首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) is synthesized by members of the NO synthase (NOS) family. Recently the existence of a mitochondrial NOS (mtNOS), its Ca(2+) dependence, and its relevance for mitochondrial bioenergetics was reported (Ghafourifar, P., and Richter, C. (1997) FEBS Lett. 418, 291-296; Giulivi, C., Poderoso, J. J., and Boveris, A. (1998) J. Biol. Chem. 273, 11038-11043). Here we report on the possible involvement of mtNOS in apoptosis. We show that uptake of Ca(2+) by mitochondria triggers mtNOS activity and causes the release of cytochrome c from isolated mitochondria in a Bcl-2-sensitive manner. mtNOS-induced cytochrome c release was paralleled by increased lipid peroxidation. The release of cytochrome c as well as increase in lipid peroxidation were prevented by NOS inhibitors, a superoxide dismutase mimic, and a peroxynitrite scavenger. We show that mtNOS-induced cytochrome c release is not mediated via the mitochondrial permeability transition pore because the release was aggravated by cyclosporin A and abolished by blockade of mitochondrial calcium uptake by ruthenium red. We conclude that, upon Ca(2+)-induced mtNOS activation, peroxynitrite is formed within mitochondria, which causes the release of cytochrome c from isolated mitochondria, and we propose a mechanism by which elevated Ca(2+) levels induce apoptosis.  相似文献   

2.
It is still debated whether inositol 1,4, 5-trisphosphate(IP(3))-induced Ca(2+) release is loading-dependent. We now report that stimulation of the IP(3) receptor by luminal Ca(2+) depends on the cytosolic [Ca(2+)] in permeabilized A7r5 cells. The EC(50) and maximal extent of Ca(2+) release were loading-dependent in the presence of 5 mM 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid: the EC(50) increased 1.9-fold and the maximal release decreased from 88 to 52% when the stores contained 73% less Ca(2+). In the presence of 0.3 microM free Ca(2+), the EC(50) for filled and less filled stores differed, however, only 1.2-fold and the maximal Ca(2+) release was respectively 96 and 87% of the total releasable Ca(2+). At 1 microM free Ca(2+), the difference in EC(50) between filled and less filled stores again became larger (2.2-fold) and the maximal Ca(2+) release decreased from 93 to 87% when the stores contained less Ca(2+).  相似文献   

3.
In this study we show that micromolar Ca(2+) concentrations (>10 microM) strongly stimulate the release of reactive oxygen species (ROS) in rotenone-treated isolated rat forebrain mitochondria. Ca(2+)-stimulated mitochondrial ROS release was associated with membrane lipid peroxidation and was directly correlated with the degree of complex I inhibition by rotenone. On the other hand, Ca(2+) did not increase mitochondrial ROS release in the presence of the complex I inhibitor 1-methyl-4-phenylpyridinium. Cyclosporin A had no effect on Ca(2+)-stimulated mitochondrial ROS release in the presence of rotenone, indicating that mitochondrial permeability transition is not involved in this process. We hypothesized that Ca(2+)-induced mitochondrial oxidative stress associated with partial inhibition of complex I may be an important factor in neuronal cell death observed in the neurodegenerative disorder Parkinson's disease.  相似文献   

4.
We have investigated the effects of imperatoxin A (IpTx(a)) on local calcium release events in permeabilized frog skeletal muscle fibers, using laser scanning confocal microscopy in linescan mode. IpTx(a) induced the appearance of Ca(2+) release events from the sarcoplasmic reticulum that are approximately 2 s and have a smaller amplitude (31 +/- 2%) than the "Ca(2+) sparks" normally seen in the absence of toxin. The frequency of occurrence of long-duration imperatoxin-induced Ca(2+) release events increased in proportion to IpTx(a) concentrations ranging from 10 nM to 50 nM. The mean duration of imperatoxin-induced events in muscle fibers was independent of toxin concentration and agreed closely with the channel open time in experiments on isolated frog ryanodine receptors (RyRs) reconstituted in planar lipid bilayer, where IpTx(a) induced opening of single Ca(2+) release channels to prolonged subconductance states. These results suggest involvement of a single molecule of IpTx(a) in the activation of a single Ca(2+) release channel to produce a long-duration event. Assuming the ratio of full conductance to subconductance to be the same in the fibers as in bilayer, the amplitude of a spark relative to the long event indicates involvement of at most four RyR Ca(2+) release channels in the production of short-duration Ca(2+) sparks.  相似文献   

