首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Monoacylglycerol kinase (MGK) has been purified from bovine brain by six steps: isolation of cytosol, DEAE-cellulose chromatography, ammonium sulfate fractionation (0-40%), Bio-Gel A-1.5m, hydroxylapatite, and ATP-agarose column chromatography. The overall purification was 938 times with a 4.8% yield. The column separations (particularly Bio-Gel A-1.5m) and SDS- and nondenaturing-polyacrylamide gel electrophoresis of enzyme purified from ATP-agarose indicated that MGK exists as a complex (approximately 350 kilodaltons) that is stabilized by 0.5 M NaCl and, on complete dissociation, yields a major protein of 72 kilodaltons. Dithiothreitol, EDTA, and ATP helped to stabilize MGK during purification. The protein peak eluted from hydroxylapatite by 25 mM phosphate activated and stabilized MGK activity. Phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin inhibited MGK. These phospholipids and others activated MGK synergistically with the above protein peak. MGK copurified with diacylglycerol kinase (DGK) throughout giving MGK to DGK ratios of 0.05-0.36. Optimal activity required 0.5 mM 2-monoolein and 10 mM MgCl2. Strong inhibition by p-chloromercuriphenyl sulfonic acid, N-ethyl-maleimide, and 5,5'-dithio-bis(2-nitrobenzoic acid), and prevention of this inhibition by dithiothreitol indicated the involvement of intact SH groups in the action of MGK. Purified MGK showed preference for substrates with unsaturated fatty acids except for 1- or 2-monostearin. Overall the preference favored the selective generation of 1-stearoyl- and 2-arachidonoyl-lysophosphatidic acid.  相似文献   

2.
During a survey of endophytic diazotrophic bacteria associated with different rice varieties in Tamilnadu, some “endophytes” were obtained. Thirteen bacterial isolates from surface-sterilized roots and shoots were obtained in pure culture, which produced indole acetic acid (IAA) and reduced acetylene to ethylene. Polymerase chain reaction (PCR) amplification confirmed the presence of nif-H gene in all the isolates. Morphological, biochemical, and molecular characteristics indicated that all of them belonged to the genus Burkholderia One of them, MGK3, was consistently more active in reducing acetylene, and 16S rDNA sequences of isolate MGK3 confirmed its identification as Burkholderia vietnamiensis. Colonization of rice root was confirmed by strain MGK3 marked with gusA gene. The inoculated roots showed a blue color, which was most intense at the points of lateral root emergence and at the root tip. Transverse sections of roots, 15 days after inoculation, revealed beta-glucuronidase (GUS) activity within many of the cortical intercellular spaces next to the stele and within the aerenchyma. Nitrogen fixation was quantified by using 15N isotope dilution method with two different cultivars grown in pot and field experiments. Higher nitrogen fixation was observed in variety Ponni than in ADT-43, where nearly 42% (field) and 40% (pot) of the nitrogen was derived from the atmosphere (% Ndfa). Isolate MGK3 was used to inoculate rice seedlings in a comparison with four other diazotrophs, viz., Gluconacetobacter diazotrophicus LMG7603, Herbaspirillum seropedicae LMG6513, Azospirillum lipoferum 4B LMG4348, and B. vietnamiensis LMG10929. They were used to conduct two pot and four field inoculation experiments. MGK3 alone, and combined with other diazotrophs, performed best under both pot and field conditions: combined inoculation produced yield increases between 9.5 and 23.6%, while MGK3 alone increased yield by 5.6 to 12.16% over the uninoculated control treatment.  相似文献   

3.
A subset of victims of ocular sulfur mustard (SM) exposure develops an irreversible, idiotypic keratitis with associated secondary pathologies, collectively referred to as mustard gas keratopathy (MGK). MGK involves a progressive corneal degeneration resulting in chronic ocular discomfort and impaired vision for which clinical interventions have typically had poor outcomes. Using a rabbit corneal vapor exposure model, we previously demonstrated a clinical progression with acute and chronic sequelae similar to that observed in human casualties. However, a better understanding of the temporal changes that occur during the biphasic SM injury is crucial to mechanistic understanding and therapeutic development. Here we evaluate the histopathologic, biochemical and ultrastructural expressions of pathogenesis of the chronic SM injury over eight weeks. We confirm that MGK onset exhibits a biphasic trajectory involving corneal surface regeneration over the first two weeks, followed by the rapid development and progressive degeneration of corneal structure. Preclinical markers of corneal dysfunction were identified, including destabilization of the basal corneal epithelium, basement membrane zone abnormalities and stromal deformation. Clinical sequelae of MGK appeared abruptly three weeks after exposure, and included profound anterior edema, recurring corneal erosions, basement membrane disorganization, basal cell necrosis and stromal degeneration. Unlike resolved corneas, MGK corneas exhibited frustrated corneal wound repair, with significantly elevated histopathology scores. Increased lacrimation, disruption of the basement membrane and accumulation of pro-inflammatory mediators in the aqueous humor provide several mechanisms for corneal degeneration. These data suggest that the chronic injury is fundamentally distinct from the acute lesion, involving injury mechanisms that operate on different time scales and in different corneal tissues. Corneal edema appears to be the principal pathology of MGK, in part resulting from persistent necrosis of the basal corneal epithelium and deterioration of the basement membrane. The findings also provide a potential explanation as to why administration of anti-inflammatories transiently delays, but does not prevent, the development of MGK sequelae.  相似文献   

