首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N C Danbolt  G Pines  B I Kanner 《Biochemistry》1990,29(28):6734-6740
The sodium- and potassium-coupled L-glutamate transporter from rat brain has been purified to near homogeneity by reconstitution of transport as an assay, assuming that inactivated and active transporters cochromatograph. The purification steps involve lectin chromatography of the membrane proteins solubilized with 3-[(3-chloramidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), fractionation on hydroxylapatite, and ion-exchange chromatography. The specific activity is increased 30-fold. The actual purification is higher since 3-5-fold inactivation occurs during the purification. The efficiency of reconstitution was about 20%. The properties of the pure transporter are fully preserved. They include ion dependence, electrogenicity, affinity, substrate specificity, and stereospecificity. Sodium dodecyl sulfate-polyacrylamide electrophoresis revealed one main band with an apparent molecular mass of around 80 kDa and a few minor bands. Comparison of polypeptide composition with L-glutamate transport activity throughout the fractionation procedure reveals that only the 80-kDa band can be correlated with activity. The GABA transporter, which has the same apparent molecular mass (Radian et al., 1986), is separated from it during the last two purification steps. Immunoblot experiments reveal that the antibodies against the GABA transporter only reacted with fractions exhibiting GABA transport activity and not with those containing the glutamate transporter. We conclude that the 80-kDa band represents the functional sodium- and potassium-coupled L-glutamate transporter.  相似文献   

2.
Using the reconstitution conditions developed recently (Radian, R., and Kanner, B. I. (1985) J. Biol. Chem. 260, 11859-11865) we have now purified the sodium- and chloride-coupled gamma-aminobutyric acid transporter from rat brain to apparent homogeneity. A partially purified transporter preparation was passed over wheat germ agglutinin-Sepharose 6MB and non-bound proteins were washed away. The transport activity, as expressed upon reconstitution of the protein into liposomes, was eluted by a solution containing Triton X-100 and N-acetylglucosamine. The specific transport activity was increased almost 400-fold over that of the crude extract. Taking into account an approximately 2.5-fold inactivation during the lectin column chromatography, the actual purification is about 1000-fold. Sodium dodecyl sulfate-polyacrylamide electrophoresis of the active fractions revealed one band of 80 kDa and small amounts of a band which ran at an apparent molecular mass of 160 kDa. The ratio between the two could be experimentally changed such as, for instance, by lyophilization. Polyclonal antibodies were prepared against the 80-kDa band which also cross-reacted with the 160-kDa band, indicating that the latter apparently represents a dimer form of the first. Using Protein A-Sepharose Cl-4B and the antibody against the 80-kDa band, we were able to quantitatively immunoprecipitate the potential gamma-aminobutyric acid transport activity from a crude transporter preparation. The pure transporter preparation exhibited the same features of the transporter in synaptic plasma membrane vesicles, namely dependence on sodium and chloride, electrogeneity, affinity, and efflux and exchange properties. We conclude that the 80-kDa band represents the gamma-aminobutyric acid transporter.  相似文献   

3.
The sodium- and chloride-coupled gamma-aminobutyric acid transporter from rat brain has been highly purified. Synaptic plasma membranes from rat brain were extracted with cholate in the presence of 10% ammonium sulfate. The soluble extract was incorporated into liposomes consisting of asolectin and crude brain lipids. Brain lipids markedly enhanced the transport activity. The resulting proteoliposomes catalyzed sodium- and chloride-coupled gamma-aminobutyric acid transport which, in the presence of internal potassium, was greatly (up to 20-fold) stimulated by valinomycin. Using this transport of the reconstituted system as an assay, the transporter was purified by the following steps. The cholate extract was fractionated by ammonium sulfate. The activity was not precipitated by 50% but could be precipitated by 70% ammonium sulfate. The cholate and ammonium sulfate were removed on a Sephadex G-50 column. Subsequently, the transporter was partially purified on DEAE-cellulose in a mixture of Triton X-100 and octyl glucoside. The active fractions were chromatographed on a hydroxylapatite column in the presence of Triton X-100. Although the increase in specific activity was only up to 100-fold, this was due to partial inactivation. The actual purification was at least 1000-fold. The purified transporter exhibited the same features of the synaptic plasma membrane vesicles, namely dependence on sodium and chloride, electrogenicity, and a similar affinity. The sodium dodecyl sulfate gel pattern indicated that a major protein ran as a 24-kDa band. This band may represent the gamma-aminobutyric acid transporter.  相似文献   

