the retinal assumes a virtually fully relaxed bent shape, and the 13-methyl group thrusts against the indole ring of Trp182 which tilts in the cytoplasmic direction. Comparison of the structures of M1 and M2 reveals the principal switch in the photocycle: the change of the angle of the C15=NZ-CE plane breaks the connection of the unprotonated Schiff base to the extracellular side and establishes its connection to the cytoplasmic side.  相似文献   

2.
We produced the L intermediate of the photocycle in a bacteriorhodopsin crystal in photo-stationary state at 170 K with red laser illumination at 60% occupancy, and determined its structure to 1.62 A resolution. With this model, high-resolution structural information is available for the initial bacteriorhodopsin, as well as the first five states in the transport cycle. These states involve photo-isomerization of the retinal and its initial configurational changes, deprotonation of the retinal Schiff base and the coupled release of a proton to the extracellular membrane surface, and the switch event that allows reprotonation of the Schiff base from the cytoplasmic side. The six structural models describe the transformations of the retinal and its interaction with water 402, Asp85, and Asp212 in atomic detail, as well as the displacements of functional residues farther from the Schiff base. The changes provide rationales for how relaxation of the distorted retinal causes movements of water and protein atoms that result in vectorial proton transfers to and from the Schiff base.  相似文献   

3.
Maeda A  Gennis RB  Balashov SP  Ebrey TG 《Biochemistry》2005,44(16):5960-5968
A key event in light-driven proton pumping by bacteriorhodopsin is the formation of the L intermediate, whose transition to M is accompanied by the first proton transfer step, from the Schiff base to Asp85 on the extracellular side. Subsequent reprotonation of the Schiff base from the other side of the membrane to form the N intermediate is crucial for unidirectional proton transport. Previous FTIR studies have suggested that the intense water O-D stretching vibration bands which appear in L at 2589, 2605, and 2621 cm(-)(1) are due to a cluster of polarized water molecules connecting the Schiff base to the Thr46-Asp96 region closer to the cytoplasmic surface. In the present study the difference spectrum was obtained of the N intermediate with its photoproduct N', formed after irradiating N at 80 K. The water O-D stretching vibrations of N appear as a broad feature in a similar frequency region with a similar intensity to those of L. This feature is also affected by T46V like in L. However, the intensities of these water vibrations of N nearly returned to the initial unphotolyzed state upon formation of N', unlike those of L which are preserved in L'. An exception was V49A, which preserved the intense water vibrations of N in N'. The results suggest that both L and N have a water cluster extending from the Schiff base to Thr46. The surrounding protein moiety stabilizes the water cluster in L, but in N it is stabilized mostly by interaction with the Schiff base.  相似文献   

4.
In the recently proposed local-access model for proton transfers in the bacteriorhodopsin transport cycle (Brown et al. 1998. Biochemistry. 37:3982-3993), connection between the retinal Schiff base and Asp85 (in the extracellular direction) and Asp96 (in the cytoplasmic direction)is maintained as long as the retinal is in its photoisomerized state. The directionality of the proton translocation is determined by influences in the protein that make Asp85 a proton acceptor and, subsequently, Asp96 a proton donor. The idea of concurrent local access of the Schiff base in the two directions is now put to a test in the photocycle of the D115N/D96N mutant. The kinetics had suggested that there is a single sequence of intermediates, L<-->M1<-->M2<-->N, and the M2-->M1 reaction depends on whether a proton is released to the extracellular surface. This is now confirmed. We find that at pH 5, where proton release does not occur, but not at higher pH, the photostationary state created by illumination with yellow light contains not only the M1 and M2 states, but also the L and the N intermediates. Because the L and M1 states decay rapidly, they can be present only if they are in equilibrium with later intermediates of the photocycle. Perturbation of this mixture with a blue flash caused depletion of the M intermediate, followed by its partial recovery at the expense of the L state. The change in the amplitude of the C=O stretch band at 1759 cm-1 demonstrated protonation of Asp85 in this process. Thus, during the reequilibration the Schiff base lost its proton to Asp85. Because the N state, also present in the mixture, arises by protonation of the Schiff base from the cytoplasmic surface, these results fulfill the expectation that under the conditions tested the extracellular access of the Schiff base would not be lost at the time when there is access in the cytoplasmic direction. Instead, the connectivity of the Schiff base flickers rapidly (with the time constant of the M1<-->M2 equilibration) between the two directions during the entire L-to-N segment of the photocycle.  相似文献   

