首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and dynamics of tissue cultures depend strongly on the physical and chemical properties of the underlying substrate. Inspired by previous advances in the context of inorganic materials, the use of patterned culture surfaces has been proposed as an effective way to induce space-dependent properties in cell tissues. However, cells move and diffuse, and the transduction of external stimuli to biological signals is not instantaneous. Here, we show that the fidelity of patterns to demix tissue cells depends on the relation between the diffusion (τD) and adaptation (τ) times. Numerical results for the self-propelled Voronoi model reveal that the fidelity decreases with τ/τD, a result that is reproduced by a continuum reaction-diffusion model. Based on recent experimental results for single cells, we derive a minimal length scale for the patterns in the substrate that depends on τ/τD and can be much larger than the cell size.  相似文献   

2.
Thompson DS 《Annals of botany》2008,101(2):203-211
BACKGROUND: The biomechanical behaviour of plant cells depends upon the material properties of their cell walls and, in many cases, it is necessary that these properties are quite specific. Additionally, physiological regulation may require that target cells responding to hormonal signals or environmental factors are able to modulate these characteristics. ARGUMENT: This paper uses a rheological analysis of creep of elongating sunflower (Helianthus annuus) sunflower hypocotyls to demonstrate that the mechanical behaviour of plant cell walls is complex and involves multiple layered processes that can be distinguished from one another by the time-scale over which they lead to a change in tissue dimensions, their sensitivity to pH and temperature, and their responses to changes in spatial arrangement of the cell wall brought about by treatment with high M(r) PEG. Furthermore, it appears possible to regulate individual rheological processes, with limited effect on others, in order to modulate growth without affecting tissue structural integrity. It is proposed that control of the water content of the cell wall and therefore the space between cell wall polymers may be one mechanism by which differential regulation of cell wall biomechanical properties is achieved. This hypothesis is supported by evidence showing that enzyme extracts from growing tissues can cause swelling in cell wall fragments in suspension. IMPLICATIONS: The physiological implications of this complexity are then considered for growing tissues, stomatal guard cells and abscission cells. It is noted that, in each circumstance, a different combination of mechanical properties is required and that differential regulation of properties affecting behaviour over different time-scales is often necessary.  相似文献   

3.
Agent-based simulation is a powerful method for investigating the complex interplay of the processes occurring in a lymph node during an adaptive immune response. We have previously established an agent-based modeling framework for the interactions between T cells and dendritic cells within the paracortex of lymph nodes. This model simulates in three dimensions the “random-walk” T cell motility observed in vivo, so that cells interact in space and time as they process signals and commit to action such as proliferation. On-lattice treatment of cell motility allows large numbers of densely packed cells to be simulated, so that the low frequency of T cells capable of responding to a single antigen can be dealt with realistically. In this paper we build on this model by incorporating new numerical methods to address the crucial processes of T cell ingress and egress, and chemotaxis, within the lymph node. These methods enable simulation of the dramatic expansion and contraction of the T cell population in the lymph node paracortex during an immune response. They also provide a novel probabilistic method to simulate chemotaxis that will be generally useful in simulating other biological processes in which chemotaxis is an important feature.  相似文献   

4.
Removal of apoptotic cells is essential for maintenance of tissue homeostasis. Chemotactic cues termed “find-me” signals attract phagocytes toward apoptotic cells, which selectively expose the anionic phospholipid phosphatidylserine (PS) and other “eat-me” signals to distinguish healthy from apoptotic cells for phagocytosis. Blebs released by apoptotic cells can deliver find-me signals; however, the mechanism is poorly understood. Here, we demonstrate that apoptotic blebs generated in vivo from mouse thymus attract phagocytes using endogenous chemokines bound to the bleb surface. We show that chemokine binding to apoptotic cells is mediated by PS and that high affinity binding of PS and other anionic phospholipids is a general property of many but not all chemokines. Chemokines are positively charged proteins that also bind to anionic glycosaminoglycans (GAGs) on cell surfaces for presentation to leukocyte G protein–coupled receptors (GPCRs). We found that apoptotic cells down-regulate GAGs as they up-regulate PS on the cell surface and that PS-bound chemokines, unlike GAG-bound chemokines, are able to directly activate chemokine receptors. Thus, we conclude that PS-bound chemokines may serve as find-me signals on apoptotic vesicles acting at cognate chemokine receptors on leukocytes.