5.
We have compared the effects of the sarcoplasmic reticulum (SR) Ca(2+) release inhibitor, ruthenium red (RR), on single ryanodine receptor (RyR) channels in lipid bilayers, and on Ca(2+) sparks in permeabilized rat ventricular myocytes. Ruthenium red at 5 microM inhibited the open probability (P(o)) of RyRs approximately 20-50-fold, without significantly affecting the conductance or mean open time of the channel. At the same concentration, RR inhibited the frequency of Ca(2+) sparks in permeabilized myocytes by approximately 10-fold, and reduced the amplitude of large amplitude events (with most probable localization on the line scan) by approximately 3-fold. According to our theoretical simulations, performed with a numerical model of Ca(2+) spark formation, this reduction in Ca(2+) spark amplitude corresponds to an approximately 4-fold decrease in Ca(2+) release flux underlying Ca(2+) sparks. Ruthenium red (5 microM) increased the SR Ca(2+) content by approximately 2-fold (from 151 to 312 micromol/l cytosol). Considering the degree of inhibition of local Ca(2+) release events, the increase in SR Ca(2+) load by RR, and the lack of effects of RR on single RyR open time and conductance, we have estimated that Ca(2+) sparks under normal conditions are generated by openings of at least 10 single RyRs.  相似文献   

6.
Bimatoprost is the ethyl amide derivative of 17-phenyl-trinor prostaglandin F(2alpha). Here, we show that bimatoprost (K(i)=9250+/-846nM) and bimatoprost free acid (17-phenyl-trinor prostaglandin F(2alpha); K(i)=59+/-6nM) bind to the FP receptor and displace [(3)H]-travoprost acid, a selective FP agonist. Bimatoprost (EC(50)=3070+/-1330nM), Lumigan((R)) (bimatoprost 0.03% ophthalmic solution; EC(50)=1150+/-93nM) and bimatoprost acid (EC(50)=15+/-3nM) mobilized intracellular Ca(2+) ([Ca(2+)](i)) in <5s in HEK-293 cells expressing the cloned human ciliary body FP receptor on a fluorometric imaging plate reader (FLIPR). Furthermore, agonist effects of bimatoprost and bimatoprost acid were blocked by AL-8810 (11beta-fluoro-15-epi-15-indanyl prostaglandin F(2alpha); K(i)=0.7-2.1 MicroM), an FP receptor-selective antagonist. Therefore, the prodrug bimatoprost and its hydrolytic product, bimatoprost free acid, bind to and activate the human ocular FP prostaglandin receptor to mobilize [Ca(2+)](i), thus behaving as FP receptor agonists.  相似文献   

7.
Fe(2+) induces a transient Ca(2+) release from rat liver mitochondria   总被引:5,自引:0,他引:5  
Isolated mitochondria loaded with Ca(2+) and then exposed to Fe(2+) show a transient release of Ca(2+). The magnitude of this response depends on the Ca(2+) loading and the kinetics of the response depends on the concentration of added Fe(2+). We investigated the Fe(2+)-induced Ca(2+) release mechanism by measuring mitochondrial Ca(2+) uptake in the presence of Fe(2+). The presence of Fe(2+) inhibits Ca(2+) uptake two times. Since mitochondria can cycle Ca(2+) across their inner membrane, the suppression of Ca(2+) uptake, but not release, results in an elevation of the extramitochondrial Ca(2+), thereby varying the steady state. The transient release of Ca(2+) initially observed from mitochondria appears to occur via the electroneutral 2H(+)/Ca(2+)-exchange mechanism, since it can be markedly decreased by cyclosporin A and does not involve lipid peroxidation. When Fe(2+) accumulation is completed, reuptake of released Ca(2+) into mitochondria resumes. Finally, we propose that Fe(2+) either inhibits Ca(2+) entry at the uniporter or is transported by it into the matrix.  相似文献   

