首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. After a brief account of my early education, studyat the University of Wien, and preliminary experiments on hybridizationconducted at the Augustinian Monastery in Brünn, Austria,I state the reasons for selecting certain features of the ediblepea, Pisum sativum, for extensive investigation of their inheritance.After eight years I reported my results to the Brünn Societyfor the Study of Natural Science, and they were published inthe following year (1866) in the Proceedings of the Society.I discovered two basic principles of inheritance: the law ofsegregation and the law of independent assortment of hypotheticalunits of heredity that I called Elemente. I conclude with someremarks on the possible relation of my work to the evolutionof organic form and on my disappointment that my studies donot seem to be known or understood, and that because of my administrativeduties at themonastery, now being the Abbot, I have no timefor further investigations.  相似文献   

2.
John Gurdon has made major contributions to developmental biology in addition to his Nobel prize winning work on nuclear reprogramming. With the frog, Xenopus, as a vertebrate model, his work on mesoderm induction led him to identify a community effect required for tissue differentiation after progenitor cells have entered a specific mesodermal programme. It is in the context of this biologically important concept, with myogenesis as an example, that we have had most scientific exchanges. Here I trace my contacts with him, from an interest in histone regulation of gene expression and reprogramming, to myogenic determination factors as markers of early mesodermal induction, to the role of the community effect in the spatiotemporal control of skeletal muscle formation. I also recount some personal anecdotes from encounters in Oxford, Paris and Cambridge, to illustrate my appreciation of him as a scientist and a colleague.  相似文献   

3.
I am not big on celebrations, nor do I accept many invitations to receive awards. There is much work to be done, and the reward is in the doing. I learned this lesson early from my parents, Martha and Robert Guyden. However, I am humbled that anyone would even mention my name in association with E. E. Just. I, like he, was born into a segregated America, and somehow we both found biology. I think Just's life story instigates a discussion on diversity in science, as well it should. However, after reading Tyrone Hayes' (2010 E. E. Just Award recipient) essay from last year, "Diversifying the Biological Sciences: Past Efforts and Future Challenges" (Hayes, 2010), I have little to add on the subject. His words gave voice to my thoughts. That being said, I would like to use these pages to describe my journey into the "Cell" and the people who "hoed the row ahead of me."  相似文献   

4.
My review focuses on the impact that Black Feminist Thought has had on my personal and professional life. I weave together lessons I have learned from Patricia Hill Collins with reflections on my own lived experience – from my family of origin to college experiences to my work as the founding director of the Collegium of Black Women Philosophers.  相似文献   

5.
The approach I have elected in this retrospective of how I became a student of evo-devo is both biographical and historical, a case study along the lines of Waddington's The Evolution of an Evolutionist ('75), although in my case it is the Evolution of an Evo-devoist. What were the major events that brought me to developmental biology and from there to evo-devo? They were, of course, specific to my generation, to the state of knowledge at the time, and to my own particular circumstances. Although exposed to evolution and embryology as an undergraduate in the 1960s, my PhD and post-PhD research programme lay within developmental biology until the early 1970s. An important formative influence on my studies as an undergraduate was the work of Conrad Hal Waddington (1905-1975), whose writings made me aware of genetic assimilation and gave me an epigenetic approach to my developmental studies. The switch to evo-devo (and my discovery of the existence of the neural crest), I owe to an ASZ (now SICB) symposium held in 1973.  相似文献   

6.
A major theme in my career has been photophosphorylation; especially contributions to the early work on chemiosmosis, and later involvement in CF1 activation and function. A second theme has been interest in chloroplast biogenesis, with work ranging from translation in chloroplasts to discovery of the enzyme which may contribute to strand exchange, homologous recombination and DNA repair in chloroplasts. Throughout, I try to point out the major contributions of graduate students and postdocs, and help from friends and colleagues. Without them I would have had no career at all.  相似文献   

7.
Photosynthesis Research - After briefly describing my early collaborative work at the University of Allahabad, that had laid the foundation of my research life, I present here some of our research...  相似文献   