Chemokines attract leukocytes by activating chemokine receptors, but many also bind anionic phospholipids. This study shows that phosphatidylserine-binding chemokines endow extracellular apoptotic bodies with “find-me” signals that trigger phagocyte migration for potential apoptotic cell clearance.  相似文献   

5.
Cell migration is an essential process throughout the life of vertebrates, beginning during embryonic development and continuing throughout adulthood. Stem cells have an inherent ability to migrate, that is as important as their capacity for self‐renewal and differentiation, enabling them to maintain tissue homoeostasis and mediate repair and regeneration. Adult stem cells reside in specific tissue niches, where they remain in a quiescent state until called upon and activated by tissue environmental signals. Cell migration is a highly regulated process that involves the integration of intrinsic signals from the niche and extrinsic factors. Studies using three‐dimensional in vitro models have revealed the astonishing plasticity of cells in terms of the migration modes employed in response to changes in the microenvironment. These same properties can, however, be subverted during the development of some pathologies such as cancer. In this review, we describe the response of adult stem cells to migratory stimuli and the mechanisms by which they sense and transduce intracellular signals involved in migratory processes. Understanding the molecular events underlying migration may help develop therapeutic strategies for regenerative medicine and to treat diseases with a cell migration component.  相似文献   

6.
Adipose stem and precursor cells (ASPCs) give rise to adipocytes and determine the composition and plasticity of adipose tissue. Recently, several studies have demonstrated that ASPCs partition into at least three distinct cell subpopulations, including the enigmatic CD142+ cells. An outstanding challenge is to functionally characterise this population, as discrepant properties, from adipogenic to non‐ and anti‐adipogenic, have been reported for these cells. To resolve these phenotypic ambiguities, we characterised mammalian subcutaneous CD142+ ASPCs across various experimental conditions, demonstrating that CD142+ ASPCs exhibit high molecular and phenotypic robustness. Specifically, we find these cells to be firmly non‐ and anti‐adipogenic both in vitro and in vivo, with their inhibitory signals also impacting adipogenic human cells. However, these CD142+ ASPC‐specific properties exhibit surprising temporal phenotypic alterations, and emerge only in an age‐dependent manner. Finally, using multi‐omic and functional assays, we show that the inhibitory nature of these adipogenesis‐regulatory CD142+ ASPCs (Aregs) is driven by specifically expressed secretory factors that cooperate with the retinoic acid signalling pathway to transform the adipogenic state of CD142 ASPCs into a non‐adipogenic, Areg‐like state.  相似文献   

7.
In C. elegans, a simple pattern develops within a row of epidermal precursor cells, V1-V6. One cell, V5, gives rise to a neuroblast called the postdeirid neuroblast, while the other V cells produce epidermal cells instead. Here we describe experiments suggesting that in order for V5 to produce the postdeirid it must be in close or direct contact with neighboring V cells. Signaling between V cells is required for the formation of the neuroblast; however, which of the V cells can make a postdeirid is not determined by these signals but rather by the action of the homeotic lin-22 and pal-1 genes. These genes prevent V cells in specific body regions from responding to intercellular signals and producing postdeirids. This is a clear example of cell signals playing a permissive rather than an instructive role in neuroblast induction.  相似文献   

8.
Leukocytes navigate through complex chemoattractant arrays, and in so doing, they must migrate from one chemoattractant source to another. By evaluating directional persistence and chemotaxis during neutrophil migration under agarose, we show that cells migrating away from a local chemoattractant, against a gradient, display true chemotaxis to distant agonists, often behaving as if the local gradient were without effect. We describe two interrelated properties of migrating cells that allow this to occur. First, migrating leukocytes can integrate competing chemoattractant signals, responding as if to the vector sum of the orienting signals present. Second, migrating cells display memory of their recent environment: cells' perception of the relative strength of orienting signals is influenced by their history, so that cells prioritize newly arising or newly encountered attractants. We propose that this cellular memory, by promoting sequential chemotaxis to one attractant after another, is in fact responsible for the integration of competitive orienting signals over time, and allows combinations of chemoattractants to guide leukocytes in a step-by-step fashion to their destinations within tissues.  相似文献   