4.
B I Kanner  S Keynan  R Radian 《Biochemistry》1989,28(9):3722-3728
The sodium- and chloride-coupled gamma-aminobutyric transporter, an 80-kDa glycoprotein, has been subjected to deglycosylation and limited proteolysis. The treatment of the 80-kDa band with endoglycosidase F results in its disappearance and reveals the presence of a polypeptide with an apparent molecular mass of about 60 kDa, which is devoid of 125I-labeled wheat germ agglutinin binding activity but is nevertheless recognized by the antibodies against the 80-kDa band. Upon limited proteolysis with papain or Pronase, the 80-kDa band was degraded to one with an apparent molecular mass of about 60 kDa. This polypeptide still contains the 125I-labeled wheat germ agglutinin binding activity but is not recognized by the antibody. The effect of proteolysis on function was examined. The transporter was purified by use of all steps except that for the lectin chromatography [Radian, R., Bendahan, A., & Kanner, B.I. (1986) J. Biol. Chem. 261, 15437-15441]. After papain treatment and lectin chromatography, gamma-aminobutyric transport activity was eluted with N-acetylglucosamine. The characteristics of transport were the same as those of the pure transporter, but the preparation contained instead of the 80-kDa polypeptide two fragments of about 66 and 60 kDa. The ability of the anti-80-kDa antibody to recognize these fragments was relatively low. The observations indicate that the transporter contains exposed domains which are not important for function.  相似文献   

5.
A putative receptor protein for a hepta-beta-glucoside phytoalexin elicitor was identified by photoaffinity labeling of detergent-solubilized proteins from soybean root membranes. Incubation of partially purified beta-glucan-binding proteins with a photolabile 125I-labeled 2-(4-azidophenyl)ethyl-amino conjugate of the heptaglucoside elicitor, followed by irradiation with ultraviolet light (366 nm) resulted in specific labeling of a 70-kDa band in SDS/PAGE. Half-maximal inhibition of the 125I-labeling of the protein band by underivatized hepta-beta-glucoside was achieved by 15 nM heptaglucoside. Analysis of the affinity of radiolabel incorporation into the protein by ligand-saturation experiments, gave an apparent Kd value of 3 nM, in full agreement with the results from radioligand-binding studies. Good correlation was also observed between the amount of radiolabel incorporated into the protein and the binding activity of the fractions obtained at different stages in the purification of heptaglucoside-binding activity. Photoaffinity labeling of proteins purified by glucan-affinity chromatography showed the 70-kDa band as the main component along with weak 125I-labeling of a 100-kDa band. The 70-kDa band was also the major protein visualized by silver staining after SDS/PAGE of this fraction, suggesting that it is the predominant form of the heptaglucoside-binding proteins in detergent-solubilized soybean membranes.  相似文献   

6.
Antibodies were raised against synthetic peptides corresponding to several regions of the rat brain gamma-aminobutyric acid (GABA) transporter. According to our model, this glycoprotein has 12 transmembrane alpha-helices with both amino and carboxyl termini located in the cytoplasm. The antibodies recognized the intact transporter on Western blots. Upon papain treatment, a reconstitutively active transporter can be isolated upon lectin chromatography (Kanner, B. I., Keynan, S., and Radian, R. (1989) Biochemistry 28, 3722-3728). The papainized transporter runs on sodium dodecyl sulfate-polyacrylamide gels as a broad band with an apparent molecular mass between about 58 and 68 kDa as compared to 80 kDa for the untreated transporter. The transporter fragment was recognized by all the antibodies, except for that raised against the amino terminus. Pronase cleaves the transporter to a relatively sharp 60-kDa band, which reacts with the antibodies against the internal loops but not with either the amino- or the carboxyl-terminal. This pronase-treated transporter, upon isolation by lectin chromatography, was reconstituted. It exhibits full GABA transport activity. This activity exhibits the same features as the intact system including an absolute dependence on sodium and chloride as well as electrogenicity. We conclude that the amino- and carboxyl-terminal parts of the transporter, possibly including transmembrane alpha-helices 1, 2, and 12, are not required for the transport function.  相似文献   