8.
It is an honour to have this opportunity write an article in recognition of the immense contributions of Bruce Ransom to the field of glial research. For me (BAM) personally there are many highlights both as a colleague and a friend that come to mind when I reflect on the many years that I have known Bruce. My own entry into the glial field was inspired by the early work by Ransom and his lab showing the sensitivity of astrocytes to neuronal activity. During my PhD and postdoctoral research I read these early papers and was inspired to ask the question when I first set up my independent lab in 1983: what if astrocytes also express some of the multitude of ion channels or transmitter receptors that were beginning to be described in neurons? Could they modify neuronal excitability during seizures or behaviour? As it turned out this was not only true but glial-neuronal interactions continues to be a growing and exciting field that I am still working in. I first met Bruce at the 1984 Society for Neuroscience meeting in Anaheim at my poster describing voltage gated calcium channels in astrocytes in cell culture. That was the start of a great friendship and years of discussions and collaborations. This review describes recent work from my lab led by Hyun Beom Choi that followed and was inspired by the groundbreaking studies by Bruce on electrophysiological and pH recordings from astrocytes and on glycogen mobilization in astrocytes to protect white matter axons.  相似文献   

9.
No one maps out their tenure as a postdoc anticipating a life-altering tragedy. But mental health crises of all kinds affect academic trainees and staff at similar or higher levels than the general public. While the mental health resources available to trainees are often set by healthcare providers, all levels of university leadership can work to remove material and immaterial obstacles that render such resources out of reach. I describe how access to care via telemedicine helped me following a loss in my family.

