首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Levels of oxygen can vary dramatically in aquatic environments. Aquatic organisms, including fishes, have adapted accordingly to survive. As there are both phylogenetically closely related fish species with differing oxygen requirements and distantly related species with similar oxygen requirements, fishes are good candidates for examining oxygen-related functions in vertebrates. We set out to investigate if sequence variation in the hypoxia-inducible factor-1 alpha (HIF-1α) gene is associated with variations in oxygen requirements. Since the teleost HIF-1α sequences available in databases represent a very limited dataset both phylogenetically and with regard to oxygen requirements, we have sequenced the protein coding sequence for HIF-1α from an additional 9 fish species. Our results indicate that the deduced HIF-1α proteins of teleost fishes are somewhat shorter than those of tetrapods. Additionally, the results suggest that tetrapod sequences more closely resemble the ancestral form of the protein than do teleost sequences. No clear signatures which could be associated with the oxygen requirements of the species were found. This study suggests that if species-specific differences in HIF-1α function with regards to oxygen dependence have evolved, they do not occur in the protein coding sequence but at other levels of the HIF-1α pathway.  相似文献   

4.
5.
6.
7.
8.
9.
The kallikrein-kinin system (KKS) consists of two major cascades in mammals: “plasma KKS” consisting of high molecular-weight (HMW) kininogen (KNG), plasma kallikrein (KLKB1), and bradykinin (BK); and “tissue KKS” consisting of low molecular-weight (LMW) KNG, tissue kallikreins (KLKs), and [Lys0]-BK. Some components of the KKS have been identified in the fishes, but systematic analyses have not been performed, thus this study aims to define the KKS components in teleosts and pave a way for future physiological and evolutionary studies. Through a combination of genomics, molecular, and biochemical methods, we showed that the entire plasma KKS cascade is absent in teleosts. Instead of two KNGs as found in mammals, a single molecular weight KNG was found in various teleosts, which is homologous to the mammalian LMW KNG. Results of molecular phylogenetic and synteny analyses indicated that the all current teleost genomes lack KLKB1, and its unique protein structure, four apple domains and one trypsin domain, could not be identified in any genome or nucleotide databases. We identified some KLK-like proteins in teleost genomes by synteny and conserved domain analyses, which could be the orthologs of tetrapod KLKs. A radioimmunoassay system was established to measure the teleost BK and we found that [Arg0]-BK is the major circulating form instead of BK, which supports that the teleost KKS is similar to the mammalian tissue KKS. Coincidently, coelacanths are the earliest vertebrate that possess both HMW KNG and KLKB1, which implies that the plasma KKS could have evolved in the early lobe-finned fish and descended to the tetrapod lineage. The co-evolution of HMW KNG and KLKB1 in lobe-finned fish and early tetrapods may mark the emergence of the plasma KKS and a contact activation system in blood coagulation, while teleosts may have retained a single KKS cascade.  相似文献   

10.
11.
Binding of natively unfolded HIF-1alpha ODD domain to p53   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
14.
Fish myoglobins are structurally distinct from the previously characterized mammalian myoglobins. Teleost fishes express generally lower levels of myoglobin than those found in mammals. Although the oxygen binding affinity is essentially the same as mammalian myoglobins, oxygen dissociation rates and carbon monoxide combination rates of the teleost myoglobins studied are significantly faster. Thus, the kinetic parameters of myoglobin from two Antarctic teleost species, measured close to their body temperature of −1°C, are comparable to those of mammalian myoglobins with higher body temperatures. These data suggest myoglobins from Antarctic teleosts may function at extreme environmental temperatures.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号