首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to investigate, using microdialysis, the effects of aging on the glutamate/dopamine/GABA interaction in striatum and nucleus accumbens of the awake rat. For that, the effects of an increase of the endogenous concentration of glutamate on the extracellular concentration of dopamine and GABA in striatum and nucleus accumbens of young (2-4 months), middle-aged (12-14 months), aged (27-33 months), and very aged (37 months) male Wistar rats were studied. Endogenous extracellular glutamate was selectively increased by perfusing the glutamate uptake inhibitor L-trans-pyrrolidine-3,4-dicarboxylic acid (PDC) through the microdialysis probe. In young rats, PDC (1, 2, and 4 mM) produced a dose-related increase of dialysate concentrations of glutamate in both striatum and nucleus accumbens. PDC also increased dialysate dopamine and GABA in both structures. These increases were significantly correlated with the increases of glutamate but not with the PDC dose used, which strongly suggests that the increases of dopamine and GABA were produced by glutamate. In striatum, there were no significant differences in the dopamine/glutamate and GABA/glutamate correlations between young and aged rats. This means that the effects of glutamate on dopamine and GABA do not change during aging. On the contrary, in the nucleus accumbens of aged rats, the increases of dopamine, when correlated with the increases of glutamate, were significantly lower than in young rats. Moreover, the ratio of dopamine to glutamate increases at maximal increases of glutamate was negatively correlated with aging. On the contrary, the ratio of GABA to glutamate increases in nucleus accumbens was positively correlated with aging, which suggests that the effects of endogenous glutamate on GABA tend to be higher in the nucleus accumbens of aged rats. The findings of this study suggest that aging changes the interaction between endogenous glutamate, dopamine, and GABA in nucleus accumbens, but not in striatum, of the awake rat.  相似文献   

2.
Del Arco A  Segovia G  Mora F 《Amino acids》2000,19(3-4):729-738
Summary. Using microdialysis, the effects of endogenous glutamate on extracellular concentrations of taurine in striatum and nucleus accumbens of the awake rat were investigated. The glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) was used to increase the extracellular concentration of glutamate. PDC (1, 2 and 4 mM) produced a dose-related increase of extracellular concentrations of glutamate and taurine in striatum and nucleus accumbens. Increases of extracellular taurine were significantly correlated with increases of extracellular glutamate, but not with PDC doses, which suggests that endogenous glutamate produced the observed increases of extracellular taurine in striatum and nucleus accumbens. The role of ionotropic glutamate receptors on the increases of taurine was also studied. In striatum, perfusion of the antagonists of NMDA and AMPA/kainate glutamate receptors attenuated the increases of extracellular taurine. AMPA/kainate, but not NMDA receptors, also reduced the increases of extracellular taurine in nucleus accumbens. These results suggest that glutamate-taurine interactions exist in striatum and nucleus accumbens of the awake rat. Received March 5, 1999/Accepted September 22, 1999  相似文献   

3.
The influence of dopamine D1- and D2-like receptors blockage on glutamate level in the n. accumbens of Sprague-Dawly rats during feeding was investigated by in vivo microdialysis combined with HPLC-EC analysis. Food intake resulted in a decrease in extracellular glutamate level. Infusion of D1-like dopamine receptor-blocker (SCH-23390, 0.01 mM) into the n. accumbens did not change this effect. Infusion of D2-like dopamine receptor-blocker (raclopride, 0.1 mM) into the n. accumbens caused an increase in extracellular glutamate level during feeding. The findings suggest, that decrease in extracellular glutamate level in n. accumbens is caused by dopamine D2-like, but not D1-like receptors activation.  相似文献   

4.
In vivo microdialysis combined with HPLC-EC analysis was used to monitor extracellular glutamate in the n. accumbens of Sprague-Dawley rats during footshock and food delivery. The footshock presentation resulted in a delayed increase in extracellular glutamate level, whereas the food intake caused its decrease. The intra-accumbens infusion of glutamate reuptake blocker D,L-threo-beta-hydroxiaspartate (1 mM) completely prevented the food-induced decrease in glutamate level. The intra-accumbens infusion of sodium channel blocker tetrodotoxin (1 microM) led to an increase in glutamate extracellular level in the n. accumbens in response to food intake. The results suggest that the food-induced decrease in glutamate extracellular level in the n. accumbens occurs due to an enhancement of high-affinity glutamate uptake that is probably under the neuronal control during feeding.  相似文献   