5.
T Baasov  N Friedman  M Sheves 《Biochemistry》1987,26(11):3210-3217
Factors affecting the C = N stretching frequency of protonated retinal Schiff base (RSBH+) were studied with a series of synthetic chromophores and measured under different conditions. Interaction of RSBH+ with nonconjugated positive charges in the vicinity of the ring moiety or a planar polyene conformation (in contrast to the twisted retinal conformation in solution) shifted the absorption maxima but did not affect the C = N stretching frequency. The latter, however, was affected by environmental perturbations in the vicinity of the Schiff base linkage. Diminished ion pairing (i.e., of the positively charged nitrogen to its anion) achieved either by substituting a more bulky counteranion or by designing models with a homoconjugation effect lowered the C = N stretch energy. Decreasing solvation of the positively charged nitrogen leads to a similar trend. These effects in the vicinity of the Schiff base linkage also perturb the deuterium isotope effect observed upon deuteriation of the Schiff base. The results are interpreted by considering the mixing of the C = N stretching and C = N-H bending vibration. The C = N mode is shifted due to electrostatic interaction with nonconjugated positive charges in the vicinity of the Schiff base linkage, an interaction that does not influence the isotope effect. Weak hydrogen bonding between the Schiff base linkage in bacteriorhodopsin (bR) and its counteranion or, alternatively, poor solvation of the positively charged Schiff base nitrogen can account for the C = N stretching frequency of 1640 cm-1 and the deuterium isotope effect of 17 cm-1 observed in this pigment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The retinal chromophores of both rhodopsin and bacteriorhodopsin are bound to their apoproteins via a protonated Schiff base. We have employed continuous-flow resonance Raman experiments on both pigments to determine that the exchange of a deuteron on the Schiff base with a proton is very fast, with half-times of 6.9 +/- 0.9 and 1.3 +/- 0.3 ms for rhodopsin and bacteriorhodopsin, respectively. When these results are analyzed using standard hydrogen-deuteron exchange mechanisms, i.e., acid-, base-, or water-catalyzed schemes, it is found that none of these can explain the experimental results. Because the exchange rates are found to be independent of pH, the deuterium-hydrogen exchange can not be hydroxyl (or acid-)-catalyzed. Moreover, the deuterium-hydrogen exchange of the retinal Schiff base cannot be catalyzed by water acting as a base because in that case the estimated exchange rate is predicted to be orders of magnitude slower than that observed. The relatively slow calculated exchange rates are essentially due to the high pKa values of the Schiff base in both rhodopsin (pKa > 17) and bacteriorhodopsin (pKa approximately 13.5). We have also measured the deuterium-hydrogen exchange of a protonated Schiff base model compound in aqueous solution. Its exchange characteristics, in contrast to the Schiff bases of the pigments, is pH-dependent and consistent with the standard base-catalyzed schemes. Remarkably, the water-catalyzed exchange, which has a half-time of 16 +/- 2 ms and which dominates at pH 3.0 and below, is slower than the exchange rate of the Schiff base in rhodopsin and bacteriorhodopsin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The transfer of a proton from the retinal Schiff base to the nearby Asp85 protein group is an essential step in the directional proton-pumping by bacteriorhodopsin. To avoid the wasteful back reprotonation of the Schiff base from Asp85, the protein must ensure that, following Schiff base deprotonation, the energy barrier for back proton-transfer from Asp85 to the Schiff base is larger than that for proton-transfer from the Schiff base to Asp85. Here, three structural elements that may contribute to suppressing the back proton-transfer from Asp85 to the Schiff base are investigated: (i) retinal twisting; (ii) hydrogen-bonding distances in the active site; and (iii) the number and location of internal water molecules. The impact of the pattern of bond twisting on the retinal deprotonation energy is dissected by performing an extensive set of quantum-mechanical calculations. Structural rearrangements in the active site, such as changes of the Thr89:Asp85 distance and relocation of water molecules hydrogen-bonding to the Asp85 acceptor group, may participate in the mechanism which ensures that following the transfer of the Schiff base proton to Asp85 the protein proceeds with the subsequent photocycle steps, and not with back proton transfer from Asp85 to the Schiff base.  相似文献   

8.
The mononuclear neutral CoIII complex [Co(mdbp)L] (3), [mdbpH = 4-methyl-2,6-dibenzoylphenol, LH2[(6-PhCO)(4-Me)(OH)C6H2-2-{CPhN(CH2)4NCPh}-2-C6H2(OH)(4-Me)(6-COPh)], has been synthesized from CoII chloride, butane-1,4-diamine and mdbpH, and its structure established by X-ray crystallography. The Schiff base LH2 and compound 3 have been characterized by elemental analysis, conductivity measurement, mass spectrometry, IR, electronic, 1H and 13C NMR spectroscopy, thermal analysis (TGA) and cyclic voltammetry. The ligand L is tetradentate, and coordinates via phenolato oxygen and imine nitrogen. The octahedral coordination sphere is completed by the phenolato and one benzoyl oxygen of a 4-methyl-2,6-dibenzoylato ligand.  相似文献   

