首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kanoski SE  Walls EK  Davidson TL 《Peptides》2007,28(5):988-1002
The present studies assessed the extent to which the adiposity signal leptin and the brain-gut hormone cholecystokinin (CCK), administered alone or in combination, give rise to interoceptive sensory cues like those that are produced by a low (1h) level of food deprivation. Rats were trained with cues arising from 1 to 24-h food deprivation as discriminative stimuli. For one group, 24-h food deprivation predicted the delivery of sucrose pellets, whereas 1-h food deprivation did not. Another group received the reversed deprivation level-sucrose contingency. After asymptotic performance was achieved, the effects of leptin and CCK on food intake and on discrimination performance were tested under 24-h food deprivation. In Experiment 1a, leptin administered into the third cerebroventricle (i3vt) at 3.5 or 7.0 microg doses had little effect, compared to saline on food intake or discriminative responding. In Experiment 1b, leptin (7.0 microg, i3vt) combined with CCK-8 (2 microg/kg, i.p.) reduced food intake significantly, but the findings indicated that CCK-8 alone produces interoceptive discriminative cues more like those produced by 1- than 24-h food deprivation. Experiment 2a tested rats with i.p. leptin (0.3 and 0.5mg/kg). Although neither dose suppressed intake, the 0.3mg/kg dose produced interoceptive cues like 1-h food deprivation. Experiment 2b tested two doses of CCK-8 (2 and 4 mg/kg, i.p.) and found significant intake suppression and generalization of discrimination with both doses of CCK-8. These findings suggest a role for both leptin and CCK in the production of sensory consequences that correspond to "satiety".  相似文献   

2.
Fasting triggers many effects, including increases in circulating concentrations of ghrelin, a primarily stomach-derived orexigenic hormone. Exogenous ghrelin treatment stimulates food intake, implicating it in fasting-induced increases in feeding, a consummatory ingestive behavior. In Siberian hamsters, fasting also stimulates appetitive ingestive behaviors such as foraging and food hoarding. Therefore, we tested whether systemic ghrelin injections (3, 30, and 200 mg/kg) would stimulate these appetitive behaviors using a running wheel-based food delivery system coupled with simulated burrow housing. We also measured active ghrelin plasma concentrations after exogenous ghrelin treatment and compared them to those associated with fasting. Hamsters had the following: 1) no running wheel access, free food; 2) running wheel access, free food; or 3) foraging requirement (10 revolutions/pellet), no free food. Ghrelin stimulated foraging at 0-1, 2-4, and 4-24 h postinjection but failed to affect wheel running activity not coupled to food. Ghrelin stimulated food intake initially (200-350%, first 4 h) across all groups; however, in hamsters with a foraging requirement, ghrelin also stimulated food intake 4-24 h postinjection (200-250%). Ghrelin stimulated food hoarding 2-72 h postinjection (100-300%), most markedly 2-4 h postinjection in animals lacking a foraging requirement (635%). Fasting increased plasma active ghrelin concentrations in a time-dependent fashion, with the 3- and 30-mg/kg dose creating concentrations of the peptide comparable to those induced by 24-48 h of fasting. Collectively, these data suggest that exogenous ghrelin, similar to fasting, increases appetitive behaviors (foraging, hoarding) by Siberian hamsters, but dissimilar to fasting in this species, stimulates food intake.  相似文献   

3.
Interleukins, in particular interleukin-1β (IL-1β), reduce food intake after peripheral and central administration, which suggests that they contribute to anorexia during various infectious, neoplastic, and autoimmune diseases. On the other hand, ghrelin stimulates food intake by acting on the central nervous system (CNS) and is considered an important regulator of food intake in both rodents and humans. In the present study, we investigated if ghrelin could reverse IL-1β-induced anorexia. Intracerebroventricular (i.c.v.) injection of 15, 30 or 45 ng/μl of IL-1β caused significant suppression of food intake in 20 h fasting animals. This effect lasted for a 24 h period. Ghrelin (0.15 nmol or 1.5 nmol/μl) produced a significant increase in cumulative food intake in normally fed animals. However, it did not alter food intake in 20 h fasting animals. Central administration of ghrelin reduced the anorexic effect of IL-1β (15 ng/μl). The effect was observed 30 min after injection and lasted for the next 24 h. This study provides evidence that ghrelin is an orexigenic peptide capable of antagonizing IL-1β-induced anorexia.  相似文献   