Over the years, my siblings and close friends have sought mental health resources like therapy, psychoanalysis, or psychiatry, so I loosely understood their benefits. When I was a PhD student I went to therapy briefly, but my counselor and I decided I could do without it. Since I started my postdoc, stress manifested in some new ways but I managed it well with my usual coping strategies and support. That changed one bright December morning in 2019 while I was preparing for our weekly lab meeting. My phone rang indicating a call from my father, whom I had spoken to the night before to celebrate the news of my nephew’s birth. But the voice on the phone was that of a family friend, telling me that my father had died overnight of an undiagnosed heart condition. In the moment I couldn’t even understand what was happening, saying over and over, “but I talked to him last night.” Soon I was sitting at home, dazed, on a string of tearful calls with family and friends.I often read words like “lifted” or “buoyed” to describe the stabilizing support of a network of loved ones. In my case this network was tethering me to reality over the next few weeks, preventing me from spinning off the Earth’s surface in a storm of sorrow and anxiety. The trauma also took a strange physical form and convinced me that I was suffering from a cardiac condition of my own. I had a panic attack during which I went to urgent care convinced my own heart was about to give way. Night after night these physical symptoms prevented me from sleeping.Graced by many loving connections with my siblings, my boyfriend, and close friends, I was actually weathering the process as well as one can. My PI gave me a firm directive to take as much time off as I needed. These were two key elements early in my healing process: a supportive network and an understanding advisor. The third was getting professional help, which I soon realized I needed. Even if I felt OK one day, I didn’t trust that I’d be OK the next. My grief formed too thick and too broad a landscape for me to navigate without help.Deciding to seek mental health resources and realizing that one needs them are often the hardest parts. Connecting with those resources once the decision has been made should be as simple as possible. I called a mental health number, and a triage counselor noted my therapy needs and verified my insurance. She asked what times and locations I preferred and then searched for an open appointment with a therapist who accepted my insurance. She also informed me that my coverage allowed 12 sessions with no copay, which was a pleasant surprise. The therapist who agreed to see me had very few openings, in part because this all happened in December—the holidays are especially busy for therapists. I was aiming for a time after normal working hours, or in the morning before I would head to lab, but none of those times were available. I didn’t like interrupting my workday to trot off to therapy. Taking a long break once a week meant I couldn’t run experiments or mentor my student during that time. But I made the sacrifice because my highest priority was getting the help I needed. There was no shortcut. Prioritizing mental health over lab work is tough for researchers, and I would never have accepted that kind of weekly disruption before my dad’s passing. But as a wonderful mentor of mine used to say, “You are the most valuable reagent in the lab.” She wasn’t describing mental health at the time, but the phrase now provided a guiding principle for my recovery. My first few sessions were on Tuesdays at 2:00 pm.The afternoon break turned out to be less disruptive than I had feared, because I had recently come back to the lab and was working short days. Had she asked, I would have told my PI where I was on Tuesday afternoons, but she wasn’t normally abreast of my daily schedule, so I didn’t seek her approval beforehand. Coordinating experiments with lab members thankfully wasn’t an issue because my work was largely independent; I simply let lab members know that I’d would be out of the lab for a bit on those days.The weeks went by, and the benefits of therapy accrued, helping me in large and small ways as I grieved. In mid-March of 2020, my therapist followed public health guidelines and asked all her clients to transition to remote sessions. While this was easy and sensible, it was still a little disappointing. Therapists are professional empaths, among many other things, and doing away with the physical presence and exchange with her was a blow. Yet therapy via video felt less odd simply because most of my social interactions were now virtual. Thankfully I didn’t have to move out of state for the lockdown (as did many students living in campus housing), which meant I could stay with the same therapist without any insurance complications.A few weeks into lockdown, I asked my therapist whether we had reached the limit of my 12 sessions without a copay. She replied with the good news that my insurance provider had waived all copays for mental health costs due to the pandemic. By that time therapy had generated a platform and an outlet to explore areas of my grief beyond the trauma of my father’s passing. Without needing to weigh the costs and benefits of this resource, I saw my therapist for another 4 months. I slowly took stock of my upbringing in an unconventional family and the loss of my mother when I was 25 and waded through a series of difficult decisions regarding my father’s estate. My father’s death changed me at a depth that is untouched by any amount of therapy or treatment. I’m not “healed”: I feel aged, more brittle, and a little ground down compared with who I had been. But therapy guided me through the worst of my grief, past the acute trauma to help me grasp what I was going through.Since the pandemic began, the number of people reporting increased stress or mental health issues has steadily increased (information on the impact of COVID-19 measures on mental health: https://www.apa.org/workforce/publications/depression-anxiety-coronavirus.pdf) (also see Mental health resources for trainees). I am fortunate to have affordable health insurance and the support from my lab and my department. The ease of finding my institution’s phone number for mental health resources was itself an important benefit. I share these pieces of my story with humility and understanding that not everyone enjoys the privileges that I do and the knowledge that everyone weathers life’s tragedies in their own way. It is not lost on me that some benefits stemmed from a policy change made by a private insurance provider. The provider made the right decision to waive copays, freeing me from having to choose between cost and my mental health needs. Yet had I been a student who had to move out of state due to COVID-19, access to mental health resources might have been disrupted or cut off. The need for reduced out-of-pocket costs for healthcare is known and needs no repetition, but the benefits of telehealth should be a low-cost component of health plans offered to students and staff (information on telehealth recommendations: https://www.apaservices.org/advocacy/news/congress-patient-telehealth?_ga=2.231013471.1538013741.1619359426-1228006513.1619359425 and http://www.apaservices.org/practice/advocacy/state/leadership/telebehavioral-health-policies.pdf?_ga=2.3385904.1067518037.1620039082-1228006513.1619359425.I’m not a cloud of emotions attached to a pair of good pipetting hands, I’m a human who is choosing to spend my time doing research. This observation is easy to repeat, by trainees as much as by faculty and administrators, but much harder to act upon in the midst of conflicting priorities. Consider my story a success: Because I could access the resources I needed, I was able to prioritize my mental health in the midst of my ambitious research program even during the lockdown.MEET THE AUTHORI have been a postdoc in Stefani Spranger’s lab at MIT for 4 years. Supported by an Irvington Fellowship from the Cancer Research Institute, my work examines the behaviors of dendritic cells in tumors that contribute to productive or unproductive anti-tumor immune responses. My doctoral work examined modes of multicellular invasion controlled by the actin cytoskeleton with Margaret Gardel at the University of Chicago. Earlier I was a lab technician with Thea Tlsty at the University of California, San Francisco, which followed a bachelor’s degree in biology at the University of California, Santa Cruz. I serve on the Committee for Students and Postdocs at the American Society for Cell Biology, where I chair the Outreach Subcommittee.  相似文献   