5.
By means of in vivo microdialysis combined with HPLC analysis, we have shown that extracellular glutamate level in the rat n. accumbens increases during a simultaneous presentation of a palatable diet and a tone previously paired with a footshock, the magnitude of the extracellular glutamate increase being proportional to the latency of food taking. In contrast, extracellular glutamate level remains unchanged when the diet is presented after the conditioned aversive stimulus or when the tone is given alone. These data suggest that the glutamate release evoked by the competitive presentation of the diet and the conditioned aversive stimulus appears to be related to the inhibition of a planned feeding response, whereas the choice between behavioural strategies may not contribute to this phenomenon.  相似文献   

6.
A growing body of evidence suggests that several protein kinases are involved in the expression of pharmacological actions induced by a psychostimulant methamphetamine. The present study was designed to investigate the role of the Rho/Rho-associated kinase (ROCK)-dependent pathway in the expression of the increase in extracellular levels of dopamine in the nucleus accumbens and its related behaviors induced by methamphetamine in rats. Methamphetamine (1 mg/kg, subcutaneously) produced a substantial increase in extracellular levels of dopamine in the nucleus accumbens, with a progressive augmentation of dopamine-related behaviors including rearing and sniffing. Methamphetamine also induced the decrease in levels of its major metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA). Both the increase in extracellular levels of dopamine and the induction of dopamine-related behaviors by methamphetamine were significantly suppressed by pretreatment with an intranucleus accumbens injection of a selective ROCK inhibitor Y-27632. In contrast, Y-27632 had no effect on the decrease in levels of DOPAC and HVA induced by methamphetamine. Under these conditions, there were no changes in protein levels of membrane-bound RhoA in the nucleus accumbens following methamphetamine treatment. It is of interest to note that the microinjection of Y-27632 into the nucleus accumbens failed to suppress the increases in extracellular levels of dopamine, DOPAC, and HVA in the nucleus accumbens induced by subcutaneous injection of a prototype of micro -opioid receptor agonist morphine (10 mg/kg). Furthermore, perfusion of a selective blocker of voltage-dependent Na+ channels, tetrodotoxin (TTx) into the rat nucleus accumbens did not affect the increase in extracellular levels of dopamine in the rat nucleus accumbens by methamphetamine, whereas the morphine-induced dopamine elevation was eliminated by this application of TTx. The extracellular level of dopamine in the nucleus accumbens was also increased by perfusion of a selective dopamine re-uptake inhibitor 1-[2-[bis(4-fluorophenyl)methoxy]-4-(3-phenylpropyl)piperazine (GBR-12909) in the nucleus accumbens. This effect was not affected by pretreatment with intranucleus accumbens injection of Y-27632. These findings provide first evidence that Rho/ROCK pathway in the nucleus accumbens may contribute to the increase in extracellular levels of dopamine in the nucleus accumbens evoked by a single subcutaneous injection of methamphetamine. In contrast, this pathway is not essential for the increased level of dopamine in this region induced by morphine, providing further evidence for the different mechanisms of dopamine release by methamphetamine and morphine in rats.  相似文献   

7.
The ability of amphetamine to alter the extracellular level of ascorbate, an apparent modulator of neostriatal function, was assessed voltammetrically in the neostriatum and nucleus accumbens of awake, behaving rats. Whereas acute administration (1.0 and 5.0 mg/kg d-amphetamine) produced a dose-dependent rise in neostriatal ascorbate, there was no change in the nucleus accumbens. Vehicle injections had no significant effect on ascorbate levels in either location. Administration of 5.0 mg/kg d-amphetamine for one week enhanced neostriatal ascorbate release even further, but this effect returned to acute levels when treatment continued for a second week. Multiple amphetamine injections for up to two weeks failed to alter extracellular ascorbate in the nucleus accumbens. The results of these experiments confirm a site-specific action of amphetamine on ascorbate release and suggest complex changes in the extracellular level of this substance in the neostriatum with long-term treatment.  相似文献   

8.
The present study was aimed to investigate the effects of a chronic treatment with the dopamine uptake blocker nomifensine on the in vivo extracellular concentrations of dopamine, acetylcholine, glutamate and GABA in the prefrontal cortex, striatum and nucleus accumbens. Male Wistar rats received intraperitoneal (i.p.) daily injections of nomifensine (10 mg/kg) or saline for 22 days. Microdialysis experiments were performed on days 1, 8, 15 and 22 of treatment to evaluate the effects of the injection of nomifensine or saline. Motor activity of the animals was monitored during microdialysis experiments. Injections of nomifensine increased extracellular concentration of dopamine in striatum and nucleus accumbens, but not in prefrontal cortex. Acetylcholine concentrations in striatum but not in nucleus accumbens were increased by nomifensine on days 15 and 22 of treatment. In prefrontal cortex, nomifensine increased acetylcholine levels without differences among days. No changes were found on glutamate and GABA concentrations in the three areas studied. Injections of nomifensine also increased spontaneous motor activity and stereotyped behaviour without differences among days. These results show that systemic chronic treatment with a dopamine uptake blocker produces differential effects on extracellular concentrations of dopamine and acetylcholine, but not glutamate and GABA, in different areas of the brain.  相似文献   

