首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intermediate filament cytoskeleton of cultured bovine kidney epithelial cells and human HeLa cells changes dramatically during mitosis. The bundles of cytokeratin and vimentin filaments progressively unravel into protofilament-like threads of 2–4 nm diameter, and intermediate filament protein is included in numerous, variously sized (2–15 μm) spheroidal aggregates containing densely stained granular particles of 5–16 nm diameter. We describe these mitotic bodies in intact cells and in isolated cytoskeletons. In metaphase to anaphase of normal mitosis and after colcemid arrest of mitotic stages, many cells contain all their detectable cytokeratin and vimentin material in the form of such spheroidal aggregate bodies, whereas in other mitotic cells such bodies occur simultaneously with bundles of residual intermediate filaments. In telophase, the extended normal arrays of intermediate filament bundles are gradually reestablished. We find that vimentin and cytokeratins can be organized in structures other than intermediate filaments. Thus, at least during mitosis of some cell types, factors occur that promote unraveling of intermediate filaments into protofilament-like threads and organization of intermediate filament proteins into distinct granules that form large aggregate bodies. Some cells, at least certain epithelial and carcinoma cells, may contain factors effective in structural modulation and reorganization of intermediate filaments.  相似文献   

2.
After selective extraction and purification, plant keratin intermediate filaments were reassembled in vitro. Scanning tunneling microscope (STM) and transmission electron microscope (TEM) micrographs showed that acidic keratins and basic keratins can assemble into dimers and further into 10 nm filaments in vitro. In higher magnification images, it can be seen that fully assembled plant keratin intermediate filaments consist of several thinner filaments of 3 nm in diameter, which indicates the formation of protofilaments in the assembly processes. One of the explicit features of plant keratin intermediate filaments is a 24—25 nm periodic structural repeat alone the axis of beth the 10 nm filaments and protofilaments. The periodic repeat is one of the fundamental characteristic of all intermediate filaments, and demonstrates the half staggered arrangement of keratin molecules within the filaments.  相似文献   

3.
After selective extraction and purification, plant keratin intermediate filaments were reassembledin vitro. Scanning tunneling microscope (STM) and transmission electron microscope (TEM) micrographs showed that acidic keratins and basic keratins can assemble into dimers and further into 10 nm filamentsin vitro. In higher mcation images, it can be seen that fully assembled plant keratin intermediate filaments consist of several thinner filaments of 3 nm in diameter, which indicates the formation of protofilaments in the assembly processes. One of the explicit features of plant keratin intermediate filaments is a 24–25 nm periodic structural repeat alone the axis of both the 10 nm filaments and protofilarnents. The periodic repeat is one of the fundamental characteristic of all intermediate filaments, and demonstrates the half staggered arrangement of keratin molecules within the filaments.  相似文献   

4.
After selective extraction and purification, plant keratin intermediate filaments were reassembledin vitro. Scanning tunneling microscope (STM) and transmission electron microscope (TEM) micrographs showed that acidic keratins and basic keratins can assemble into dimers and further into 10 nm filamentsin vitro. In higher mcation images, it can be seen that fully assembled plant keratin intermediate filaments consist of several thinner filaments of 3 nm in diameter, which indicates the formation of protofilaments in the assembly processes. One of the explicit features of plant keratin intermediate filaments is a 24–25 nm periodic structural repeat alone the axis of both the 10 nm filaments and protofilarnents. The periodic repeat is one of the fundamental characteristic of all intermediate filaments, and demonstrates the half staggered arrangement of keratin molecules within the filaments. Project supported by the National Natural Science Foundation of China (Grant No. 39370352) and the Doctor Foundation of Minishy of Education of China.  相似文献   

5.
Along with microtubules and microfilaments, intermediate filaments are a major component of the eukaryotic cytoskeleton and play a key role in cell mechanics. In cells, keratin intermediate filaments form networks of bundles that are sparser in structure and have lower connectivity than, for example, actin networks. Because of this, bending and buckling play an important role in these networks. Buckling events, which occur due to compressive intracellular forces and cross-talk between the keratin network and other cytoskeletal components, are measured here in situ. By applying a mechanical model for the bundled filaments, we can access the mechanical properties of both the keratin bundles themselves and the surrounding cytosol. Bundling is characterized by a coupling parameter that describes the strength of the linkage between the individual filaments within a bundle. Our findings suggest that coupling between the filaments is mostly complete, although it becomes weaker for thicker bundles, with some relative movement allowed.  相似文献   