4.
Intraventricular (i3vt) ghrelin increases food intake in fatty Zucker rats   总被引:3,自引:0,他引:3  
Brown LM  Benoit SC  Woods SC  Clegg DJ 《Peptides》2007,28(3):612-616
Ghrelin is an orexigenic peptide secreted from the stomach and also made in the brain. Ghrelin receptors are expressed on hypothalamic cells important in appetite and energy balance. We determined that intra-3rd-ventricular (i3vt) ghrelin dose-dependently increases acute (1 and 2 h) food intake in lean and fatty Zucker rats (0, 0.01, 0.1 and 1.0 nmol ghrelin). The percentage increase of food intake in fatty Zucker rats was significantly greater than that in lean rats. Fatty Zucker rats had 4.5 times more ghrelin receptor mRNA in the hypothalamus than lean Zucker rats, suggesting a possible mechanism for the increased sensitivity.  相似文献   

5.
Homeostatic eating cannot explain overconsumption of food and pathological weight gain. A more likely factor promoting excessive eating is food reward and its representation in the central nervous system (CNS). The anorectic hormones leptin and insulin reduce food reward and inhibit related CNS reward pathways. Conversely, the orexigenic gastrointestinal hormone ghrelin activates both homeostatic and reward-related neurocircuits. The current studies were conducted to identify in rats the effects of intracerebroventricular ghrelin infusions on two distinct aspects of food reward: hedonic valuation (i.e., "liking") and the motivation to self-administer (i.e., "wanting") food. To assess hedonic valuation of liquid food, lick motor patterns were recorded using lickometry. Although ghrelin administration increased energy intake, it did not alter the avidity of licking (initial lick rates or lick-cluster size). Several positive-control conditions ruled out lick-rate ceiling effects. Similarly, when the liquid diet was hedonically devalued with quinine supplementation, ghrelin failed to reverse the quinine-associated reduction of energy intake and avidity of licking. The effects of ghrelin on rats' motivation to eat were assessed using lever pressing to self-administer food in a progressive-ratio paradigm. Ghrelin markedly increased motivation to eat, to levels comparable to or greater than those seen following 24 h of food deprivation. Pretreatment with the dopamine D1 receptor antagonist SCH-23390 eliminated ghrelin-induced increases in lever pressing, without compromising generalized licking motor control, indicating a role for D1 signaling in ghrelin's motivational feeding effects. These results indicate that ghrelin increases the motivation to eat via D1 receptor-dependent mechanisms, without affecting perceived food palatability.  相似文献   

6.
Many animals hoard food, including humans, but despite its pervasiveness, little is known about the physiological mechanisms underlying this appetitive behavior. We summarize studies of food hoarding in humans and rodents with an emphasis on mechanistic laboratory studies of species where this behavior importantly impacts their energy balance (hamsters), but include laboratory rat studies although their wild counterparts do not hoard food. The photoperiod and cold can affect food hoarding, but food availability is the most significant environmental factor affecting food hoarding. Food-deprived/restricted hamsters and humans exhibit large increases in food hoarding compared with their fed counterparts, both doing so without overeating. Some of the peripheral and central peptides involved in food intake also affect food hoarding, although many have not been tested. Ad libitum-fed hamsters given systemic injections of ghrelin, the peripheral orexigenic hormone that increases with fasting, mimics food deprivation-induced increases in food hoarding. Neuropeptide Y or agouti-related protein, brain peptides stimulated by ghrelin, given centrally to ad libitum-fed hamsters, duplicates the early and prolonged postfood deprivation increases in food hoarding, whereas central melanocortin receptor agonism tends to inhibit food deprivation and ghrelin stimulation of hoarding. Central or peripheral leptin injection or peripheral cholecystokinin-33, known satiety peptides, inhibit food hoarding. Food hoarding markedly increases with pregnancy and lactation. Because fasted and/or obese humans hoard more food in general, and more high-density/high-fat foods specifically, than nonfasted and/or nonobese humans, understanding the mechanisms underlying food hoarding could provide another target for behavioral/pharmacological approaches to curb obesity.  相似文献   