9.
Previous in vitro studies have shown that group III metabotropic glutamate receptors (mGluRs) regulate synaptic glutamate release. The present study used microdialysis to characterize this regulation in vivo in rat nucleus accumbens. Reverse dialysis of the group III mGluR agonist l-(+)-2-amino-4-phosphonobutyric acid (L-AP4) decreased, whereas the antagonist (R,S)-alpha-methylserine-O-phosphate (MSOP) increased the extracellular level of glutamate. The decrease by L-AP4 or the increase by MSOP was antagonized by co-administration of MSOP or L-AP4, respectively. Activation of mGluR4a by (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid or mGluR6 by 2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid had no effect on extracellular glutamate. (R,S)-4-Phosphonophenylglycine (PPG), another group III agonist with high affinity for mGluR4/6/8, reduced extracellular glutamate only at high concentrations capable of binding to mGluR7. The increase in extracellular glutamate by MSOP was tetrodotoxin-independent, and resistant to both the L-type and N-type Ca2+ channel blockers. L-AP4 failed to block 30 mm K+-induced vesicular glutamate release. Blockade of glutamate uptake by d,l-threo-beta-benzyloxyaspartate caused a Ca2+-independent elevation in extracellular glutamate that was reversed by L-AP4. Finally, (S)-4-carboxyphenylglycine, an inhibitor of cystine-glutamate antiporters, attenuated the L-AP4-induced reduction in extracellular glutamate. Together, these data indicate that group III mGluRs regulate in vivo extracellular glutamate in the nucleus accumbens by inhibiting non-vesicular glutamate release.  相似文献   

10.
Individual differences in responses to mild, acute stressors in laboratory animals have commonly been observed in behavioural tests and at the level of hypothalamic-pituitary-adrenal axis responses. These differences are associated with dopamine transmission in the nucleus accumbens. Although the effect of mild stressors on dopamine transmission has been studied with microdialysis, it has not been studied at the level of the catecholaminergic network in the nucleus accumbens. In this study we have used microdialysis to measure extracellular concentrations of dopamine in vivo and immunocytochemistry for the enzyme tyrosine hydroxylase to assess the effect of a single exposure to novelty on the neurochemistry of the nucleus acc umbens in apomorphine-susceptible and apomorphine-unsusceptible rats. These rats are a valid animal model for studying individual differences in responses to environmental stressors and drugs of abuse. We demonstrated that a mild stressor like novelty increased the extracellular concentration of dopamine in the nucleus accumbens in apomorphine-susceptible rats to a larger and longer-lasting degree than in apomorphine-unsusceptible rats. Furthermore we demonstrated that novelty increased the tyrosine hydroxylase-immunoreactive fibre network in the nucleus accumbens shell of apomorphine-susceptible rats, which are rats that are particularly reactive to stressors, but not in the shell of apomorphine-unsusceptible rats, which are rats that are relatively stress-resistant. In conclusion, we have shown that the accumbal dopaminergic system of apomorphine-susceptible rats is more sensitive to an environmental stressor than that of apomorphine-unsusceptible rats. Combined with the fact that these animals also differ in their sensitivity to drugs of abuse, which are known to affect the dopaminergic system, these data provide a solid basis for further studying the differences in the dopaminergic responsiveness to drugs of abuse between apomorphine-susceptible and apomorphine-unsusceptible rats.  相似文献   

11.
In rats, expression of conditioned fear response increased extracellular level of citrulline in the nucleus accumbens. Infusion of SCH-23390 into the nucleus accumbens exerted no long-term effect on the baseline citrulline level but attenuated the increase in the extracellar citrulline produced by the expression of the response. The data obtained suggest that, during the expression of the conditioned fear response, the dopaminergic input to the n. accumbens might act via D1 receptors to stimulate NO production within this brain area.  相似文献   