9.
Breast cancer is the second leading cause of cancer deaths in the United States. At present, the etiology of breast cancer is unknown; however the possibility of a distinct cell of origin, i.e. a cancer stem cell, is a heavily investigated area of research. Influencing signals from the tissue niche are known to affect stem cells. Literature has shown that cancer cells lose their tumorigenic potential and display ‘normal’ behavior when placed into ‘normal’ ontogenic environments. Therefore, it may be the case that the tissue microenvironment is able to generate signals to redirect cancer cell fate. Previously, we showed that pluripotent human embryonal carcinoma cells could be redirected by the regenerating mammary gland microenvironment to contribute epithelial progeny for ‘normal’ gland development in-vivo. Here, we show that that human metastatic, non-metastatic, and metastasis-suppressed breast cancer cells proliferate and contribute to normal mammary gland development in-vivo without tumor formation. Immunochemistry for human-specific mitochondria, keratin 8 and 14, as well as human-specific milk proteins (alpha-lactalbumin, impregnated transplant hosts) confirmed the presence of human cell progeny. Features consistent with normal mammary gland development as seen in intact hosts (duct, lumen formation, development of secretory acini) were recapitulated in both primary and secondary outgrowths from chimeric implants. These results suggest the dominance of the tissue microenvironment over cancer cell fate. This work demonstrates that cultured human breast cancer cells (metastatic and non-metastatic) respond developmentally to signals generated by the mouse mammary gland microenvironment during gland regeneration in-vivo.  相似文献   

10.
An expanding body of evidence demonstrates that cells undergoing apoptosis send out a selection of molecular navigational signals including proteins, lipids and nucleotides that serve to recruit phagocytes to the dying targets, which are subsequently engulfed and removed. This homeostatic process is essentially non-phlogistic, contrasting markedly with the acute inflammatory responses elicited in phagocytes by damaging or infectious agents. The “professional” scavengers of apoptotic cells are mononuclear phagocytes—the macrophages—and sites of high-rate apoptosis are clearly characterized by macrophages associated with the apoptotic cells. By contrast, members of the other class of professional phagocytes—the granulocytes—are not recruited to sites of apoptosis as a direct consequence of the cell-death program. Indeed, recent work indicates that apoptotic cells release a mixture of migratory cues to leukocytes in order to selectively attract mononuclear phagocytes but not granulocytes through functional balancing of positive and negative signals. Here we discuss these molecular mechanisms that not only serve as migratory cues but also may activate responding phagocytes to engulf apoptotic cells effectively. Finally, we speculate upon new therapeutic opportunities these mechanisms offer for a range of pathological conditions, including inflammatory disorders and cancer.Key words: apoptosis, migration, chemotaxis, macrophage, monocyte, granulocyte, phagocytosis, lactoferrin, ATP, fractalkine  相似文献   

11.
Ephrins and Eph receptors are involved in the establishment of vertebrate tissue boundaries. The complexity of the system is puzzling, however in many instances, tissues express multiple ephrins and Ephs on both sides of the boundary, a situation that should in principle cause repulsion between cells within each tissue. Although co-expression of ephrins and Eph receptors is widespread in embryonic tissues, neurons, and cancer cells, it is still unresolved how the respective signals are integrated into a coherent output. We present a simple explanation for the confinement of repulsion to the tissue interface: Using the dorsal ectoderm–mesoderm boundary of the Xenopus embryo as a model, we identify selective functional interactions between ephrin–Eph pairs that are expressed in partial complementary patterns. The combined repulsive signals add up to be strongest across the boundary, where they reach sufficient intensity to trigger cell detachments. The process can be largely explained using a simple model based exclusively on relative ephrin and Eph concentrations and binding affinities. We generalize these findings for the ventral ectoderm–mesoderm boundary and the notochord boundary, both of which appear to function on the same principles. These results provide a paradigm for how developmental systems may integrate multiple cues to generate discrete local outcomes.  相似文献   