8.
Jiann BP  Lu YC  Chang HT  Huang JK  Jan CR 《Life sciences》2002,70(26):3167-3178
The effect of clomiphene, an ovulation-inducing agent, on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in populations of PC3 human prostate cancer cells was explored by using fura-2 as a Ca(2+) indicator. Clomiphene at concentrations between 10-50 microM increased [Ca(2+)](i) in a concentration-dependent manner. The [Ca(2+)](i) signal was biphasic with an initial rise and a slow decay. Ca(2+) removal inhibited the Ca(2+) signal by 41%. Adding 3 mM Ca(2+) increased [Ca(2+)](i) in cells pretreated with clomiphene in Ca(2+)-free medium, confirming that clomiphene induced Ca(2+) entry. In Ca(2+)-free medium, pretreatment with 50 microM brefeldin A (to permeabilize the Golgi complex), 1 microM thapsigargin (to inhibit the endoplasmic reticulum Ca(2+) pump), and 2 microM carbonylcyanide m-chlorophenylhydrazone (to uncouple mitochondria) inhibited 25% of 50 microM clomiphene-induced store Ca(2+) release. Conversely, pretreatment with 50 microM clomiphene in Ca(2+)-free medium abolished the [Ca(2+)](i) increase induced by brefeldin A, thapsigargin or carbonylcyanide m-chlorophenylhydrazone. The 50 microM clomiphene-induced Ca(2+)release was unaltered by inhibiting phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). Trypan blue exclusion assay suggested that incubation with clomiphene (50 microM) for 2-15 min induced time-dependent decrease in cell viability by 10-50%. Collectively, the results suggest that clomiphene induced [Ca(2+)](i) increases in PC3 cells by releasing store Ca(2+) from multiple stores in an phospholipase C-independent manner, and by activating Ca(2+) influx; and clomiphene was of mild cytotoxicity.  相似文献   

9.
Lipid peroxidation in phosphatidylcholine liposomes induced by Fe(3+) alone, assessed by thiobarbituric acid-reactive substances (TBARS) production, was markedly enhanced as the solution pH was lowered from 7.4 to 5.5. On the other hand, at physiological pH, TBARS production by Fe(3+) was almost negligible. Results of the radical scavenger experiments with superoxide dismutase, catalase and hydroxyl radical ((&z.rad;)OH) scavengers (sodium benzoate, mannitol and dimethylthiourea), deoxyribose degradation and ESR spectrometry suggest that the stimulation of Fe(3+)-dependent lipid peroxidation under acidic conditions is involved in generation of superoxide anion (O(2)(&z.rad;-)), hydrogen peroxide (H(2)O(2)) and (&z.rad;)OH during the reaction. The stimulation of Fe(3+)-dependent TBARS production by increasing the [H(+)] completely disappeared by triphenylphosphine (TPP) treatment of the liposomes, but the reaction was reversible with either incorporation of cumen hydroperoxide (CumOOH) into the TPP-treated liposomes or the addition of CumOOH to the treated liposomes. Incubation of the CumOOH-incorporated TPP-treated liposomes with Fe(3+) at pH 5.5 also resulted in (&z.rad;)OH generation. Based on these results, a possible mechanism of stimulatory effect of Fe(3+) on lipid peroxidation under acidic conditions is discussed.  相似文献   