12.
Orphanin FQ has been reported to suppress extracellular dopamine levels in the nucleus accumbens after intracerebroventricular administration. This study sought to provide evidence for an intra-ventral tegmental site of action for this effect using a dual-probe microdialysis experimental design. Orphanin FQ was applied to the ventral tegmental area of anesthetized rats by reverse dialysis while extracellular dopamine was sampled with a second dialysis probe in the nucleus accumbens. Orphanin FQ at a probe concentration of 1 mM (but not at 0.1 mM) significantly reduced nucleus accumbens dialysate dopamine levels. The receptor-inactive analogue, des-Phe1-orphanin FQ (1 mM), produced a small but significant increase in nucleus accumbens dialysate dopamine levels. Simultaneous measurement of ventral tegmental area dialysate amino acid content revealed significant increases in both GABA and glutamate during infusion of orphanin FQ (1 mM). To determine if increased GABA overflow mediates the action of orphanin FQ on mesolimbic neurons, orphanin FQ (10 nmol) was microinjected directly into the ventral tegmental area in the presence or absence of the GABA(A) receptor antagonist, bicuculline (1 nmol). Bicuculline transiently blocked the suppressive action of orphanin FQ on accumbens dialysate dopamine levels. These data indicate that orphanin FQ decreases dopamine transmission in the nucleus accumbens by inhibiting dopamine neuronal activity in the ventral tegmental area through a mechanism that may involve an increased overflow of GABA.  相似文献   

13.
By means of in vivo microdialysis combined with HPLC/EC analysis it was shown that presentation to a rat of an inedible object (a piece of rubber) or an aversive object (food of bitter taste) instead of expected food caused a marked increase in extracellular glutamate level in n. accumbens. In rats not expecting food reinforcement, extracellular glutamate remained unchanged during presentation of these objects. Our findings suggest that dissociation between the expected biological value of a presented object and its real significance may be an important determinant for glutamate release control in n. accumbens during food behavior.  相似文献   

14.
Abstract: Intracerebral microdialysis in conjunction with HPLC coupled to electrochemical detection was used to investigate the effect of isolation-rearing in the rat on extracellular dopamine (DA) and its metabolites in vivo, in the shell region of the nucleus accumbens, in response to footshock and in relation to a conditioned emotional response. Male Lister hooded rats were reared from weaning for 6–8 weeks in either social isolation or groups of five. In the training phase, rats were exposed to a novel environment for 10 min where they experienced mild footshock. Footshock caused an immediate increase in basal extracellular DA levels in both rearing groups relative to control rats. However, the increase in extracellular DA was prolonged in the case of the isolation-reared rats and significantly greater than in group-reared rats. Exposure to the novel environment without shock (control groups) did not significantly alter basal extracellular DA in the nucleus accumbens shell; 140 min later rats were returned to the testing box (contextual stimulus) without receiving footshock. The contextual stimulus increased basal extracellular DA in the nucleus accumbens of both groups of rats with respect to controls; however, this increase was significantly greater and more prolonged in isolates. Extracellular levels of the metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid did not differ between isolation- and group-reared rats, and they were not significantly affected by either footshock or the contextual stimulus. These results suggest that exposure to footshock and a contextual stimulus are associated with increases in basal extracellular DA levels in the nucleus accumbens shell. The results also support evidence in favour of an isolation-induced enhancement in dopaminergic activity in the nucleus accumbens, which probably underlies aspects of the behavioural syndrome associated with isolation.  相似文献   

15.
Presence of a tone previously paired with a foot-shock in rats during food intake increases the glycine extracellular level in the n. accumbens. The increase will be completely prevented by intra-accumbal infusion of Na-channel blocking agent tetrodotoxine. The findings suggest that glycine mechanisms in the n. accumbens are involved in the correction of feeding behaviour.  相似文献   

16.
Abstract: In vivo microdialysis was used to determine the extent to which ionotropic glutamate receptors in the ventral tegmental area (VTA) regulate dopamine release in the nucleus accumbens. Coapplication of 2-amino-5-phosphonopentanoic acid (AP5; 200 µ M ) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 50 µ M ) to the VTA via reverse dialysis decreased extracellular concentrations of dopamine in the nucleus accumbens by ∼30%. In accordance with previous results, electrical stimulation of the prefrontal cortex increased dopamine release by 60%. Application of AP5 and CNQX to the VTA during cortical stimulation blocked the effect of stimulation on dopamine release. These results indicate that ionotropic glutamate receptors in the VTA are critically involved in basal and evoked dopamine release in the nucleus accumbens and suggest that a glutamatergic projection from the prefrontal cortex regulates the activity of dopaminergic neurons in the VTA.  相似文献   