12.
Differential movement of individual cells within tissues is an important yet poorly understood process in biological development. Here we present a computational study of cell sorting caused by a combination of cell adhesion and chemotaxis, where we assume that all cells respond equally to the chemotactic signal. To capture in our model mesoscopic properties of biological cells, such as their size and deformability, we use the Cellular Potts Model, a multiscale, cell-based Monte Carlo model. We demonstrate a rich array of cell-sorting phenomena, which depend on a combination of mescoscopic cell properties and tissue level constraints. Under the conditions studied, cell sorting is a fast process, which scales linearly with tissue size. We demonstrate the occurrence of “absolute negative mobility”, which means that cells may move in the direction opposite to the applied force (here chemotaxis). Moreover, during the sorting, cells may even reverse the direction of motion. Another interesting phenomenon is “minority sorting”, where the direction of movement does not depend on cell type, but on the frequency of the cell type in the tissue. A special case is the cAMP-wave-driven chemotaxis of Dictyostelium cells, which generates pressure waves that guide the sorting. The mechanisms we describe can easily be overlooked in studies of differential cell movement, hence certain experimental observations may be misinterpreted.  相似文献   

13.
Skeletal muscle is a post-mitotic tissue maintained by repair and regeneration through a population of stem cell-like satellite cells. Following muscle injury, satellite cell proliferation is mediated by local signals ensuring sufficient progeny for tissue repair. Age–related changes in satellite cells as well as to the local and systemic environment potentially impact on the capacity of satellite cells to generate sufficient progeny in an ageing organism resulting in diminished regeneration. ‘Rejuvenation’ of satellite cell progeny and regenerative capacity by environmental stimuli effectors suggest that a subset of age-dependent satellite cell changes may be reversible. Epigenetic regulation of satellite stem cells that include DNA methylation and histone modifications which regulate gene expression are potential mechanisms for such reversible changes and have been shown to control organismal longevity. The area of health and ageing that is likely to benefit soonest from advances in the biology of adult stem cells is the emerging field of regenerative medicine. Further studies are needed to elucidate the mechanisms by which epigenetic modifications regulate satellite stem cell function and will require an increased understanding of stem-cell biology, the environment of the aged tissue and the interaction between the two.  相似文献   

14.

Background

Tissue organization during embryonic development and wound healing depends on the ability of cells on the one hand to exchange adhesive bonds during active rearrangement and on the other to become fixed in place as tissue homeostasis is reached. Cells achieve these contradictory tasks by regulating either cell-cell adhesive bonds, mediated by cadherins, or cell-extracellular matrix (ECM) connections, regulated by integrins. Integrin α5β1 and soluble fibronectin (sFN) are key players in cell-ECM force generation and in ECM polymerization. Here, we explore the interplay between integrin α5β1 and sFN and its influence on tissue mechanical properties and cell sorting behavior.

Methodology/Principal Findings

We generated a series of cell lines varying in α5β1 receptor density. We then systematically explored the effects of different sFN concentrations on aggregate biomechanical properties using tissue surface tensiometry. We found previously unreported complex behaviors including the observation that interactions between fibronectin and integrin α5β1 generates biphasic tissue cohesion profiles. Specifically, we show that at constant sFn concentration, aggregate cohesion increases linearly as α5β1 receptor density is increased from low to moderate levels, producing a transition from viscoelastic-liquid to pseudo viscoelastic-solid behavior. However, further increase in receptor density causes an abrupt drop in tissue cohesion and a transition back to viscoelastic-liquid properties. We propose that this may be due to depletion of sFn below a critical value in the aggregate microenvironment at high α5β1 levels. We also show that differential expression of α5β1 integrin can promote phase-separation between cells.