4.
This work examines the influence of modified gum karaya (MGK) on the oral bioavailability of a poorly water-soluble drug, nimodipine (NM), in comparison with that of gum karaya (GK). A cogrinding method was selected to prepare mixtures of NM and GK or MGK in a 1:9 ratio (NM:GK/MGK). Differential scanning calorimetry (DSC), Fourier transmission infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), solubility studies, and in vitro release studies were performed to characterize the properties of the cogrinding mixtures. No drug-carrier interactions were found, as confirmed by DSC and FT-IR studies. The XRD study revealed that the crystallinity of NM was identical in both the cogrinding mixtures and was decreased when compared to that of physical mixtures or pure NM. The in vitro release rate of NM from both cogrinding mixtures was significantly higher than that of physical mixtures or pure NM. The in vivo study revealed that the bioavailability of NM from pure drug was significantly lower when compared to the cogrinding mixtures. The oral bioavailability was found to be NM powder < cogrinding mixtures of NM and GK < cogrinding mixtures of NM and MGK < NM solution. It can be inferred from the above results that MGK, an economical carrier, could be used for the dissolution enhancement of NM.  相似文献   

5.
Toxic Microcystis spp. blooms constitute a serious threat to water quality worldwide. Aeromonas veronii was isolated from Microcystis sp. colonies collected in Lake Kinneret. Spent Aeromonas media inhibits the growth of Microcystis aeruginosa MGK isolated from Lake Kinneret. The inhibition was much stronger when Aeromonas growth medium contained spent media from MGK suggesting that Aeromonas recognized its presence and produced secondary metabolites that inhibit Microcystis growth. Fractionations of the crude extract and analyses of the active fractions identified several secondary metabolites including lumichrome in Aeromonas media. Application of lumichrome at concentrations as low as 4 nM severely inhibited Microcystis growth. Inactivation of aviH in the lumichrome biosynthetic pathway altered the lumichrome level in Aeromonas and the extent of MGK growth inhibition. Conversely, the initial lag in Aeromonas growth was significantly longer when provided with Microcystis spent media but Aeromonas was able to resume normal growth. The longer was pre-exposure to Microcystis spent media the shorter was the lag phase in Aeromonas growth indicating the presence of, and acclimation to, secondary MGK metabolite(s) the nature of which was not revealed. Our study may help to control toxic Microcystis blooms taking advantage of chemical languages used in the interspecies communication.  相似文献   

6.
On the origin of mitochondria: a genomics perspective   总被引:10,自引:0,他引:10  
The availability of complete genome sequence data from both bacteria and eukaryotes provides information about the contribution of bacterial genes to the origin and evolution of mitochondria. Phylogenetic analyses based on genes located in the mitochondrial genome indicate that these genes originated from within the alpha-proteobacteria. A number of ancestral bacterial genes have also been transferred from the mitochondrial to the nuclear genome, as evidenced by the presence of orthologous genes in the mitochondrial genome in some species and in the nuclear genome of other species. However, a multitude of mitochondrial proteins encoded in the nucleus display no homology to bacterial proteins, indicating that these originated within the eukaryotic cell subsequent to the acquisition of the endosymbiont. An analysis of the expression patterns of yeast nuclear genes coding for mitochondrial proteins has shown that genes predicted to be of eukaryotic origin are mainly translated on polysomes that are free in the cytosol whereas those of putative bacterial origin are translated on polysomes attached to the mitochondrion. The strong relationship with alpha-proteobacterial genes observed for some mitochondrial genes, combined with the lack of such a relationship for others, indicates that the modern mitochondrial proteome is the product of both reductive and expansive processes.  相似文献   