17.
By means of in vivo microdialysis combined with HPLC analysis, we have shown that glutamate extracellular level in the rat n. accumbens increases during a forced switch in behavioral strategy. When infused in the n. accumbens, a Na+ channel blocker tetrodotoxin (TTX, 1 microM) completely prevents this increase whereas a potent cystine/glutamate exchanger blocker (S)-4-carboxyphenylglycine ((S)-4-CPG, 5 microM) has no effect. In contrast, TT (1 microM), infused in the n. accumbens, fails to significantly alter basal level of extracellular glutamate in this region whereas (S)-4-CPG (5 microM) produced a significant decrease. Our data suggest that basal and factional glutamate releases in the n. accumbens are differently regulated. The source of basal glutamate release is a non-vesicular release via cystine/glutamate exchanger. Functional glutamate release observed during a forced switch in behavioral strategy derives from vesicular synaptic pool.  相似文献   

18.
Abstract: The technique of intracerebral microdialysis was used to assess the effect of stress on the extracellular concentrations of excitatory amino acids, glutamate and aspartate, in the rat medial prefrontal cortex, hippocampus, striatum, and nucleus accumbens. A 20-min restraint procedure led to an increase in extracellular glutamate in all regions tested. The increase in glutamate levels was significantly higher in the prefrontal cortex than that observed in other regions. With the exception of the striatum, extracellular levels of aspartate were increased in all regions. Furthermore, the increase in aspartate levels was significantly higher in prefrontal cortex compared to hippocampus and nucleus accumbens. Local perfusion of tetrodotoxin during the restraint procedure significantly decreased the stress-induced increase in extracellular excitatory amino acids. In order to ensure that the above results were not an artifact of restraint not associated with stress (e.g., decreased mobility), we also examined the effect of swimming stress on the extracellular levels of excitatory amino acids in selected regions, i.e., striatum and medial prefrontal cortex. Both regions displayed a significant increase in extracellular levels of aspartate and glutamate following 20 min of swimming in room temperature water. This study provides direct evidence that stress increases the neuronal release of excitatory amino acids in a regionally selective manner. The implications of the present findings for stress-induced catecholamine release and/or hippocampal degeneration are discussed.  相似文献   

19.
The interaction of glutamate and dopamine in the basal ganglia of fully conscious rat during the normal process of aging is reviewed. Using a novel approach, that of blocking the reuptake of glutamate, the effects of increasing concentrations of endogenous glutamate on the extracellular concentrations of dopamine in striatum and nucleus accumbens in the young rat were investigated. It was found that increasing concentrations of glutamate correlated significantly with increasing concentrations of dopamine in striatum and nucleus accumbens. Moreover the increase of dopamine in both structures was significantly reduced after blockade of NMDA and AMPA/kainate glutamate receptors, suggesting that the increase of dopamine was mediated by glutamate. The interaction glutamate/dopamine expressed by its ratio showed a significant age-related decrease in nucleus accumbens but not in striatum, so that to a given amount of glutamate less increase of dopamine is produced. It is suggested that the interaction glutamate-dopamine represents a balanced input to the GABA neuron in the basal ganglia and that during aging this balance is disrupted. In addition, we also speculate on the significance of this glutamate-dopamine disruption in relation to the changes in motor behavior found with age.  相似文献   

20.
Abstract: This study was carried out to analyze the extracellular levels of Met-enkephalin-like material in the nucleus accumbens, a brain structure involved in the effects of opioids on motor activity and reward processes, using microdialysis in awake and freely moving rats, combined with a sensitive radioimmunoassay. The levels of Met-enkephalin-like material were measured after administration of a dual inhibitor of enkephalin-degrading enzymes, RB101, to evaluate its in vivo protecting effects. The basal levels of Met-enkephalin-like immunoreactivity in the nucleus accumbens were ∼1.2 pg/30 min or 2.2 fmol/30 min (37 p M ). Perfusion of KCl (100 m M ) produced a 17-fold increase in the level of Met-enkephalin-like material in this structure. During the 8-h perfusion, which started at 9 a.m., a spontaneous increase of the basal level of Met-enkephalin-like material in the nucleus accumbens occurred between 4 and 4:30 p.m., suggesting the existence of variation in opioid peptide secretion, at least in this structure. Intraperitoneal injection of RB101 induced a dose-dependent and long-lasting (210-min) increase in the extracellular levels of Met-enkephalin-like material. A prolonged effect was also observed in the behavioral studies in which the inhibitor increased global motor activity of rats 210 min after injection. These data represent the first direct evidence that dual inhibitors of enkephalin-degrading enzymes increase in vivo the extracellular levels of Met-enkephalin-like material in awake and freely moving rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号