7.
Mitochondria isolated from pea leaves possess a glycine transporter that is capable of moving glycine from the cytosol into the matrix, the site of glycine decar?ylase. The carrier was inhibited by mersalyl, p-chloromercuribenzoate, and the glycine analogues, glycine hydroxamate and aminoacetonitrile. Glycine uptake was dependent on the transmembrane pH gradient and was inhibited by uncouplers and electron transport inhibitors. Glycine transport was not, however, inhibited by the glycine decar?ylase inhibitor, arsenite. This transporter is responsible for the movement of glycine into the mitochondria and provides an important step in photorespiration.  相似文献   

8.
The high-affinity glycine transport in neurons and glial cells is the primary means for inactivating synaptic glycine. Two different glycine transporter genes, Glyt-1 and Glyt-2, have been cloned. Glyt-1 has been reported to occur in the retina, but there is no evidence for expression of the Glyt-2 transporter. We have pharmacologically characterized glycine transport in the frog retina. 3H-Glycine uptake in the retina was insensitive to modulation by phorbol esters or changes in cAMP levels, and was partially inhibited by sarcosine. Differential sensitivity of glycine transport to sarcosine was exhibited by synaptosomal fractions from the inner and outer plexiform layers of the frog retina. The Na+ Hill coefficient of glycine uptake was 2.0, as has been reported for Glyt-2. In addition, amoxapine, a specific inhibitor of the Glyt-2a isoform, reduced by 60% glycine uptake by P2 synaptosomal fraction. Our results indicate the presence of different glycine transporter isoforms in the frog retina, acting mainly through the classical inhibitory glycine system.  相似文献   

9.
The (Na+ + Cl-)-coupled glycine transporter has been solubilized from rat spinal cord with 2% cholate and purified 6-7-fold using Wheat Germ Agglutinin-Sepharose 4B. Transport activity - as determined upon reconstitution of the fraction into liposomes - was retained on the column and eluted by N-acetylglucosamine. When the glycoprotein fraction was depleted of the N-acetylglucosamine and applied to a second round of lectin-chromatography, the glycine transport activity was retained and again could be eluted by the sugar. The transporter activity reconstituted from the glycoprotein fraction retains the same features displayed in the synaptic plasma membrane vesicles, namely an absolute dependence on sodium and chloride, electrogenicity and efflux and exchange properties. These observations indicate that the (Na+ + Cl-)-coupled glycine transporter is a glycoprotein.  相似文献   

10.
The sodium- and potassium-coupled L-glutamate transporter from rat brain has been solubilized with cholate and 10-20-fold purified using Wheat Germ Agglutinin-Sepharose 4B. Transport activity--as determined upon reconstitution of the fraction into liposomes--was retained on the column and eluted by N-acetylglucosamine. When the glycoprotein fraction was depleted of the N-acetylglucosamine and applied to a second round of lectin-chromatography, the L-glutamate transport activity was retained and again could be eluted by the sugar. The transporter activity reconstituted from the glycoprotein fraction exhibited the same features as that in synaptic plasma membranes, including electrogenicity, an absolute dependence on external sodium and internal potassium, affinity and stereospecificity. Furthermore, efflux and exchange properties of the reconstituted preparation were also unchanged by the solubilisation and lectin-chromatography. These observations indicate that the sodium- and potassium-coupled L-glutamate transporter is a glycoprotein and is predominantly reconstituted in the 'right-side-out' conformation.  相似文献   