9.
Modification of the chromophore in bacteriorhodopsin (BR) from ET1001 and D96N strains of Halobacterium salinarum (halobium) was carried out. Purple membranes were decolored by means of light-dependent hydroxylaminolysis. The all-trans -isomers of retinal and its 3,4-didehydro-, 4-keto-, and phenyl analogs were reconstituted into apomembranes. Absorption maxima of the homonymic pigments in both strains were similar. The kinetics of the M-intermediates in the mode of a single turnover of the photocycle induced by a short light flash (532 nm, 15 ns) was compared. For the investigated bacteriorhodopsin analogs the efficiency of the M-intermediate formation did not exhibit any reliable dependence on the point mutation. Both for ET1001 and for D96N strains the M-relaxation of the 4-ketoBR was distinctly biphasic, with the slow phase comprising about 10–15% of the signal amplitude. Replacement of the ionone ring by phenyl caused a weak deceleration of the M relaxation (~1.5-fold decrease in t 1/2). Independence of the photocycle deceleration of the point mutation and chromophore modification was shown for all BR analogs studied.  相似文献   

10.
A new ligand (HL) obtained from the Schiff base condensation of 4-(diethylamino)salicylaldehyde with 4-nitroaniline is reported, with its nickel(II), copper(II), and cobalt(II) complexes. The crystal structures are reported for the four derivatives. While, NiIIL2 and CuIIL2 are centrosymmetric molecules, CoIIL2 exhibits a pseudo-tetrahedral molecular structure. The quadratic hyperpolarizabilities (β) of HL and CoIIL2, measured by electric field induced second harmonic (EFISH) technique, are equal to 66 and 110 × 10−30 cm5 esu−1, respectively. Beside a geometric effect (pseudo-Td symmetry), the coordination of the metal center provides an intrinsic enhancement of the NLO response. In addition, an enhancement of the thermal stability of about 60° is found upon metal complexation.  相似文献   

11.
Water molecules play an important role in protein folding and protein interactions through their structural association with proteins. Examples of such structural association can be found in protein crystal structures, and can often explain protein functionality in the context of structure. We herein report the systematic analysis of the local structures of proteins interacting with water molecules, and the characterization of their geometric features. We first examined the interaction of water molecules with a large local interaction environment by comparing the preference of water molecules in three regions, namely, the protein–protein interaction (PPI) interfaces, the crystal contact (CC) interfaces, and the non‐interfacial regions. High preference of water molecules to the PPI and CC interfaces was found. In addition, the bound water on the PPI interface was more favorably associated with the complex interaction structure, implying that such water‐mediated structures may participate in the shaping of the PPI interface. The pairwise water‐mediated interaction was then investigated, and the water‐mediated residue–residue interaction potential was derived. Subsequently, the types of polar atoms surrounding the water molecules were analyzed, and the preference of the hydrogen bond acceptor was observed. Furthermore, the geometries of the structures interacting with water were analyzed, and it was found that the major structure on the protein surface exhibited planar geometry rather than tetrahedral geometry. Several previously undiscovered characteristics of water–protein interactions were unfolded in this study, and are expected to lead to a better understanding of protein structure and function. Proteins 2016; 84:43–51. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Structures and phase behavior of multilamellar vesicles of 1,2-dipalmitoyl-L-phosphatidylcholine (DPPC) containing various amount of ganglioside GM3 with a C18:1 sphingoid base and a 24:0 acyl chain (GM3(18,24)) were investigated by small-angle X-ray diffraction. Below 3.5 mol% GM3 content, the phase behavior was similar to that of pure DPPC except for a slight increase of lamellar repeat distance in the L(beta'), the P(beta') and the L(alpha) phases and a decrease of the pretransition temperature. In the range of 4-12 mol% GM3 content, another phase which has larger repeat distances coexisted with the phase observed below 3.5 mol% GM3 content. This has been interpreted that the phase separation into GM3-poor phase (denoted as A-phase) and GM3-rich phase (denoted as B-phase) took place. Above 13 mol% GM3 content, the B-phase became dominant. This phase separation may be related to the formation of GM3-enriched microdomains that had been observed on the cell surfaces which express large amounts of GM3, such as murine B16 melanoma (J. Biol. Chem. 260 (1985) 13328).  相似文献   