6.
The four major keratins of normal human epidermis (molecular mass 50, 56.5, 58, and 65-67 kD) can be subdivided on the basis of charge into two subfamilies (acidic 50-kD and 56.5-kD keratins vs. relatively basic 58-kD and 65-67-kD keratins) or subdivided on the basis of co-expression into two "pairs" (50-kD/58-kD keratin pair synthesized by basal cells vs. 56.5-kD/65-67-kD keratin pair expressed in suprabasal cells). Acidic and basic subfamilies were separated by ion exchange chromatography in 8.5 M urea and tested for their ability to reassemble into 10-nm filaments in vitro. The two keratins in either subfamily did not reassemble into 10-nm filaments unless combined with members of the other subfamily. While electron microscopy of acidic and basic keratins equilibrated in 4.5 M urea showed that keratins within each subfamily formed distinct oligomeric structures, possibly representing precursors in filament assembly, chemical cross-linking followed by gel analysis revealed dimers and larger oligomers only when subfamilies were combined. In addition, among the four major keratins, the acidic 50-kD and basic 58-kD keratins showed preferential association even in 8.5 M urea, enabling us to isolate a 50-kD/58-kD keratin complex by gel filtration. This isolated 50-kD/58-kD keratin pair readily formed 10-nm filaments in vitro. These results demonstrate that in tissues containing multiple keratins, two keratins are sufficient for filament assembly, but one keratin from each subfamily is required. More importantly, these data provide the first evidence for the structural significance of specific co-expressed acidic/basic keratin pairs in the formation of epithelial 10-nm filaments.  相似文献   

7.
The organization of intermediate filaments in cultured epithelial cells was rapidly and radically affected by intracellularly injected monoclonal antikeratin filament antibodies. Different antibodies had different effects, ranging from an apparent splaying apart of keratin filament bundles to the complete disruption of the keratin filament network. Antibodies were detectable within cells for more than four days after injection. The antibody-induced disruption of keratin filament organization had no light-microscopically discernible effect on microfilament or microtubule organization, cellular morphology, mitosis, the integrity of epithelial sheets, mitotic rate, or cellular reintegration after mitosis. Cell-to-cell adhesion junctions survived keratin filament disruption. However, antibody injected into a keratinocyte-derived cell line, rich in desmosomes, brought on a superfasciculation of keratin filament bundles, which appeared to pull desmosomal junctions together, suggesting that desmosomes can move in the plane of the plasma membrane and may only be 'fixed' by their anchoring to the cytoplasmic filament network. Our observations suggest that keratin filaments are not involved in the establishment or maintenance of cell shape in cultured cells.  相似文献   

8.
We report on application of the highly sensitive and specific immunogold labeling method for ultrastructural investigation of keratin intermediate filament antigens in human epidermal cell suspensions. Triton X-100 pretreated cells proved accessible to the colloidal gold conjugate, thus enabling keratin filament bundles to be labeled. Anti-keratin KL1 and KL2 monoclonal antibodies were raised in mice after immunization with either human stratum corneum-isolated keratins or keratins extracted from human epidermal cells suspensions, respectively. Immunoelectron microscopy confirmed immunofluorescence and immunoperoxidase results of epidermal keratinocyte staining, and revealed two different antibody reactivity patterns: KL2 reacted with keratin filaments in keratinocytes of all epidermal layers, whereas antigen to KL1 was detected only on keratin of the suprabasal layers, not on the basal keratinocyte tonofilaments. The monoclonal antibody-recognized epitopes were specific for the keratin filaments. Vimentin-rich cells (melanocytes) were not stained in the same epidermal cell suspensions. Additionally, two distinct ultrastructural patterns of keratin filament epitope labeling were observed. KL1 and KL2 monoclonal antibodies react with two different antigenic determinants, depending on the stage of keratinocyte differentiation, and may therefore be used for immunohistochemical studies of various keratin-containing cells in normal and pathologic conditions.  相似文献   