11.
In this study, we describe the effects of altered bilayer cholesterol content on reconstituted, protein-mediated sugar transport. The system used was the human erythrocyte sugar transporter (band 4.5) reconstituted into the bilayers of large unilamellar vesicles. Vesicle preparations were formed from synthetic lecithins whose bilayer cholesterol content ranged from 0 to 50 mol %. Transport was measured by microturbidimetric analysis over the temperature range of 0-65 degrees C while bilayer physical state was characterized by differential scanning calorimetry. Reconstituted transport activity was irreversibly lost between 62 and 65 degrees C. The Km for reconstituted transport was found to increase only slightly with increasing temperature and was not systematically affected by bilayer cholesterol content. The most striking observation of this study is that over certain critical cholesterol concentrations, as little as a 2.5% change in bilayer cholesterol can result in as much as a 100-fold change in Vmax per reconstituted protein. Our findings run counter to the view that increasing bilayer cholesterol content monotonically transforms a membrane into a state of "intermediate fluidity". Abrupt, cholesterol-induced bilayer reorganizations occurring at 15-20 and 30 mol % bilayer cholesterol are markedly reflected in altered sugar transport rates. Increasing the cholesterol content of crystalline distearoyllecithin bilayers inhibits the activity of the reconstituted transporter. It is apparent from these studies that bilayer "fluidity" is neither the sole nor a major determinant of the Indeed, we find the effect of cholesterol on transport activity is independent of its ability to fluidize membranes.  相似文献   

12.
The major nucleoside transporter of the human T leukemia cell line CEM has been identified by photoaffinity labeling with the transport inhibitor nitrobenzylmercaptopurine riboside (NBMPR). The photolabeled protein migrates on SDS-PAGE gels as a broad band with a mean apparent molecular weight (75,000 +/- 3000) significantly higher than that reported for the nucleoside transporter in human erythrocytes (55,000) (Young et al. (1983) J. Biol. Chem. 258, 2202-2208). However, after treatment with endoglycosidase F to remove carbohydrate, the NBMPR-binding protein in CEM cells migrates as a sharp peak with an apparent molecular weight (47,000 +/- 3000) identical to that reported for the deglycosylated protein in human erythrocytes (Kwong et al. (1986) Biochem. J. 240, 349-356). It therefore appears that the difference in the apparent molecular weight of the NBMPR-sensitive nucleoside transporter between the CEM cell line and human erythrocytes is a result of differences in glycosylation. The NBMPR-binding protein from CEM cells has been solubilized with 1% octyl glucoside and reconstituted into phospholipid vesicles by a freeze-thaw sonication technique. Optimal reconstitution of uridine transport activity was achieved using a sonication interval of 5 to 10 s and lipid to protein ratios of 60:1 or greater. Under these conditions transport activity in the reconstituted vesicles was proportional to the protein concentration and was inhibited by NBMPR. Omission of lipid or protein, or substitution of a protein extract prepared from a nucleoside transport deficient mutant of the CEM cell line resulted in vesicles with no uridine transport activity. The initial rate of uridine transport, in the vesicles prepared with CEM protein, was saturable with a Km of 103 +/- 11 microM and was inhibited by adenosine, thymidine and cytidine. The Km for uridine and the potency of the other nucleosides as inhibitors of uridine transport (adenosine greater than thymidine greater than cytidine) were similar to intact cells. Thus, although the nucleoside transporter of CEM cells has a higher molecular weight than the human erythrocyte transporter, it exhibits typical NBMPR-sensitive nucleoside transport activity both in the intact cell and when reconstituted into phospholipid vesicles.  相似文献   

13.
A pharmacological characterization of glycine transport was performed in the rat retina at different postnatal ages. The uptake of 3H-glycine increased during the first 2 weeks of postnatal age, reaching maximum values at 12 days; then it decreased sharply to the adult values. We found a Na+ -dependent and high-affinity transport system with a Km of 100 microM. The Na+ Hill coefficient for glycine uptake was 1.76 +/- 0.07. Although glycine uptake was insensitive to staurosporine and phorbol ester, it was reduced 40-50% by sarcosine and ALX5407. Besides, amoxapine inhibited glycine uptake by 40 and 70% in adult and immature retina, respectively. These results suggest that the Glyt1 transporter was concentrated in the nerve terminals. In addition to the presence of Glyt1 in the retina, our results provided evidence of the occurrence of Glyt2 and/or another isoform of glycine transporter, which might have had a role in the retina development.  相似文献   