10.
Store-operated Ca(2+) entry was investigated by monitoring the Ca(2+)-dependent K(+) permeability in voltage-clamped guinea pig hepatocytes. In physiological conditions, intracellular Ca(2+) stores are discharged following agonist stimulation, but depletion of this stores can be achieved using Ca(2+)-Mg(2+)-ATPase inhibitors such as 2,5-di(tert-butyl)-1,4-benzohydroquinone and thapsigargin. The effect of internal Ca(2+) store depletion on Ca(2+) influx was tested in single cells using inositol 1,4,5-trisphosphate (InsP(3)) release from caged InsP(3) after treatment of the cells with 2, 5-di(tert-butyl)-1,4-benzohydroquinone or thapsigargin in Ca(2+)-free solutions. We show that the photolytic release of 1-d-myo-inositol 1,4-bisphosphate 5-phosphorothioate, a stable analog of InsP(3), and Ca(2+) store depletion have additive effects to activate a high level of Ca(2+) entry in single guinea pig hepatocytes. These results suggest that there is a direct functional interaction between InsP(3) receptors and Ca(2+) channels in the plasma membrane, although the nature of these Ca(2+) channels in hepatocytes is unclear.  相似文献   

11.
Glioma cells prominently express a unique splice variant of a large conductance, calcium-activated potassium channel (BK channel). These channels transduce changes in intracellular calcium to changes of K(+) conductance in the cells and have been implicated in growth control of normal and malignant cells. The Ca(2+) increase that facilitates channel activation is thought to occur via activation of intracellular calcium release pathways or influx of calcium through Ca(2+)-permeable ion channels. We show here that BK channel activation involves the activation of inositol 1,4,5-triphosphate receptors (IP(3)R), which localize near BK channels in specialized membrane domains called lipid rafts. Disruption of lipid rafts with methyl-beta-cyclodextrin disrupts the functional association of BK channel and calcium source resulting in a >50% reduction in K(+) conductance mediated by BK channels. The reduction of BK current by lipid raft disruption was overcome by the global elevation of intracellular calcium through inclusion of 750 nm Ca(2+) in the pipette solution, indicating that neither the calcium sensitivity of the channel nor their overall number was altered. Additionally, pretreatment of glioma cells with 2-aminoethoxydiphenyl borate to inhibit IP(3)Rs negated the effect of methyl-beta-cyclodextrin, providing further support that IP(3)Rs are the calcium source for BK channels. Taken together, these data suggest a privileged association of BK channels in lipid raft domains and provide evidence for a novel coupling of these Ca(2+)-sensitive channels to their second messenger source.  相似文献   

12.
The amino-carbonyl (Maillard) reaction of amino acids with sugars is a nonenzymatic browning reaction that takes place during the processing, cooking, and storage of foods. Maillard reaction products (MRPs) have been shown to possess interesting chemical and biological properties including antimutagenic and antioxidant activity. In this study, we determined the antioxidant effects of fructosyl arginine (Fru-Arg), a MRP in aged garlic extract. Low density lipoprotein (LDL) was incubated with Cu(2+) at 37 degrees C and 5% CO(2) for 24 hours, which resulted in an increase of thiobarbituric acid reactive substances (TBARS) indicating lipid peroxidation. Coincubation of Cu(2+) with Fru-Arg and LDL resulted in a significant inhibition of TBARS formation. Pulmonary artery endothelial cells (PAEC) were exposed to 0.1 mg/mL oxidized LDL (Ox-LDL) at 37 degrees C and 5% CO(2) for 24 hours. Lactate dehydrogenase (LDH) release, as an index of cell membrane damage, and TBARS were measured. Ox-LDL caused an increase of LDH release and TBARS formation. Pretreatment of PAEC with Fru-Arg inhibited these changes. Murine macrophages were incubated with Ox-LDL, and the release of peroxides was measured using a fluorometric assay. Ox-LDL caused an increased release of peroxides. Coincubation of macrophages with Fru-Arg and Ox-LDL inhibited the release of peroxides dose-dependently. In a cell free system, Fru-Arg was shown to scavenge hydrogen peroxide. These data suggest that Fru-Arg is a potent antioxidant, and thus may be useful for the prevention of atherosclerosis and other disorders associated with oxidative stress.  相似文献   