13.
The results of inelastic neutron scattering experiments on water in the temperature interval 300–623 K along the coexistence curve are compared with data obtained from molecular dynamics simulations. In general, a good agreement between experiments and calculations is observed and it serves as a satisfactory test of the potential models employed. The temperature dependence of the generalized frequency distribution of water molecules obtained by both experiment and computer simulation demonstrates the accordance with the temperature evolution of the water structure, extracted from neutron and X-ray diffraction measurements.  相似文献   

14.
A series of novel organoantimony(V) complexes have been synthesised by the reactions of the isomers of chlorophenylacetic acids with triphenylantimony(V) dichloride or tetraphenylantimony(V) bromide in 1:2 or 1:1 stoichiometries. All the complexes have been characterized by elemental analysis, IR and NMR (1H, 13C) spectra analyses; furthermore, complexes 1, 2, 3 and 4 have been determined by X-ray single crystal diffraction. The structure of complexes show that the five-coordinated and six-coordinated antimony(V) atoms adopt distorted trigonal bipyramidal geometry and octahedral geometry. And the structural analyses show that complexes 1 and 3 have 2D network structures; complex 2 possesses a 1D polymeric chain structure and complex 4 has a 3D supramolecular framework.  相似文献   

15.
Some copper(I) complexes of the type [Cu(L)(dppe)]X (1-4) [where L = (3-trifluoromethylphenyl)pyridine-2-ylmethylene-amine; dppe = 1,2-bis(diphenylphosphino)ethane; X = Cl, CN, ClO4 and BF4] have been synthesized by the condensation of 3-aminobenzotrifluoride with 2-pyridinecarboxaldehyde followed by the reaction with CuCl, CuCN, [Cu(MeCN)4]ClO4 and [Cu(MeCN)4]BF4 in presence of dppe. The complexes 1-4 were then characterized on the basis of elemental analysis, IR, UV-Vis and 1H NMR spectral studies. The representative complex of the series 4 has been characterized by single crystal X-ray diffraction which reveal that in complex the central copper(I) ion assumes the irregular pseudo-tetrahedral geometry. The catalytic activity of the complexes was tested and it was found that all the complexes worked as effective catalyst in the amination of aryl halide.  相似文献   

16.
Furutani Y  Kawanabe A  Jung KH  Kandori H 《Biochemistry》2005,44(37):12287-12296
Anabaena sensory rhodopsin (ASR) is an archaeal-type rhodopsin found in eubacteria, and is believed to function as a photosensor interacting with a 14 kDa soluble protein. Most of the residues in the retinal binding pocket are similar in ASR except proline 206, where the corresponding amino acid in other archaeal-type rhodopsins is highly conserved aspartate that constitutes the counterion complex of the positively charged protonated Schiff base. The recently determined X-ray crystallographic structure of ASR revealed a water molecule between the Schiff base and Asp75 [Vogeley, L., Sineshchekov, O. A., Trivedi, V. D., Sasaki, J., Spudich, J. L., and Luecke, H. (2004) Science 306, 1390-1393], as well as the case for bacteriorhodopsin (BR), a typical transport rhodopsin working as a proton pump. In this study, we applied low-temperature Fourier transform infrared (FTIR) spectroscopy to the all-trans form of ASR at 77 K, and compared the local structure around the chromophore and their structural changes upon retinal photoisomerization with those of BR. The K intermediate minus ASR difference spectra were essentially similar to those for BR, indicating that photoisomerization yields formation of the distorted 13-cis form. In contrast, little amide I bands were observed for ASR. The presence of the proline-specific vibrational bands suggests that peptide backbone alterations are limited to the Pro206 moiety in the K state of ASR. The N-D stretching of the Schiff base is presumably located at 2163 (-) and 2125 (-) cm(-)(1) in ASR, suggesting that the hydrogen bonding strength of the Schiff base in ASR is similar to that in BR. A remarkable difference between ASR and BR was revealed from water bands. Although ASR possesses a bridged water molecule like BR, the O-D stretching of water molecules was observed only in the >2500 cm(-)(1) region for ASR. We interpreted that the weak hydrogen bond of the bridged water between the Schiff base and Asp75 originates from their geometry. Since ASR does not pump protons, our result supports the working hypothesis that the existence of strongly hydrogen bonded water molecules is essential for proton pumping activity in archaeal rhodopsins.  相似文献   