14.
Reconstitution studies of the human erythrocyte nucleoside transporter   总被引:3,自引:0,他引:3  
The human erythrocyte nucleoside transporter has been identified as a band 4.5 polypeptide (Mr 45,000-66,000) on the basis of reversible binding and photoaffinity labeling experiments with the nucleoside transport inhibitor, nitrobenzylthioinosine (NBMPR). In the present study, the NBMPR-binding protein was extracted from protein-depleted human erythrocyte "ghosts" with Triton X-100 and reconstituted into soybean phospholipid vesicles by a freeze-thaw-sonication procedure. The reconstituted proteoliposomes exhibited nitrobenzylthioguanosine (NBTGR)-sensitive [14C]uridine transport. A partially purified preparation of the NBMPR-binding protein, consisting largely of band 4.5 polypeptides, was also shown to have nucleoside transport activity. This band 4.5 preparation exhibited a 10-fold increase in uridine transport activity and a 7-fold increase in NBMPR-binding activity relative to the crude membrane extract. Uridine transport by the reconstituted band 4.5 preparation was saturable (apparent Km = 0.21 mM; Vmax = 9 nmol/mg of protein/5 s) and was inhibited by dipyridamole, dilazep, adenosine, and inosine. The vesicles reconstituted with the band 4.5 preparation also exhibited stereospecific glucose transport which was inhibited by cytochalasin B, but unaffected by NBTGR. In contrast, cytochalasin B was a poor inhibitor of NBTGR-sensitive uridine transport. These experiments implicate band 4.5 polypeptides in both nucleoside and sugar permeation.  相似文献   

15.
Glucose transport activity was reconstituted into liposomes by the freeze-thaw-sonication procedure from unextracted Saccharomyces cerevisiae membranes and preformed phospholipid liposomes. Fluorescence-dequenching measurements with octadecylrhodamine B chloride (R18)-labeled membranes showed that the yeast membrane lipids are diluted by the liposome lipids after the freeze-thaw-sonication procedure. At lipid-to-protein ratios greater than 75:1, vesicles with single transporters were formed. Reconstituted specific activity was increased at least twofold if the liposomes contained 50 mol% cholesterol. A further increase in specific activity, from 3- to 10-fold, was achieved by fractionation of the membranes on a Renografin gradient before reconstitution. Examination of the fractions from the Renografin gradient by sodium dodecyl sulfate-gel electrophoresis showed a parallel enrichment of glucose transport activity and a number of proteins including one with an apparent Mr of ca. 60,000, which might be the glucose transporter. Finally, preliminary kinetic analysis of glucose transport activity in vesicles reconstituted at a high lipid-to-protein ratio gave a Vmax of ca. 2.8 mumol/mg of protein per min at 23 degrees C and a Km of ca. 8 mM. The latter value corresponds to the kinase-independent, low-affinity component of glucose transport observed in wild-type cells.  相似文献   

16.
Aromatase cytochrome P-450 (P-450AROM) was partially purified from human placental microsomes by hydrophobic affinity chromatography using Phenyl-Sepharose and ion-exchange chromatography on DEAE-cellulose. The resulting preparation had a specific activity of 2 nmol/mg protein with respect to cytochrome P-450 content and displayed a type I difference spectrum upon addition of the substrate androstenedione. When the cytochrome P-450-enriched fractions were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and stained with Coomassie blue, there was an enrichment of two proteins having apparent molecular weights of 50,000 and 55,000. The bands containing these proteins were removed from unstained polyacrylamide gels and injected separately or together into three rabbits. An aliquot of the serum or an immunoglobulin (IgG) fraction prepared from the serum of the rabbit injected with the 55-kDa band or with both the 50- and 55-kDa bands inhibited aromatase activity of human placental microsomes by 80%; this IgG had no effect on 17 alpha-hydroxylase or 21-hydroxylase activities of human fetal adrenal microsomes. In contrast, the serum of the rabbit injected with the 50-kDa band had little capacity to inhibit placental aromatase activity. By immunoblot analysis, it was found that the IgG from the serum of the rabbit immunized with the 55-kDa protein bound specifically to a protein of 55 kDa in human placental microsomes. Monoclonal antibodies were prepared from a hybridoma cell line derived from the spleen cells of mice immunized against the 55-kDa protein. The monoclonal IgG was covalently linked to a Sepharose 4B column and was used for immunoaffinity chromatography of cytochrome P-450AROM. The finding that cytochrome P-450 and the 55-kDa protein were selectively retained by the affinity column and eluted with NaCl (2 M) and glycine (0.2 M, pH 3.0) and that this fraction contained aromatase activity upon reconstitution with purified NADPH-cytochrome P-450 reductase and phospholipid, is indicative that the 55-kDa protein is indeed cytochrome P-450AROM. These findings are also indicative that both the monoclonal and polyclonal IgGs are specific for human cytochrome P-450AROM.  相似文献   