13.
The present study was designed to test the hypothesis that cADP-ribose (cADPR) increases Ca(2+) release through activation of ryanodine receptors (RYR) on the sarcoplasmic reticulum (SR) in coronary arterial smooth muscle cells (CASMCs). We reconstituted RYR from the SR of CASMCs into planar lipid bilayers and examined the effect of cADPR on the activity of these Ca(2+) release channels. In a symmetrical cesium methanesulfonate configuration, a 245 pS Cs(+) current was recorded. This current was characterized by the formation of a subconductance and increase in the open probability (NP(o)) of the channels in the presence of ryanodine (0.01-1 microM) and imperatoxin A (100 nM). A high concentration of ryanodine (50 microM) and ruthenium red (40-80 microM) substantially inhibited the activity of RYR/Ca(2+) release channels. Caffeine (0.5-5 mM) markedly increased the NP(o) of these Ca(2+) release channels of the SR, but D-myo-inositol 1,4,5-trisphospate and heparin were without effect. Cyclic ADPR significantly increased the NP(o) of these Ca(2+) release channels of SR in a concentration-dependent manner. Addition of cADPR (0.01 microM) into the cis bath solution produced a 2.9-fold increase in the NP(o) of these RYR/Ca(2+) release channels. An eightfold increase in the NP(o) of the RYR/Ca(2+) release channels (0.0056 +/- 0.001 vs. 0.048 +/- 0.017) was observed at a concentration of cADPR of 1 microM. The effect of cADPR was completely abolished by ryanodine (50 microM). In the presence of cADPR, Ca(2+)-induced activation of these channels was markedly enhanced. These results provide evidence that cADPR activates RYR/Ca(2+) release channels on the SR of CASMCs. It is concluded that cADPR stimulates Ca(2+) release through the activation of RYRs on the SR of these smooth mucle cells.  相似文献   

14.
In the current study, we reveal that in astrocytes the VIB Ca(2+)-independent phospholipase A(2) is the enzyme responsible for the release of docosahexaenoic acid (22:6n-3). After pharmacological inhibition and siRNA silencing of VIB Ca(2+)-independent phospholipase A(2), docosahexaenoic acid release was strongly suppressed in astrocytes, which were acutely stimulated (30 min) with ATP and glutamate or after prolonged (6 h) stimulation with the endotoxin lipopolysaccharide. Docosahexaenoic acid release proceeds simultaneously with arachidonic acid (20:4n-6) release and prostaglandin liberation from astrocytes. We found that prostaglandin production is negatively controlled by endogenous docosahexaenoic acid, since pharmacological inhibition and siRNA silencing of VIB Ca(2+)-independent phospholipase A(2) significantly amplified the prostaglandin release by astrocytes stimulated with ATP, glutamate, and lipopolysaccharide. Addition of exogenous docosahexaenoic acid inhibited prostaglandin synthesis, which suggests that the negative control of prostaglandin synthesis observed here is likely due to competitive inhibition of cyclooxygenase-1/2 by free docosahexaenoic acid. Additionally, treatment of astrocytes with docosahexaenoic acid leads to the reduction in cyclooxygenase-1 expression, which also contributes to reduced prostaglandin production observed in lipopolysaccharide-stimulated cells. Thus, we identify a regulatory mechanism important for the brain, in which docosahexaenoic acid released from astrocytes by VIB Ca(2+)-independent phospholipase A(2) negatively controls prostaglandin production.  相似文献   

15.
J Li  R Zheng  J Li  Z Wang 《Cell biology international》2001,25(12):1213-1219
Tumour necrosis factor alpha (TNF-alpha) at 20 ng/ml induced apoptosis in human hepatoma cells in vitro. The effect of TNF-alpha-induced apoptosis was exacerbated by the hypoxanthine-xanthine oxidase (HX/XO) system and cycloheximide (CHX), but alleviated by superoxide dismutase (SOD), suggesting that TNF-alpha-induced apoptosis may be due to oxidative stress, and independent of protein synthesis. TNF-alpha elevated free Ca(2+)concentration, triggered lipid peroxidation and decreased the expression of bcl-2 protein. The findings suggest that TNF-alpha-induced apoptosis may be involved in stimulating Ca(2+)-dependent endonuclease activity and increasing membrane lipid peroxidation. Bcl-2 may play a pivotal role in serving as a Ca(2+)regulator or antioxidant, preventing lipid peroxidation in the process.  相似文献   