7.
Augmentation of cocaine hyperactivity in rats by systemic ghrelin   总被引:1,自引:0,他引:1  
The feeding-relevant pathway by which food deprivation (FD) augments cocaine action is unknown. Systemic administration of the 28 amino acid acylated peptide ghrelin (1-10 nmol) increases food intake in rats and circulating levels of rat ghrelin are up-regulated by FD. The present experiment examined the impact of ghrelin or vehicle pretreatment on the locomotion and stereotypy induced by systemic cocaine hydrochloride. Male Sprague-Dawley rats were pretreated at -60 min with 0 or 5 nmol rat ghrelin (IP) and then injected (IP) at time 0 with 0, 2.5, 5.0, or 10.0 mg/kg cocaine. Locomotor activity was monitored over a 45-min post-cocaine period. Rats received the same ghrelin dose, but a different cocaine dose (in random order) on each of the four drug trials, with each drug trial separated by at least 2 days. Administration of 5 nmol ghrelin-0 mg/kg cocaine slightly increased locomotion relative to that of 0 nmol ghrelin-0 mg/kg cocaine. Cocaine increased locomotion as a function of dose in the 0 nmol ghrelin group, but the effect of cocaine was even greater when preceded by 5 nmol ghrelin. These results indicate that acute injection of ghrelin, at a feeding-relevant dose, augments the acute effects of cocaine on locomotion in rats.  相似文献   

8.
Obese patients have an increased incidence of systemic infections and higher morbidity and mortality rates than normal weight subjects. Ghrelin is a potent orexigenic signal from the stomach and seems to play a role in the generation and control of immune interactions. To examine a possible benefit of a single ghrelin application on acute endotoxemia, chronic intravenous (i.v.) cannulated lean and diet-induced obese male LEW rats were treated with a bolus injection of either ghrelin (10 nmol/kg) or vehicle, 10 min prior to a challenge with a sublethal bolus of endotoxin (100 microg/kg) or vehicle. Multiple blood samples were taken within a period from 24 h before the experiment up to 24 h after the endotoxin challenge to measure ghrelin and cytokine levels. Additionally, food consumption was recorded and ghrelin expression in fore- and glandular stomach was evaluated immunohistochemically. Despite higher serum ghrelin levels, the food consumption was significantly decreased in obese endotoxemic rats compared to lean littermates after ghrelin treatment. Furthermore we could show an increase of anti-inflammatory IL-10 serum levels after ghrelin treatment of normal weight endotoxemic and an opposite effect in obese animals. As the therapy of disease-associated cachexia and various immunological problems in endotoxemia is still insufficient, peptides such as ghrelin with their modulating abilities for the endocrine and the immune system are of special interest. However, the present study shows that the beneficial effects of ghrelin were attenuated in obese endotoxemic animals. These data further document the necessity to differentiate between normal weight and obese subjects in the attempt to establish ghrelin as a therapeutic target in endotoxemia.  相似文献   