17.
The JAR human placental choriocarcinoma cell line transports serotonin, accumulating the monoamine inside the cell against a concentration gradient. The transport is energized by an NaCl gradient. Tricyclic (imipramine and desipramine) and non-tricyclic (paroxetine and fluoxetine) antidepressants inhibit the transporter markedly, but reserpine and 5-hydroxytryptophan do not. Ouabain, gramicidin, and nigericin, which reduce or abolish the transmembrane Na+ gradient, and phloridzin, which interferes with glucose transport into the cells, inhibit the transport. Preincubation of the cells with glucose-free medium also causes similar inhibition. The activity of the serotonin transporter in this cell line is stimulated in response to overnight (16-h) incubation with increasing concentrations of cholera toxin (0.1-1,000 ng/ml). Under these conditions the stimulation is maximal at 10 ng/ml cholera toxin (3.1 +/- 0.2-fold). Cholera toxin increases the cAMP content of these cells by several hundredfold within 2 h. Isobutylmethylxanthine (100 microM), dibutyryl cAMP (100 microM), and forskolin (100 microM) mimic the action of cholera toxin, eliciting a 1.6-2.5-fold stimulation of the serotonin transporter activity. The stimulatory effect of cholera toxin is antagonized significantly by simultaneous incubation of the cells with 50 microM N-(2-aminoethyl)-5-isoquinolinesulfonamide, a protein kinase inhibitor. The effect of cholera toxin on serotonin transport is specific because, under similar conditions, cholera toxin inhibits 3-O-methyl-D-glucose transport and does not influence taurine transport in this cell line. There is also no significant change in the protein content of the cells after cholera toxin treatment. Kinetic analysis reveals that cholera toxin causes an increase in the maximal velocity (7.89 +/- 0.67 to 17.55 +/- 1.06 pmol/mg of protein/5 min) and a decrease in the Michaelis-Menten constant (0.52 +/- 0.09 to 0.29 +/- 0.04 microM). These data show that the JAR human placental choriocarcinoma cell line expresses a high affinity serotonin transporter that is sensitive to inhibition by antidepressants and that the activity of the transporter is under cAMP-dependent regulation.  相似文献   

18.
R M Kappes  B Kempf    E Bremer 《Journal of bacteriology》1996,178(17):5071-5079
The accumulation of the osmoprotectant glycine betaine from exogenous sources provides a high degree of osmotic tolerance to Bacillus subtilis. We have identified, through functional complementation of an Escherichia coli mutant defective in glycine betaine uptake, a new glycine betaine transport system from B. subtilis. The DNA sequence of a 2,310-bp segment of the cloned region revealed a single gene (opuD) whose product (OpuD) was essential for glycine betaine uptake and osmoprotection in E. coli. The opuD gene encodes a hydrophobic 56.13-kDa protein (512 amino acid residues). OpuD shows a significant degree of sequence identity to the choline transporter BetT and the carnitine transporter CaiT from E. coli and a BetT-like protein from Haemophilus influenzae. These membrane proteins form a family of transporters involved in the uptake of trimethylammonium compounds. The OpuD-mediated glycine betaine transport activity in B. subtilis is controlled by the environmental osmolarity. High osmolarity stimulates de novo synthesis of OpuD and activates preexisting OpuD proteins to achieve maximal glycine betaine uptake activity. An opuD mutant was constructed by marker replacement, and the OpuD-mediated glycine betaine uptake activity was compared with that of the previously identified multicomponent OpuA and OpuC (ProU) glycine betaine uptake systems. In addition, a set of mutants was constructed, each of which synthesized only one of the three glycine betaine uptake systems. These mutants were used to determine the kinetic parameters for glycine betaine transport through OpuA, OpuC, and OpuD. Each of these uptake systems shows high substrate affinity, with Km values in the low micromolar range, which should allow B. subtilis to efficiently acquire the osmoprotectant from the environment. The systems differed in their contribution to the overall glycine betaine accumulation and osmoprotection. A triple opuA, opuC, and opuD mutant strain was isolated, and it showed no glycine betaine uptake activity, demonstrating that three transport systems for this osmoprotectant operate in B. subtilis.  相似文献   