7.
目的:利用生物信息学方法对致病菌特有基因进行大规模预测,同时探讨致病菌特有基因与致病菌毒力之间的关系。方法:构建致病性细菌蛋白质序列数据库和非致病性细菌蛋白质序列数据库,利用同源性比对的方法(BlastP工具)对致病菌特有基因进行预测;同时从文献中提取与致病菌毒力紧密相关的毒力因子,构建具有代表性的毒力因子分析库,对预测的致病菌特有基因进行比较分析。结果:在致病菌780310个基因中,预测了致病菌特有基因79166个,约占致病菌总基因的10.15%;预测的致病菌特有基因包含了构建的毒力因子分析库中的大部分毒力基因。结论:预测的致病菌特有基因与致病菌毒力紧密相关,大大减少了进一步在致病菌基因组中鉴定毒力基因时整个基因组的数据量。  相似文献   

8.
MOTIVATION: Incorporation of selenocysteine (Sec) into proteins in response to UGA codons requires a cis-acting RNA structure, Sec insertion sequence (SECIS) element. Whereas SECIS elements in Escherichia coli are well characterized, a bacterial SECIS consensus structure is lacking. RESULTS: We developed a bacterial SECIS consensus model, the key feature of which is a conserved guanosine in a small apical loop of the properly positioned structure. This consensus was used to build a computational tool, bSECISearch, for detection of bacterial SECIS elements and selenoprotein genes in sequence databases. The program identified 96.5% of known selenoprotein genes in completely sequenced bacterial genomes and predicted several new selenoprotein genes. Further analysis revealed that the size of bacterial selenoproteomes varied from 1 to 11 selenoproteins. Formate dehydrogenase was present in most selenoproteomes, often as the only selenoprotein family, whereas the occurrence of other selenoproteins was limited. The availability of the bacterial SECIS consensus and the tool for identification of these structures should help in correct annotation of selenoprotein genes and characterization of bacterial selenoproteomes.  相似文献   

9.
The Selfish Operon Model postulates that the organization of bacterial genes into operons is beneficial to the constituent genes in that proximity allows horizontal cotransfer of all genes required for a selectable phenotype; eukaryotic operons formed for very different reasons. Horizontal transfer of selfish operons most probably promotes bacterial diversification.  相似文献   

10.
The presence of Supressor of variegation-Enhanser of zeste-Trithorax (SET) domain genes in bacteria is a current paradigm for lateral genetic exchange between eukaryotes and prokaryotes. Because a major function of SET domain proteins is the chemical modification of chromatin and bacteria do not have chromatin, there is no apparent functional requirement for the existence of bacterial SET domain genes. Consequently, their finding in only a small fraction of pathogenic and symbiotic bacteria was taken as evidence that bacteria have obtained the SET domain genes from their hosts. Furthermore, it was proposed that the products of the genes would, most likely, be involved in bacteria-host interactions. The broadened scope of sequenced bacterial genomes to include also free-living and environmental species provided a larger sample to analyze the bacterial SET domain genes. By phylogenetic analysis, examination of individual chromosomal regions for signs of insertion, and evaluating the chromosomal versus SET domain genes' GC contents, we provide evidence that SET domain genes have existed in the bacterial domain of life independently of eukaryotes. The bacterial genes have undergone an evolution of their own unconnected to the evolution of the eukaryotic SET domain genes. Initial finding of SET domain genes in predominantly pathogenic and symbiotic bacteria resulted, most probably, from a biased sample. However, a lateral transfer of SET domain genes may have occurred between some bacteria and a family of Archaea. A model for the evolution and distribution of SET domain genes in bacteria is proposed.  相似文献   

11.
The fate of new bacterial genes   总被引:1,自引:0,他引:1  
Bacteria experience a continual influx of novel genetic material from a wide range of sources and yet their genomes remain relatively small. This aspect of bacterial evolution indicates that most newly arriving sequences are rapidly eliminated; however, numerous new genes persist, as evident from the presence of unique genes in almost all bacterial genomes. This review summarizes the methods for identifying new genes in bacterial genomes and examines the features that promote the retention and elimination of these evolutionary novelties.  相似文献   