9.
We have determined the mass-per-length (MPL) and the width of unstained freeze-dried reconstituted human epidermal keratin filaments by scanning transmission electron microscopy (STEM). Filaments were reassembled from keratins extracted from four different sources: cultured human epidermal cells (CHEC), human callus (CAL), and the living layers (LL) and stratum corneum (SC) of normal human epidermis. MPL histograms of all four keratin filament types could be fitted by a superposition of two or three Gaussians, with their respective major peaks located between 17 and 20 kDa/nm. We interpreted the multiple MPL peaks to represent different polymorphic forms of the reconstituted filaments. The number of subunits per filament cross section calculated from MPL peak positions, average subunit molecular weight, and an axial repeat of the subunits within the filament of 46.5 nm revealed an average difference between polymorphic variants of 7.5 +/- 0.9 subunits. These data suggest that reconstituted human epidermal keratin filaments are made of two to four 8-stranded "protofibrils" (i.e., made of two laterally aggregated 4-stranded protofilaments), in agreement with earlier observations. The average widths of unstained freeze-dried keratin filaments were larger than those of negatively stained filaments: 12.6 nm (9.6 nm) for CHEC, 12.3 nm (9.7 nm) for CAL, 11.6 nm (8.3 nm) for LL, and 11.3 nm (7.9 nm) for SC keratin filaments, with the values in brackets corresponding to negatively stained samples. Assuming the MPL to be proportional to the square of the filament width, there is a good correlation between the MPL and width measurements both for filaments within a given type as well as among those reconstituted from different types of keratin extracts.  相似文献   

10.
韩志阳  陈英  张博  翟中和 《动物学报》1999,45(2):218-224
激活的非洲爪蟾卵提取物温育过程中,直径200nm的膜泡附着在一种直径10nm纤维上,形成“珠链”结构。用透射电镜整装制样技术观察了温育中“珠链”结构的形成过程,发现10nm纤维可抗Triton抽提,免疫荧光和蛋白免疫印迹试验表明10nm纤维可能是由56kD的碱性角蛋白与42kD的酸性角蛋白构成。向提取物中加入碱性角蛋白抗体AE3则可抑制环状片层的形成,而核膜的组装也受到很大影响。这些结果显示角蛋白  相似文献   

11.
A method is described for forming two-dimensional (2-D) paracrystalline complexes of F-actin and bundling/gelation proteins on positively charged lipid monolayers. These arrays facilitate detailed structural studies of protein interactions with F-actin by eliminating superposition effects present in 3-D bundles. Bundles of F-actin have been produced using the glycolytic enzymes aldolase and glyceraldehyde-3-phosphate dehydrogenase, the cytoskeletal protein erythrocyte adducin as well as smooth muscle alpha-actinin from chicken gizzard. All of the 2-D bundles formed contain F-actin with a 13/6 helical structure. F-actin-aldolase bundles have an interfilament spacing of 12.6 nm and a superlattice arrangement of actin filaments that can be explained by expression of a local twofold axis in the neighborhood of the aldolase. Well ordered F-actin-alpha-actinin 2-D bundles have an interfilament spacing of 36 nm and contain crosslinks 33 nm in length angled approximately 25-35 degrees to the filament axis. Images and optical diffraction patterns of these bundles suggest that they consist of parallel, unipolar arrays of actin filaments. This observation is consistent with an actin crosslinking function at adhesion plaques where actin filaments are bound to the cell membrane with uniform polarity.  相似文献   

12.
By indirect immunofluorescence microscopy and electron microscopy, we studied the behavior of intermediate filaments during mitosis in three human epithelial cell lines, derived from normal epidermis (PcaSE-1, from a cancer patient), stratified epithelium (CNE, from nasopharyngeal carcinoma) and simple epithelium (SPC-A-1 from lung adenocarcinoma) respectively. CNE cells and SPC-A-1 cells express two different intermediate filament systems; keratin filaments and vimentin filaments, but PcaSE-1 cells only express keratin filaments. The keratin filament system in PcaSE-1 cells remained intact and encircled the developing mitotic spindle as the cells entered mitosis. In contrast, in CNE cells and SPC-A-1 cells, keratin filaments appeared to disassemble into amorphous cytoplasmic bodies during mitosis. However, their vimentin filaments remained morphologically intact throughout mitosis. We propose; (1) The disassembly of keratin filaments in mitotic epithelial cells is more or less associated with the degree of their cell malignancy rather than with the abundance of keratin filaments in interphase. (2) Intermediate filaments may be involved in the positioning and/or centering of the spindle during mitosis. (3) The possible function of vimentin filament system in CNE cells is positioning and orientation of chromosomes.  相似文献   