17.
MltA is a lytic transglycosylase of Gram-negative bacteria that cleaves the beta-1,4 glycosidic linkages between N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) in peptidoglycan. We have determined the crystal structures of MltA from Neisseria gonorrhoeae and Escherichia coli (NgMltA and EcMltA), which have only 21.5% sequence identity. Both proteins have two main domains separated by a deep groove. Domain 1 shows structural similarity with the so-called double-psi barrel family of proteins. Comparison of the two structures reveals substantial differences in the relative positions of domains 1 and 2 such that the active site groove in NgMltA is much wider and appears more able to accommodate peptidoglycan substrate than EcMltA, suggesting that domain closure occurs after substrate binding. Docking of a peptidoglycan molecule into the structure of NgMltA reveals a number of conserved residues that are likely involved in substrate binding, including a potential binding pocket for the peptidyl moieties. This structure supports the assignment of Asp405 as the acid catalyst responsible for cleavage of the glycosidic bond. In EcMltA, the equivalent residue is Asp328, which has been identified previously. The structures also suggest a catalytic role for Asp393 (Asp317 in EcMltA) in activating the C6 hydroxyl group during formation of the 1,6-anhydro linkage. Finally, in comparison to EcMltA, NgMltA contains a unique third domain that is an insertion within domain 2. The domain is beta in structure and may mediate protein-protein interactions that are specific to peptidoglycan metabolism in N.gonorrhoeae.  相似文献   

18.
Three different medium-resolution structures of the human water channel aquaporin-1 (AQP1) have been solved by cryo-electron microscopy (cryo-EM) during the last two years. Recently, the structure of the strongly related bovine AQP1 was solved by X-ray crystallography at higher resolution, allowing a validation of the original medium-resolution structures, and providing a good indication for the strengths and limitations of state of the art cryo-EM methods. We present a detailed comparison between the different models, which shows that overall, the structures are highly similar, deviating less than 2.5 A from each other in the helical backbone regions. The two original cryo-EM structures, however, also show a number of significant deviations from the X-ray structure, both in the backbone positions of the transmembrane helices and in the location of the amino acid side-chains facing the pore. In contrast, the third cryo-EM structure that included information from the X-ray structure of the homologous bacterial glycerol facilitator GlpF and that was subsequently refined against cryo-EM AQP1 data, shows a root mean square deviation of 0.9A from the X-ray structure in the helical backbone regions.  相似文献   

19.
T4 phage beta-glucosyltransferase (BGT) is an inverting glycosyltransferase (GT) that transfers glucose from uridine diphospho-glucose (UDP-glucose) to an acceptor modified DNA. BGT belongs to the GT-B structural superfamily, represented, so far, by five different inverting or retaining GT families. Here, we report three high-resolution X-ray structures of BGT and a point mutant solved in the presence of UDP-glucose. The two co-crystal structures of the D100A mutant show that, unlike the wild-type enzyme, this mutation prevents glucose hydrolysis. This strongly indicates that Asp100 is the catalytic base. We obtained the wild-type BGT-UDP-glucose complex by soaking substrate-free BGT crystals. Comparison with a previous structure of BGT solved in the presence of the donor product UDP and an acceptor analogue provides the first model of an inverting GT-B enzyme in which both the donor and acceptor substrates are bound to the active site. The structural analyses support the in-line displacement reaction mechanism previously proposed, locate residues involved in donor substrate specificity and identify the catalytic base.  相似文献   

20.
5-Aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway in nonplant higher eukaryotes. Murine erythroid 5-aminolevulinate synthase has been purified to homogeneity from an Escherichia coli overproducing strain, and the catalytic and spectroscopic properties of this recombinant enzyme were compared with those from nonrecombinant sources (Ferreira, G.C. & Dailey, H.A., 1993, J. Biol. Chem. 268, 584-590). 5-Aminolevulinate synthase is a pyridoxal 5'-phosphate-dependent enzyme and is functional as a homodimer. The recombinant 5-aminolevulinate synthase holoenzyme was reduced with tritiated sodium borohydride and digested with trypsin. A single peptide contained the majority of the label. The tritiated peptide was isolated, and its amino acid sequence was determined; it corresponded to 15 amino acids around lysine 313, to which pyridoxal 5'-phosphate is bound. Significantly, the pyridoxyllysine peptide is conserved in all known cDNA-derived 5-aminolevulinate synthase sequences and is present in the C-terminal (catalytic) domain. Mutagenesis of the 5-aminolevulinate synthase residue, which is involved in the Schiff base linkage with pyridoxal 5'-phosphate, from lysine to alanine or histidine abolished enzyme activity in the expressed protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号