12.
Japanese flounder (Paralichthys olivaceus) is an important economic fish species cultured worldwide. In this report, we compared the potentials of ten housekeeping genes as quantitative real time RT-PCR (qRT-PCR) references for the study of gene expression in Japanese flounder under normal physiological conditions and during bacterial infection. For this purpose, the expression of the ten genes in eight flounder tissues (liver, spleen, kidney, heart, muscle, brain, gill, and intestine) was determined by qRT-PCR before and after bacterial infection. The expression levels of the housekeeping genes were then compared and evaluated with geNorm and NormFinder algorithms. The results showed that before bacterial infection, the tested genes exhibited tissue-specific expressions to various degrees, with β-actin and ubiquitin-conjugating enzyme being ranked as the most stable genes across tissue types. Following bacterial challenge, all the tested genes varied in expression levels in tissue-dependent manners and no cross-all-tissue type reference gene was identified among the examined panel of housekeeping genes; however, α-tubulin was recognized as the most stable gene in four (spleen, heart, muscle, and gill) of the eight examined tissues. These results indicate that for qRT-PCR analysis of gene expression in Japanese flounder as a function of bacterial infection, the choice of reference genes should be made according to tissue type.  相似文献   

13.
Marine sponges contain complex assemblages of bacterial symbionts, the roles of which remain largely unknown. We identified diverse bacterial nifH genes within sponges and found that nifH genes are expressed in sponges. This is the first demonstration of the expression of any protein-coding bacterial gene within a sponge. Two sponges Ircinia strobilina and Mycale laxissima were collected from Key Largo, Florida and had delta(15)N values of c. 0-1 per thousand and 3-4 per thousand respectively. The potential for nitrogen fixation by symbionts was assessed by amplification of nifH genes. Diverse nifH genes affiliated with Proteobacteria and Cyanobacteria were detected, and expression of nifH genes affiliated with those from cyanobacteria was detected. The nifH genes from surrounding seawater were similar to those of Trichodesmium and clearly different from the cyanobacterial nifH genes detected in the two sponges. This study advances understanding of the role of bacterial symbionts in sponges and suggests that provision of fixed nitrogen is a means whereby symbionts benefit sponges in nutrient-limited reef environments. Nitrogen fixation by sponge symbionts is possibly an important source of new nitrogen to the reef environment that heretofore has been neglected and warrants further investigation.  相似文献   

14.
With the completion of the Human Genome Project in 2003, many new projects to sequence bacterial genomes were started and soon many complete bacterial genome sequences were available. The sequenced genomes of pathogenic bacteria provide useful information for understanding host-pathogen interactions. These data prove to be a new weapon in fighting against pathogenic bacteria by providing information about potential drug targets. But the limitation of computational tools for finding potential drug targets has hindered the process and further experimental analysis. There are many in silico approaches proposed for finding drug targets but only few have been automated. One such approach finds essential genes in bacterial genomes with no human homologue and predicts these as potential drug targets. The same approach is used in our tool. T-iDT, a tool for the identification of drug targets, finds essential genes by comparing a bacterial gene set against DEG (Database of Essential Genes) and excludes homologue genes by comparing against a human protein database. The tool predicts both the set of essential genes as well as potential target genes for the given genome. The tool was tested with Mycobacterium tuberculosis and results were validated. With default parameters, the tool predicted 236 essential genes and 52 genes to encode potential drug targets. A pathway-based approach was used to validate these potential drug target genes. The pathway in which the products of these genes are involved was determined. Our analysis shows that almost all these pathways are very essential for the bacterial survival and hence these genes encode possible drug targets. Our tool provides a fast method for finding possible drug targets in bacterial genomes with varying stringency level. The tool will be helpful in finding possible drug targets in various pathogenic organisms and can be used for further analysis in novel therapeutic drug development. The tool can be downloaded from http://www.milser.co.in/research.htm and http://www.srmbioinformatics.edu.in/ forum.htm.  相似文献   

15.
Many of the genes responsible for the virulence of bacterial pathogens are carried by mobile genetic elements that can be transferred horizontally between different bacterial lineages. Horizontal transfer of virulence-factor genes has played a profound role in the evolution of bacterial pathogens, but it is poorly understood why these genes are so often mobile. Here, I present a hypothetical selective mechanism maintaining virulence-factor genes on horizontally transmissible genetic elements. For virulence factors that are secreted extracellularly, selection within hosts may favour mutant 'cheater' strains of the pathogen that do not produce the virulence factor themselves but still benefit from factors produced by other members of the pathogen population within a host. Using simple mathematical models, I show that if this occurs then selection for infectious transmission between hosts favours pathogen strains that can reintroduce functional copies of virulence-factor genes into cheaters via horizontal transfer, forcing them to produce the virulence factor. Horizontal gene transfer is thus a novel mechanism for the evolution of cooperation. I discuss predictions of this hypothesis that can be tested empirically and its implications for the evolution of pathogen virulence.  相似文献   