13.
本文用间接免疫荧光法和电镜术观察了分别来自人表皮(PcaSE-1)、复层上皮(CNE)和单层上皮(SPC-A-1)的3个上皮细胞系的细胞在有丝分裂过程中中等纤维的行为。结果表明,CNE细胞和SPC-A-1细胞表达两种不同类型的中等纤维系统:角蛋白纤维和波形纤维,而PcaSE-1细胞仅表达角蛋白纤维。当细胞进入有丝分裂时,PcaSE-1细胞的角蛋白纤维维持完整的形态且将有丝分裂纺锤体围绕在细胞中央。相反,在CNE细胞和SPC-A-1细胞中,在细胞有丝分裂时,角蛋白纤维解聚成无定形的胞质小体,然而它们的波形纤维始终保持完整的形态。我们认为(1)在分裂上皮细胞中,角蛋白纤维的解聚与细胞的恶性程度有关,而与间期上皮细胞中是否含有丰富的角蛋白纤维无明显关系。(2)在上皮细胞有丝分裂时,中等纤维可能参于纺锤体的定位和趋中。(3)在分裂CNE细胞中,波形纤维的可能功能是染色体的定位和定向。  相似文献   

14.
Summary In vitro assembly and morphological characteristics of purified 58 kDa, 52 kDa, 50 kDa, and 45 kDa polypeptides in the leaves and the cotyledons of the cabbage (Brassica pekinensis Rupt.) were investigated by electron microscopy and scanning tunneling microscopy. The three or four purified intermediate filament (IF) polypeptides can spontaneously assemble into intermediate filaments in vitro with a 23–24 nm axial repeat, which indicates that keratin IFs in higher plant cells have the same molecular arrangement as in animal cells. STM images suggest that the plant keratin filaments display a pronounced structural polymorphism, which can be composed of 3 nm, 4.5 nm, or 6 nm wide keratin protofilaments.Abbreviation IF intermediate filament - STM scanning tunneling microscopy - SDS sodium dodecyl sulfate - BCIP 5-bromo-4-chloro-3-indolyl phosphate-toluidine - NBC p-nitroblue tetrazolium chloride - PMSF phenylmethyl sulfonylfluoride - HOPG high oriented pyrolytic graphite  相似文献   

15.
The structural and biochemical changes of cytoskeletal components of retinal pigmented epithelial cells were studied during the development of chicken eyes. When the cytoskeletal components of the pigmented epithelial cells from various stages of development were examined by SDS PAGE, actin contents in the cells markedly increased between the 15-d-old and hatching stages. Immunofluorescence microscopy showed that chicken pigmented epithelial cells have two types of actin bundles. One is the circumferential bundle associated with the zonula adherens region as previously reported (Owaribe, K., and H. Masuda, 1982, J. Cell Biol., 95:310-315). The other is the paracrystalline bundle forming the core of the apical projections. The increase in actin contents after the 15-d-old stage is accompanied by the formation and elongation of core filaments of apical projections in the cells. During this period the apical projections extend into extracellular space among outer and inner segments of photoreceptor cells. Accompanying this change is an elongation of the paracrystalline bundles of actin filaments in the core of the projection. By electron microscopy, the bundles decorated with muscle heavy meromyosin showed unidirectional polarity, and had transverse striations with approximately 12-nm intervals, as determined by optical diffraction of electron micrographs. Since the shape of these bundles was not altered in the presence or absence of Ca2+, they seemed not to have villin-like proteins. Unlike the circumferential bundles, the paracrystalline bundles did not contract when exposed to Mg-ATP. These observations indicate that the paracrystalline bundles are structurally and functionally different from the circumferential actin bundles.  相似文献   

16.
The intermediate filament composition of differentiated vertebrate cells provides a stable phenotype which appears to be specifically regulated in each cell type. In order to analyse the regulation of intermediate filament expression we have constructed human somatic cell hybrids from the fusion of the HeLa-derived cell line HEB7A and a normal human diploid fibroblast, GM2291. These parental cells differ with respect to the presence or absence of keratin intermediate filaments. Isolation of independently arising clones produced two classes of hybrids. One class expresses keratin in a stable manner and the other class lacks keratin altogether. Indirect immunofluorescence of hybrid cells using antikeratin antiserum demonstrates that there are variations in the intensity and organization of cytoskeletal keratin staining. SDS-PAGE comparisons of cell extracts from these hybrids indicates that there are quantitative differences in the relative amounts of individual keratin polypeptides as well. These clonal variations have allowed us to begin assessing the consequences of genetic interactions between cell types that are normally capable of closely regulating different subsets of intermediate filament genes.  相似文献   