9.
Ghrelin is the only peripheral orexigenic peptide of gastrointestinal origin. Its preprandial increase is supposed to initiate food intake. This assumption is based on studies with intravenously infused ghrelin in rather high doses and the correlation between ghrelin levels and hunger sensations. As yet it is unclear whether or not low dose ghrelin resulting in physiological and moderately supraphysiological plasma levels has an effect on hunger sensations, the wish for food intake and / or the quantity of the meal consumed. We examined 20 normal-weight males (age 25±1.7 years, BMI 24±0.5 kg/m(2)) in a prospective double-blind randomized fashion. On two different days they obtained a ghrelin infusion 1 ng/kg/min or intravenous saline starting one hour after a standardized meal. Hunger and satiety ratings were documented by visual analogue scales. A second meal was served on demand and consumed until feeling satiated. Time point of the second meal as well as ingested calories were registered. Prior to the start of i.v. ghrelin the postprandial decrease of active plasma ghrelin by 30 pg/ml was comparable. In the controls the postprandial reduction was significant until 210 min compared to basal. With i.v. ghrelin basal levels were reached within 10 min. The maximal rise was twice basal. No effect was observed on hunger and satiety ratings. The time period between the meals and the food quantity of the second meal were similar. During ghrelin infusion glucose and growth hormone but not insulin and cortisol levels were significantly higher after the second meal compared to saline. The present data demonstrate for the first time the effect of a low dose ghrelin infusion on food intake. Neither physiological nor moderably supraphysiological ghrelin levels were associated with any change of the various food intake parameters determined. These data do not favour a hormonal role of peripheral ghrelin in the regulation of food intake.  相似文献   

10.
Rushing PA  Seeley RJ  Air EL  Lutz TA  Woods SC 《Peptides》2002,23(5):985-988
In this study, a conditioned taste aversion (CTA) paradigm was used to assess the possibility that 3rd-ventricular (i3vt) administration of the pancreatic hormone amylin produces aversive consequences that secondarily reduce food intake independently of the normal regulation of energy balance. After 1-h daily access to water for 7 days, rats were given 1-h access to a 0.15% saccharin solution, followed immediately by i3vt amylin (100 pmol) in one group (n=7) and i3vt CSF vehicle in another (n=7). As positive control for the formation of a CTA, a third group of seven rats received intraperitonial (i.p.) lithium chloride (LiCl). Saline was given i.p. to a fourth group (n=7) as control for i.p. LiCl. As expected, the LiCl rats exhibited a marked aversion to the saccharin in a subsequent two-bottle intake test. In contrast, although the 100 pmol i3vt amylin dose is substantially higher than that required to reduce food intake, no evidence of a CTA was observed in the rats that had received i3vt amylin. In summary, these data are consistent with the conclusion that acute i3vt amylin infusion does not reduce food intake by producing aversive consequences.  相似文献   

11.
Systemic ghrelin sensitizes cocaine-induced hyperlocomotion in rats   总被引:1,自引:0,他引:1  
The feeding-relevant pathway by which food restriction (FR) augments cocaine action is unknown. Systemic administration of the 28-amino acid acylated peptide ghrelin (1-10 nmol) increases food intake in rats and circulating levels of rat ghrelin are up-regulated by FR. The present experiment examined the impact of repeated administration of ghrelin or vehicle on the subsequent capacity of cocaine to enhance locomotion in rats. Male Sprague-Dawley rats were pretreated daily for seven days with 0, 5 or 10 nmol rat ghrelin (i.p.) in the home cage. On the 8th day, rats were transported to a testing room, placed in a locomotion chamber for 15 min, and then injected (i.p.) with 0, 7.5, or 15 mg/kg cocaine hydrochloride. Locomotor activity was monitored over a 45 min post-cocaine period. Pretreatment with 5 or 10 nmol ghrelin alone did not significantly increase basal locomotion relative to that of the 0 nmol ghrelin group. Rats pretreated with 5 nmol or 10 nmol ghrelin showed an enhanced locomotor response after treatment with 15 mg/kg cocaine relative to rats treated with 0 nmol ghrelin. These results indicate that acute injection of ghrelin, at a feeding-relevant dose, can augment the acute effects of cocaine on locomotion in rats.  相似文献   