16.
The identification of bacterial genes regulated in response to the intracellular environment is crucial to the understanding of host-pathogen interactions. Several techniques have been developed to identify and characterize bacterial genes that are induced during the intracellular infection and, potentially, may play a role in pathogenesis. This review discusses the strategies that have been utilized to examine differential gene expression by bacterial pathogens during the intracellular infection. Furthermore, a number of the differentially expressed genes are described.  相似文献   

17.
A large number of complete microorganism genomes has been sequenced and submitted to the public database and then incorporated into our complete genome database, Genome Information Broker (GIB, http://gib.genes.nig.ac.jp/). However, when comparative genomics is carried out, researchers must be aware that there are protein-coding genes not confirmed by homology or motif search and that reliable protein-coding genes are missing. Therefore, we developed a protocol (Gene Trek in Prokaryote Space, GTPS) for finding possible protein-coding genes in bacterial genomes. GTPS assigns a degree of reliability to predicted protein-coding genes. We first systematically applied the protocol to the complete genomes of all 123 bacterial species and strains that were publicly available as of July 2003, and then to those of 183 species and strains available as of September 2004. We found a number of incorrect genes and several new ones in the genome data in question. We also found a way to estimate the total number of orthologous genes in the bacterial world.  相似文献   

18.
The SOS regulon is a paradigm of bacterial responses to DNA damage. A wide variety of bacterial species possess homologs of lexA and recA, the central players in the regulation of the SOS circuit. Nevertheless, the genes actually regulated by the SOS have been determined only experimentally in a few bacterial species. In this work, we describe 37 genes regulated in a LexA-dependent manner in the alphaproteobacterium Caulobacter crescentus. In agreement with previous results, we have found that the direct repeat GTTCN7GTTC is the SOS operator of C. crescentus, which was confirmed by site-directed mutagenesis studies of the imuA promoter. Several potential promoter regions containing the SOS operator were identified in the genome, and the expression of the corresponding genes was analyzed for both the wild type and the lexA strain, demonstrating that the vast majority of these genes are indeed SOS regulated. Interestingly, many of these genes encode proteins with unknown functions, revealing the potential of this approach for the discovery of novel genes involved in cellular responses to DNA damage in prokaryotes, and illustrating the diversity of SOS-regulated genes among different bacterial species.  相似文献   

19.
Evolution and ecology of antibiotic resistance genes   总被引:8,自引:0,他引:8  
A new perspective on the topic of antibiotic resistance is beginning to emerge based on a broader evolutionary and ecological understanding rather than from the traditional boundaries of clinical research of antibiotic-resistant bacterial pathogens. Phylogenetic insights into the evolution and diversity of several antibiotic resistance genes suggest that at least some of these genes have a long evolutionary history of diversification that began well before the 'antibiotic era'. Besides, there is no indication that lateral gene transfer from antibiotic-producing bacteria has played any significant role in shaping the pool of antibiotic resistance genes in clinically relevant and commensal bacteria. Most likely, the primary antibiotic resistance gene pool originated and diversified within the environmental bacterial communities, from which the genes were mobilized and penetrated into taxonomically and ecologically distant bacterial populations, including pathogens. Dissemination and penetration of antibiotic resistance genes from antibiotic producers were less significant and essentially limited to other high G+C bacteria. Besides direct selection by antibiotics, there is a number of other factors that may contribute to dissemination and maintenance of antibiotic resistance genes in bacterial populations.  相似文献   

20.
Selectable markers of bacterial origin such as the neomycin phosphotransferase type II gene, which can confer kanamycin resistance to transgenic plants, represent an invaluable tool for plant engineering. However, since all currently used antibiotic-resistance genes are of bacterial origin, there have been concerns about horizontal gene transfer from transgenic plants back to bacteria, which may result in antibiotic resistance. Here we characterize a plant gene, Atwbc19, the gene that encodes an Arabidopsis thaliana ATP binding cassette (ABC) transporter and confers antibiotic resistance to transgenic plants. The mechanism of resistance is novel, and the levels of resistance achieved are comparable to those attained through expression of bacterial antibiotic-resistance genes in transgenic tobacco using the CaMV 35S promoter. Because ABC transporters are endogenous to plants, the use of Atwbc19 as a selectable marker in transgenic plants may provide a practical alternative to current bacterial marker genes in terms of the risk for horizontal transfer of resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号