10.
Knowing how to approach and experience contemporary art is a challenge to many people outside the art world. Emerging contemporary art, as the newest of this genre, is often the most challenging. This article recounts my own early struggles as a researcher in this field, and proposes a way of understanding the interaction between artist, artwork and perceiver based on my observations of how contemporary artists encounter each others' work. I argue that contemporary art, and especially emerging contemporary art, creates a space to play by creating an intentional gap in the physical form and/or the semantic structure of the artwork. The object of play is the co‐investigation of an idea initiated by the artist, facilitated by the form of the work and furthered by the encounter. Play, it is argued, is essential to emerging contemporary art as an activity, a communicative frame and a disposition. I draw from earlier theoretical connections between art, play and liberation, challenging some of these assertions, and bringing others into relevance in the contemporary context.  相似文献   

11.
12.
For the past fifty-five years, much of my research has focused on the function and biogenesis of red blood cells, including the cloning and study of many membrane proteins such as glucose and anion transporters and the erythropoietin receptor. We have also elucidated the mechanisms of membrane insertion, folding, and maturation of many plasma membrane and secreted proteins. Despite all of this work and more, I remain extremely proud of our very early work on the regulation of mRNA translation: work on bacteriophage f2 RNA in the 1960s and on translation of α- and β-globin mRNAs in the early 1970s. Using techniques hopelessly antiquated by today''s standards, we correctly elucidated many important aspects of translational control, and I thought readers would be interested in learning how we did these experiments.  相似文献   

13.
A Reminiscence     
Leslie Orgel and Francis Crick with Gobind Khorana in Madison, Wisconsin (December 1965). I first met Leslie at the Endicott House (MIT) in February 1964. Leslie was then spending a period of time at MIT and the occasion was a party for him. During our conversation, Leslie talked about starting some experimental work. He seemed to be particularly interested in polyphosphates and the chemical activation of small molecules (building blocks).Shortly after his move to the Salk Institute in the Fall of 1964 I visited him in January 1965. He already had a lab going. I remember meeting Jim Ferris, in particular, and John Sulston sometime later. That particular time was exciting for my research as well. We had the first results on the Genetic Code using the chemical-biochemical approach that my lab had developed. Francis Crick was also at the Salk Institute during the time of my visit. Both Leslie and Francis were very excited by my results and they began to ask a lot of questions and gave me a whole lot of suggestions about further experiments. In fact, my thinking and planning of things that we were doing were so scrutinized and clarified during these discussions that, it seemed to me, my own group had only to turn out all the experiments that were needed. These interactions with Francis and Leslie continued intensively throughout that year and later. In fact, both Leslie and Francis accepted my invitation to Madison in December 1965 for more discussions.Since those early days of the Salk Institute, I have made numerous visits over the years to Leslie and his research group. It has always been very exciting to learn about the many discoveries bearing on chemical evolution that have unfolded from Leslie's research group. In addition, I have always benefitted from the insightful comments that Leslie invariably provided on my own research. I look forward to our continued interactions and friendship in the future.Leslie, A Happy Birthday!  相似文献   

14.
When I reflect on how I became a cell biologist and why I love being one today, one thing that comes to mind is the many terrific collaborations I have had. The science I am most proud of from my graduate and postdoctoral training would not have been possible without working in teams with other scientists. Now, in my own group, much of our best work is being done collaboratively, both within the lab and with other labs. In this essay, I will highlight my experiences working in teams as a trainee, the role teamwork has played in my own research group, and how important I think collaborative science is for the future of biological research.  相似文献   

15.
I have tried to offer a historical account of a success story, as I saw it develop from the early times when it interested only a few aficionados to the present times when it has pervaded most of cell biochemistry and physiology. It is of course the story of calcium signaling. It became my topic of work when I was a young postdoctoral fellow at The Johns Hopkins University. I entered it through a side door, that of mitochondria, which had been my area of work during my earlier days in Italy. The 1960s and 1970s were glorious times for mitochondrial calcium signaling, but the golden period was not going to last. As I have discussed below, mitochondrial calcium gradually lost appeal, entering a long period of oblivion. Its fading happened as the general area of calcium signaling was instead experiencing a phase of explosive growth, with landmark discoveries at the molecular and cellular levels. These discoveries established that calcium signaling was one of the most important areas of cell biology. However, mitochondria as calcium partners were not dead; they were only dormant. In the 1990s, they were rescued from their state of neglect to the central position of the regulation of cellular calcium signaling, which they had once rightly occupied. Meanwhile, it had also become clear that calcium is an ambivalent messenger. Hardly anything important occurs in cells without the participation of the calcium message, but calcium must be controlled with absolute precision. This is an imperative necessity, which becomes unfortunately impaired in a number of disease conditions that transform calcium into a messenger of death.  相似文献   