12.
CF-1 female mice were subjected to 24 or 48 h of food deprivation beginning when they were in estrus or diestrus, or when they were 2 or 12 days pregnant, or on Days 2 or 12 of lactation. Ovulation was delayed by a week or more when 48 h of food deprivation was initiated when the female was in diestrus; lesser delays occurred when food deprivation began in estrus. There was little effect of acute food deprivation on pregnancy. Most females deprived of food beginning on Day 2 of lactation ate their young, but females deprived on Day 12 of lactation rarely did so. These results are discussed in terms of the complexity of interacting factors that determine the degree to which each stage of the female's reproductive cycle is susceptible to disruption by acute food deprivation.  相似文献   

13.
Interventions for animal lifespan extension like caloric restriction (CR) have identified physiologic and biochemical pathways related to hunger and energy-sensing status as possible contributors, but mechanisms have not been fully elucidated. Prior studies using ghrelin agonists show greater food intake but no effect on lifespan in rodent models. This experiment in male C57BL/6J mice tested the influence of ghrelin agonism for perceived hunger, in the absence of CR, on longevity. Mice aged 4 weeks were allowed to acclimate for 2 weeks prior to being assigned (N = 60/group). Prior to lights off daily (12:12 cycle), animals were fed a ghrelin agonist pill (LY444711; Eli Lilly) or a placebo control (Ctrl) until death. Treatment (GhrAg) animals were pair-fed daily based on the group mean food intake consumed by Ctrl (ad libitum feeding) the prior week. Results indicate an increased lifespan effect (log-rank p = 0.0032) for GhrAg versus placebo Ctrl, which weighed significantly more than GhrAg (adjusted for baseline weight). Further studies are needed to determine the full scope of effects of this ghrelin agonist, either directly via increased ghrelin receptor signaling or indirectly via other hypothalamic, systemic, or tissue-specific mechanisms.  相似文献   

14.
Unintentional weight loss may occur spontaneously in older humans and animals. Further weight losses after surgery or illness in the older patients result in increased morbidity, mortality, and hospital readmission rate. A growing body of work has shown increased appetite and weight gain in response to administration of ghrelin, the "hunger hormone." We conducted two studies in senescent male Brown Norway rats to assess the ability of peripheral administration of ghrelin to increase body weight and food intake. One study assessed the effect of 2 wk of daily subcutaneous ghrelin administration (1 mg.kg(-1).day(-1)) to senescent rats in a baseline condition; a second study used the same administration protocol in an interventional experiment with aged rats subjected to a surgery with 10-15% blood loss as a model of elective surgery. In both studies, animals receiving ghrelin maintained their body weights, whereas control animals lost weight. Body weight stability was achieved in ghrelin-treated animals despite a lack of increase in daily or cumulative food intake in both experiments. Hormone and proinflammatory cytokine levels were measured before surgery and after 14 days of treatment. Ghrelin treatment appeared to blunt declining ghrelin levels and also to blunt cytokine increases seen in the surgical control group. The ability of peripheral ghrelin treatment to maintain body weights of senescent rats without concomitant increases in food intake may be due to its known ability to decrease sympathetic activity and metabolic rate, perhaps by limiting cytokine-driven inflammation.  相似文献   