Conclusions/Significance

The interplay between α5-integrin and sFn contributes significantly to tissue cohesion and, depending on their level of expression, can mediate a shift from liquid to elastic behavior. This interplay represents a tunable level of control between integrins and the ECM that can influence tissue cohesion and other mechanical properties, which may translate to the specification of tissue structure and function. These studies provide insights into important biological processes such as embryonic development, wound healing, and for tissue engineering applications.  相似文献   

15.
CD8(+) T cells respond to IL-2 produced both endogenously and by CD4(+) Th during an antiviral response. However, IL-2R signals can potentially promote CD8(+) T cell death as well as proliferation, making it unclear whether IL-2R signals provide a predominantly positive or negative effect upon CD8(+) T cell responses to viral infection. To more precisely define the direct role of IL-2R signaling on CD8(+) T cells during the response to a virus, we examined the effect of delivering augmented IL-2R signals selectively to CD8(+) T cells responding to lymphocytic choriomeningitis virus infection. Although naive CD8(+) T cells are competent to produce IL-2, CD8(+) T cells lose this capacity upon differentiation into effector CD8(+) T cells. However, effector CD8(+) T cells do retain the capacity to produce GM-CSF upon Ag stimulation. Thus, to deliver enhanced autocrine IL-2R signals to CD8(+) T cells, we established a transgenic mouse strain expressing a chimeric GM-CSF/IL-2R (GMIL2R). As GM-CSF production is Ag dependent, the GMIL2R delivers an augmented IL-2R signal exclusively to CD8(+) T cells responding to Ag. Following lymphocytic choriomeningitis virus infection, GMIL2R transgenic mice exhibited an increase in both the peak CD8(+) T cell response achieved and the size of the resulting memory pool established. Upon secondary viral challenge, the GMIL2R also enhanced the proliferative response of memory CD8(+) T cells. Thus, our findings indicate that IL-2 delivery to responding CD8(+) T cells is a limiting factor in both the acute and memory antiviral responses.  相似文献   

16.
Optogenetics has been harnessed to shed new mechanistic light on current and future therapeutic strategies. This has been to date achieved by the regulation of ion flow and electrical signals in neuronal cells and neural circuits that are known to be affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and are implicated in degenerative disorders, has never been demonstrated in an animal model of disease. Here, we reengineered the human and Drosophila melanogaster REarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9 flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson’s disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRET via the PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to inspire novel strategies towards a spatio-temporal regulation of tissue repair.  相似文献   

17.
Virus–host interactions form an essential part of every aspect of life, and this review is aimed at looking at the balance between the host and persistent viruses with a focus on the immune system. The virus–host interaction is like a cat-and-mouse game and viruses have developed ingenious mechanisms to manipulate cellular pathways, most notably the major histocompatibility (MHC) class I pathway, to reside within infected cell while evading detection and destruction by the immune system. However, some of the signals sensing and responding to viral infection are derived from viruses and the fact that certain viruses can prevent the infection of others, highlights a more complex coexistence between the host and the viral microbiota. Viral immune evasion strategies also illustrate that processes whereby cells detect and present non-self genetic material to the immune system are interlinked with other cellular pathways. Immune evasion is a target also for cancer cells and a more detailed look at the interfaces between viral factors and components of the MHC class I peptide-loading complex indicates that these interfaces are also targets for cancer mutations. In terms of the immune checkpoint, however, viral and cancer strategies appear different.  相似文献   

18.
19.
Neurons arise in the adult forebrain subventricular zone (SVZ) from Type B neural stem cells (NSCs), raising considerable interest in the molecules that maintain this life-long neurogenic niche. Type B cells are anchored by specialized apical endfeet in the center of a pinwheel of ependymal cells. Here we show that the apical endfeet express high levels of the adhesion and signaling molecule vascular cell adhesion molecule-1 (VCAM1). Disruption of VCAM1 in vivo causes loss of the pinwheels, disrupted SVZ cytoarchitecture, proliferation and depletion of the normally quiescent apical Type B cells, and increased neurogenesis in the olfactory bulb, demonstrating a key role in niche structure and function. We show that VCAM1 signals via NOX2 production of reactive oxygen species (ROS) to maintain NSCs. VCAM1 on Type B cells is increased by IL-1β, demonstrating that it can act as an environmental sensor, responding to chemokines involved in tissue repair.  相似文献   

20.
Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun–NH2–kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号