16.
Kuo SY  Jiann BP  Lu YC  Chang HT  Chen WC  Huang JK  Jan CR 《Life sciences》2003,72(15):1733-1743
2,2'-dithiodipyridine (2,2'-DTDP), a reactive disulphide that mobilizes Ca(2+) in muscle, induced an increase in cytoplasmic free Ca(2+)concentrations ([Ca(2+)](i)) in MG63 human osteosarcoma cells loaded with the Ca(2+)-sensitive dye fura-2. 2,2'-DTDP acted in a concentration-independent manner with an EC(50) of 50 microM. The Ca(2+) signal comprised an initial spike and a prolonged increase. Removing extracellular Ca(2+) did not alter the Ca(2+) signal, suggesting that the Ca(2+) signal was due to store Ca(2+) release. In Ca(2+)-free medium, the 2,2'-DTDP-induced [Ca(2+)](i) increase was not changed by depleting store Ca(2+) with 50 microM bredfeldin A (a Golgi apparatus permeabilizer), 2 microM carbonylcyanide m-chlorophenylhydrazone (CCCP, a mitochondrial uncoupler), 1 microM thapsigargin (an endoplasmic reticulum Ca(2+)pump inhibitor) or 5 microM ryanodine. Conversely, 2,2'-DTDP pretreatment abolished CCCP and thapsigargin-induced [Ca(2+)](i) increases. 2,2'-DTDP-induced Ca(2+) signals in Ca(2+)-containing medium were not affected by modulation of protein kinase C activity or suppression of phospholipase C activity. However, 2,2'-DTDP-induced Ca(2+) release was inhibited by a thiol-selective reducing reagent, dithiothreitol (5-25 microM) in a concentration-dependent manner. Collectively, this study shows that 2,2'-DTDP induced [Ca(2+)](i) increases in human osteosarcoma cells via releasing store Ca(2+)from multiple stores in a manner independent of protein kinase C or phospholipase C activity. The 2,2'-DTDP-induced store Ca(2+) release appeared to be dependent on oxidation of membranes.  相似文献   

17.
Human mesenchymal stem cells (HMSC) have the potential to differentiate into many cell types. The physiological properties of HMSCs including their Ca(2+) signaling pathways, however, are not well understood. We investigated Ca(2+) influx and release functions in HMSCs. In Ca(2+) imaging experiments, spontaneous Ca(2+) oscillations were observed in 36 of 50 HMSCs. The Ca(2+) oscillations were completely blocked by the application of 10 micro M cyclopiazonic acid (CPA) or 1 micro M thapsigargin (TG). A brief application of 1 micro M acetylcholine (ACh) induced a transient increase of [Ca(2+)](i) but the application of caffeine (10 mM) did not induce any Ca(2+) transient. When the stores were depleted with Ca(2+)-ATPase blockers (CPA or TG) or muscarinic agonists (ACh), store-operated Ca(2+) (SOC) entry was observed. Using the patch-clamp technique, store-operated Ca(2+) currents (I(SOC)) could be recorded in cells treated with ACh or CPA, but voltage-operated Ca(2+) currents (VOCCs) were not elicited in most of the cells (17/20), but in 15% of cells examined, small dihydropyridine (DHP)-sensitive Ca(2+) currents were recorded. Using RT-PCR, mRNAs were detected for inositol 1,4,5-trisphosphate receptor (InsP(3)R) type I, II, and III and DHP receptors alpha1A and alpha1H were detected, but mRNA was not detected for ryanodine receptor (RyR) or N-type Ca(2+) channels. These results suggest that in undifferentiated HMSCs, Ca(2+) release is mediated by InsP(3)Rs and Ca(2+) entry through plasma membrane is mainly mediated by the SOCs channels with a little contribution of VOCCs.  相似文献   