15.
Ghrelin, a 28-residue octanoylated peptide recently isolated from the stomach, exhibits anti-cachectic properties through regulating food intake, energy expenditure, adiposity, growth hormone secretion and immune response. Burn injury induces persistent hypermetabolism and muscle wasting. We therefore hypothesized that ghrelin may also play a role in the pathophysiology of burn-induced cachexia. Overall ghrelin expression in the stomach over 10 days after burn was significantly decreased (p = 0.0003). Total plasma ghrelin was reduced 1 day after burn. Thus, changes in ghrelin synthesis and release may contribute to burn-induced dysfunctions. Ghrelin (30 nmol/rat, i.p.) greatly stimulated 2 h food intake in rats on five separate days after burn and in control rats. On post-burn day 15, plasma growth hormone levels were significantly lower than in controls, and this was restored to normal levels by ghrelin (10 nmol/rat, i.p.). These observations suggest that ghrelin retains its ability to favorably modulate both the peripheral anabolic and the central orexigenic signals, even after thermal injury despite ongoing changes due to prolonged and profound hypermetabolism, suggesting that long-term treatment with ghrelin may attenuate burn-induced dysfunctions.  相似文献   

16.
目的:探讨侧脑室注射obestatin对大鼠血浆酰基化ghrelin、去酰基化ghrelin、nesfatin-1水平的影响以及对胃排空的调控。方法:侧脑室注射obestatin,采用酶免疫测定(EIA)法检测血浆酰基化ghrelin、去酰基化ghrelin、nesfatin-1水平以及胃排空率的变化。结果:侧脑室分别注射0.1、0.3或1.0 nmol obestatin,大鼠血浆酰基化ghrelin、去酰基化ghrelin以及nesfatin-1水平无显著改变(P0.05),且酰基化ghrelin与去酰基化ghrelin比率无显著改变(P0.05);侧脑室注射obestatin,大鼠摄食量无显著改变,但胃排空率明显增加(P0.05);胃排空率明显延迟(P0.05)。与侧脑室注射1.0 nmol Obestatin组相比,注射1.0 nmol Obestatin+CRF,大鼠摄食量无显著改变,胃排空率明显延迟(P0.05)。各组摄食量及进入十二指肠内食物量无明显差异(P0.05)。结论:中枢obestatin促进大鼠的胃排空,可能与h/r CRF通路有关。  相似文献   

17.
Fasting has widespread physiological and behavioral effects such as increases in arcuate nucleus neuropeptide Y (NPY) gene expression in rodents, including Siberian hamsters. Fasting also stimulates foraging and food hoarding (appetitive ingestive behaviors) by Siberian hamsters but does relatively little to change food intake (consummatory ingestive behavior). Therefore, we tested the effects of third ventricular NPY Y1 ([Pro(34)]NPY) or Y5 ([D-Trp(34)]NPY) receptor agonists on these ingestive behaviors using a wheel running-based food delivery system coupled with simulated burrow housing. Siberian hamsters had 1) no running wheel access and free food, 2) running wheel access and free food, or 3) foraging requirements (10 or 50 revolutions/pellet). NPY (1.76 nmol) stimulated food intake only during the first 4 h postinjection ( approximately 200-1,000%) and mostly in hamsters with a foraging requirement. The Y1 receptor agonist markedly increased food hoarding (250-1,000%), increased foraging as well as wheel running per se, and had relatively little effect on food intake (<250%). Unlike NPY, the Y5 agonist significantly increased food intake, especially in foraging animals ( approximately 225-800%), marginally increased food hoarding (250-500%), and stimulated foraging and wheel running 4-24 h postinjection, with the distribution of earned pellets favoring eating versus hoarding across time. Across treatments, food hoarding predominated early postinjection, whereas food intake tended to do so later. Collectively, NPY stimulated both appetitive and consummatory ingestive behaviors in Siberian hamsters involving Y1/Y5 receptors, with food hoarding and foraging/wheel running (appetitive) more involved with Y1 receptors and food intake (consummatory) with Y5 receptors.  相似文献   