19.
We recently developed a procedure for immunoisolating insulin-responsive membrane vesicles that contain the muscle/fat glucose transporter isoform, GLUT 4, from rat adipocytes. Utilizing this methodology, we are analyzing the components of these vesicles to gain an understanding of how they are regulated by insulin. In this report we identify a phosphatidylinositol (PtdIns) 4-kinase as a constituent of glucose transporter vesicles (GTVs). This kinase has the biochemical and immunological properties of a type II PtdIns 4-kinase as classified by Endeman et al. (Endemann, G., Dunn, S. N., and Cantley, L. C. (1987) Biochemistry 26, 6845-6852). A monoclonal antibody, 4C5G, which specifically inhibits the type II PtdIns 4-kinase, suppresses 80% of the GTV-PtdIns 4-kinase activity. In addition, the GTVs-PtdIns 4-kinase is maximally activated by the nonionic detergent Triton X-100, at a concentration of 0.2% and is inhibited by adenosine with a Ki of approximately 20-30 microM. We find that the GTVs do not contain any PtdIns4P 5-kinase or diacylglycerol kinase activities, whereas these activities were detected in the plasma membrane. An analysis of the subcellular distribution of PtdIns 4-kinase activity in the rat adipocyte shows that there are similar levels of activity in GTVs, plasma membranes, and the high and low density microsomal fractions, whereas the mitochondria- and nuclei-containing fractions have less than 5% of the activity seen in other fractions. Low density microsomes were subfractionated by sucrose density gradient centrifugation and PtdIns 4-kinase activity was found to correlate closely with the distribution of membrane protein, indicating that the activity is equally distributed throughout this heterogenous population of membranes. PtdIns 4-kinase activity measured in GTVs, plasma membranes, and low density microsomes, was not affected by prior treatment of the intact adipocytes with 35 nM insulin. We postulate that while the GTV-PtdIns 4-kinase is not regulated by insulin, it may play a role in defining the fusogenic properties necessary to mediate membrane movement between the GTVs, plasma membranes, and microsomes.  相似文献   

20.
Detergent-free discontinuous sucrose density gradient centrifugation was used to resolve low- and high-density membrane fractions from Xenopus laevis oocytes. Compared to high-density membrane, low-density oocyte membrane is enriched two-fold in cholesterol and highly enriched in ganglioside GM1. Protein immunoblotting of membrane fractions from whole cells with polyclonal anti-human caveolin antibody detected multiple bands, including a distinctive triad with apparent molecular weights of 21, 33, and 48 kDa. To more clearly determine which of these caveolin-like protein(s) is associated with the oocyte plasma membrane, microdissection was used to separate external membrane (cortical preparations containing plasma membrane) from intracellular membrane. Cortical membrane preparations displayed a single 21-kDa caveolin-like protein in low-density membrane. Internal oocyte membrane displayed the higher molecular weight bands of 33 and 48 kDa and a lesser amount of the 21-kDa protein in low-density membrane fractions. Monoclonal anti-human Ras antibody detected a single 23-kDa immunoblot band that is enriched an average of eight-fold in low-density membrane fractions prepared from whole cells. This is the first report of caveolin-associated, low-density membrane in amphibian oocytes, and is consistent with a role for caveolin and caveolae-like microdomains in oocyte signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号