18.
Multiple mechanisms that maintain Ca(2+) homeostasis and provide for Ca(2+) signalling operate in the somatas and neurohypophysial nerve terminals of supraoptic nucleus (SON) neurones. Here, we examined the Ca(2+) clearance mechanisms of SON neurones from adult rats by monitoring the effects of the selective inhibition of different Ca(2+) homeostatic molecules on cytosolic Ca(2+) ([Ca(2+)](i)) transients in isolated SON neurones. In addition, we measured somatodendritic vasopressin (AVP) release from intact SON tissue in an attempt to correlate it with [Ca(2+)](i) dynamics. When bathing the cells in a Na(+)-free extracellular solution, thapsigargin, cyclopiazonic acid (CPA), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and the inhibitor of plasma membrane Ca(2+)-ATPase (PMCA), La(3+), all significantly slowed down the recovery of depolarisation (50 mM KCl)-induced [Ca(2+)](i) transients. The release of AVP was stimulated by 50 mM KCl, and the decline in the peptide release was slowed by Ca(2+) transport inhibitors. In contrast to previous reports, our results show that in the fully mature adult rats: (i) all four Ca(2+) homeostatic pathways, the Na(+)/Ca(2+) exchanger, the endoplasmic reticulum Ca(2+) pump, the plasmalemmal Ca(2+) pump and mitochondria, are complementary in actively clearing Ca(2+) from SON neurones; (ii) somatodendritic AVP release closely correlates with intracellular [Ca(2+)](i) dynamics; (iii) there is (are) Ca(2+) clearance mechanism(s) distinct from the four outlined above; and (iv) Ca(2+) homeostatic systems in the somatas of SON neurones differ from those expressed in their terminals.  相似文献   

19.
Secretory granules of neuroendocrine cells are inositol 1,4,5-trisphosphate (InsP(3))-sensitive Ca(2+) stores in which the Ca(2+) storage protein, chromogranin A (CGA), couples with InsP(3)-gated Ca(2+) channels (InsP(3)R) located in the granule membrane. The functional aspect of this coupling has been investigated via release studies and planar lipid bilayer experiments in the presence and absence of CGA. CGA drastically increased the release activity of the InsP(3)R by increasing the channel open probability by 9-fold and the mean open time by 12-fold. Our results show that CGA-coupled InsP(3)Rs are more sensitive to activation than uncoupled receptors. This modulation of InsP(3)R channel activity by CGA appears to be an essential component in the control of intracellular Ca(2+) concentration by secretory granules and may regulate the rate of vesicle fusion and exocytosis.  相似文献   

20.
The phenomenology of nuclear Ca(2+) dynamics has experienced important progress revealing the broad range of cellular processes that it regulates. Although several agonists can mobilize Ca(2+) from storage in the nuclear envelope (NE) to the intranuclear compartment (INC), the mechanisms of Ca(2+) signaling in the nucleus still remain uncertain. Here we report that the NE/INC complex can function as an inositol-1,4,5-trisphosphate (InsP(3))-controlled Ca(2+) oscillator. Thin optical sectioning combined with fluorescent labeling of Ca(2+) probes show in cultured airway epithelial ciliated cells that ATP can trigger periodic oscillations of Ca(2+) in the NE ([Ca(2+)](NE)) and corresponding pulses of Ca(2+) release to the INC. Identical results were obtained in InsP(3)-stimulated isolated nuclei of these cells. Our data show that [Ca(2+)](NE) oscillations and Ca(2+) release to the INC result from the interplay between the Ca(2+)/K(+) ion-exchange properties of the intralumenal polyanionic matrix of the NE and two Ca(2+)-sensitive ion channels-an InsP(3)-receptor-Ca(2+) channel and an apamin-sensitive K(+) channel. A similar Ca(2+) signaling system operating under the same functional protocol and molecular hardware controls Ca(2+) oscillations and release in/to the endoplasmic reticulum/cytosol and in/to the granule/cytosol complexes in airway and mast cells. These observations suggest that these intracellular organelles share a remarkably conserved mechanism of InsP(3)-controlled frequency-encoded Ca(2+) signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号