18.
Ghrelin is a recently identified orexigenic hormone secreted by the stomach and has been implicated in meal-time hunger. Several experiments demonstrate a transient surge in ghrelin secretion shortly before a scheduled meal, suggesting from the involvement of cephalic mechanisms. If ghrelin secretion is stimulated by hunger in sheep, plasma levels of ghrelin should be modified by different feeding regimens that affect hunger drive. To test this hypothesis, we investigated changes in plasma ghrelin concentrations in fed Suffolk rams ad libitum and in rams either twice or four times daily. Plasma ghrelin levels increased (P<0.05) abruptly just before every feeding period in sheep fed twice and four times daily and then fell shortly after feeding. Peak levels of the pre-prandial ghrelin surge were higher (P<0.01) in animals fed twice daily than in animals fed four times daily, leading to greater (P<0.05) areas under response curves over 12h. In contrast, the plasma ghrelin levels remained relatively low and constant in sheep fed ad libitum, with no evidence of surges in plasma ghrelin levels. These results confirm that the transient surge in plasma ghrelin levels occurs just before feeding and demonstrate that this can be modified by the feeding regimen in sheep.  相似文献   

19.
Food deprivation stimulates foraging and hoarding and to a much lesser extent, food intake in Siberian hamsters. Leptin, the anorexigenic hormone secreted primarily from adipocytes, may act in the periphery, the brain, or both to inhibit these ingestive behaviors. Therefore, we tested whether leptin given either intracerebroventricularly or intraperitoneally, would block food deprivation-induced increases in food hoarding, foraging, and intake in animals with differing foraging requirements. Hamsters were trained in a running wheel-based food delivery foraging system coupled with simulated burrow housing. We determined the effects of food deprivation and several peripheral doses of leptin on plasma leptin concentrations. Hamsters were then food deprived for 48 h and given leptin (0, 10, 40, or 80 microg ip), and additional hamsters were food deprived for 48 h and given leptin (0, 1.25, 2.5, or 5.0 microg icv). Foraging, food intake, and hoarding were measured postinjection. Food deprivation stimulated food hoarding to a greater degree and duration than food intake. In animals with a foraging requirement, intracerebroventricular leptin almost completely blocked food deprivation-induced increased food hoarding and intake, but increased foraging. Peripheral leptin treatment was most effective in a sedentary control group, completely inhibiting food deprivation-induced increased food hoarding and intake at the two highest doses, and did not affect foraging at any dose. Thus, the ability of leptin to inhibit food deprivation-induced increases in ingestive behaviors differs based on foraging effort (energy expenditure) and the route of administration of leptin administration.  相似文献   

20.
Food deprivation triggers a constellation of physiological and behavioral changes including increases in peripherally-produced ghrelin and centrally-produced agouti-related protein (AgRP). Upon refeeding, food intake is increased in most species, however hamsters primarily increase food hoarding. Food deprivation-induced increases in food hoarding by Siberian hamsters are mimicked by peripheral ghrelin and central AgRP injections. Because food deprivation stimulates ghrelin as well as AgRP synthesis/release, food deprivation-induced increases in hoarding may be mediated by melanocortin 3 or 4 receptor (MC3/4-R) antagonism via AgRP, the MC3/4-R inverse agonist. Therefore, we asked: Can a MC3/4-R agonist block food deprivation- or ghrelin-induced increases in foraging, food hoarding and food intake? This was accomplished by injecting melanotan II (MTII), a synthetic MC3/4-R agonist, into the 3rd ventricle in food deprived, fed or peripheral ghrelin injected hamsters and housed in a running wheel-based food delivery foraging system. Three foraging conditions were used: a) no running wheel access, non-contingent food, b) running wheel access, non-contingent food or c) a foraging requirement for food (10 revolutions/pellet). Food deprivation was a more potent stimulator of foraging and hoarding than ghrelin. Concurrent injections of MTII completely blocked food deprivation- and ghrelin-induced increases in food intake and attenuated, but did not always completely block, food deprivation- and ghrelin-induced increases in food hoarding. Collectively, these data suggest that the MC3/4-R are involved in ghrelin- and food deprivation-induced increases in food intake, but other neurochemical systems, such as previously demonstrated with neuropeptide Y, also are involved in increases in food hoarding as well as foraging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号