17.
Lessons from disorders of epidermal differentiation-associated keratins   总被引:2,自引:0,他引:2  
A number of diseases have been associated with mutations in genes encoding keratin intermediate filaments. Several of these disorders have skin manifestations, in which histological changes highlight the role of various different keratins in epidermal differentiation. For example, mutations in either K1 or K10 (the major keratin pair expressed in differentiated keratinocytes) usually lead to clumped keratin filaments and cytolysis. Furthermore, the precise nature of the mutation has direct implications for disease phenotype. Specifically, mutations in the H1 and alpha-helical rod domains of K1/K10 result in bullous congenital ichthyosiform erythroderma, underscoring the critical role for this keratin filament domain in maintaining cellular integrity. However, a lysine to isoleucine substitution in the V1 domain of K1 underlies a form of palmoplantar keratoderma, which has different cell biological implications. Keratins are cross-linked into the cornified cell envelopes through this particular lysine residue and the consequences of the mutation lead to changes in keratin-desmosome association and cornified cell morphology, suggesting a role for this keratin subdomain in cornified cell envelope formation. Recently, to extend genotype-phenotype correlation, a frameshift mutation in the V2 region of the K1 tail domain was identified in ichthyosis hystrix (Curth-Macklin type), in which keratin filaments show a characteristic shell-like structure and fail to form proper bundles. In this case, the association of desmosomes with loricrin was also altered, implicating this keratin domain in organizing the intracellular distribution of loricrin during cornification. Collectively, these mutations in K1/K10 provide a fascinating insight into both normal and abnormal processes of epidermal differentiation.  相似文献   

18.
T E Kreis  B Geiger  E Schmid  J L Jorcano  W W Franke 《Cell》1983,32(4):1125-1137
Poly(A)+ RNA isolated from bovine muzzle epidermis was microinjected into nonepithelial cells containing only intermediate-sized filaments of the vimentin type. In recipient cells keratin polypeptides are synthesized and assemble into intermediate-sized filaments at multiple dispersed sites. We describe the time course and the pattern of de novo assembly of keratin filaments within living cells. These filaments were indistinguishable, by immunofluorescence and immunoelectron microscopic criteria, from keratin filament arrays present in true epithelial cells. The presence of extended keratin fibril meshworks in these injected cells is compatible with cell growth and mitosis. Double immunolabeling revealed that newly assembled keratin was not codistributed with microfilament bundles, microtubules or vimentin filaments. We suggest that assembly mechanisms exist which in vivo sort out newly synthesized cytokeratin polypeptides from vimentin.  相似文献   

19.
Nuclear lamins are involved in most nuclear activities and are essential for retaining the mechano-elastic properties of the nucleus. They are nuclear intermediate filament (IF) proteins forming a distinct meshwork-like layer adhering to the inner nuclear membrane, called the nuclear lamina. Here, we present for the first time, the three-dimensional supramolecular organization of lamin 10 nm filaments and paracrystalline fibres. We show that Caenorhabditis elegans nuclear lamin forms 10 nm IF-like filaments, which are distinct from their cytoplasmic counterparts. The IF-like lamin filaments are composed of three and four tetrameric protofilaments, each of which contains two partially staggered anti-parallel head-to-tail polymers. The beaded appearance of the lamin filaments stems from paired globular tail domains, which are spaced regularly, alternating between 21 nm and 27 nm. A mutation in an evolutionarily conserved residue that causes Hutchison-Gilford progeria syndrome in humans alters the supramolecular structure of the lamin filaments. On the basis of our structural analysis, we propose an assembly pathway that yields the observed 10 nm IF-like lamin filaments and paracrystalline fibres. These results serve also as a platform for understanding the effect of laminopathic mutations on lamin supramolecular organization.  相似文献   

20.
The behaviour of keratin filaments during cell division was examined in a wide range of epithelial lines from several species. Almost half of them show keratin disruption as described previously: by immunofluorescence, filaments are replaced during mitosis by a 'speckled' pattern of discrete cytoplasmic dots. In the electron microscope these ' speckles ' are seen as granules around the cell periphery, just below the actin cortical mesh, with no detectable 10 nm filament structure inside them and no keratin filament bundles in the rest of the cytoplasm. A time course of the filament reorganization was constructed from double immunofluorescence data; filaments are disrupted in prophase, and the filament network is intact again by cytokinesis. The phenomenon is restricted to cells rich in keratin filaments, such as keratinocytes; it is unrelated to the co-existence of vimentin in many of these cells, and vimentin is generally maintained as filaments while the keratin is restructured. Some resistance to the effect may be conferred by an extended cycle time. Filament reorganization takes place within minutes, so that a reversible mechanism seems more likely than one involving de novo protein synthesis, at this metabolically quiet stage of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号