16.
There is no perfect recipe to balance work and life in academic research. Everyone has to find their own optimal balance to derive fulfilment from life and work. Subject Categories: S&S: Careers & Training

A few years ago, a colleague came into my office, looking a little irate, and said, “I just interviewed a prospective student, and the first question was, ‘how is work‐life balance here?’”. Said colleague then explained how this question was one of his triggers. Actually, this sentiment isn''t unusual among many PIs. And, yet, asking about one''s expected workload is a fair question. While some applicants are actually coached to ask it at interviews, I think that many younger scientists have genuine concerns about whether or not they will have enough time away from the bench in order to have a life outside of work.In a nutshell, I believe there is no one‐size‐fits‐all definition of work–life balance (WLB). I also think WLB takes different forms depending on one''s career stage. As a new graduate student, I didn''t exactly burn the midnight oil; it took me a couple of years to get my bench groove on, but once I did, I worked a lot and hard. I also worked on weekends and holidays, because I wanted answers to the questions I had, whether it was the outcome of a bacterial transformation or the result from a big animal experiment. As a post‐doc, I worked similarly hard although I may have actually spent fewer hours at the bench because I just got more efficient and because I read a lot at home and on the six train. But I also knew that I had to do as much as I could to get a job in NYC where my husband was already a faculty member. The pressure was high, and the stress was intense. If you ask people who knew me at the time, they can confirm I was also about 30 pounds lighter than I am now (for what it''s worth, I was far from emaciated!).As an assistant professor, I still worked a lot at the bench in addition to training students and writing grant applications (it took me three‐plus years and many tears to get my first grant). As science started to progress, work got even busier, but in a good way. By no means did I necessarily work harder than those around me—in fact, I know I could have worked even more. And I’m not going to lie, there can be a lot of guilt associated with not working as much as your neighbor.My example is only one of millions, and there is no general manual on how to handle WLB. Everyone has their own optimal balance they have to figure out. People with children or other dependents are particularly challenged; as someone without kids, I cannot even fathom how tough it must be. Even with some institutions providing child care or for those lucky enough to have family take care of children, juggling home life with “lab life” can create exceptional levels of stress. What I have observed over the years is that trainees and colleagues with children become ridiculously efficient; they are truly remarkable. One of my most accomplished trainees had two children, while she was a post‐doc and she is a force to be reckoned with—although no longer in my laboratory, she still is a tour de force at work, no less with child number three just delivered! I think recruiters should view candidates with families as well—if not better—equipped to multi‐task and get the job done.There are so many paths one can take in life, and there is no single, “correct” choice. If I had to define WLB, I would say it is whatever one needs to do in order to get the work done to one''s satisfaction. For some people, putting in long days and nights might be what is needed. Does someone who puts in more hours necessarily do better than one who doesn''t, or does a childless scientist produce more results than one with kids? Absolutely not. People also have different goals in life: Some are literally “wedded” to their work, while others put much more emphasis on spending time with their families and see their children grow up. Importantly, these goals are not set in stone and can fluctuate throughout one''s life. Someone recently said to me that there can be periods of intense vertical growth where “balance” is not called for, and other times in life where it is important and needed. I believe this sentiment eloquently sums up most of our lives.Now that I''m a graying, privileged professor, I have started to prioritize other areas of life, in particular, my health. I go running regularly (well, maybe jog very slowly), which takes a lot of time but it is important for me to stay healthy. Pre‐pandemic, I made plans to visit more people in person as life is too short not to see family and friends. In many ways, having acquired the skills to work more efficiently after many years in the laboratory and office, along with giving myself more time for my health, has freed up my mind to think of science differently, perhaps more creatively. It seems no matter how much I think I’m tipping the balance toward life, work still creeps in, and that’s perfectly OK. At the end of the day, my work is my life, gladly, so I no longer worry about how much I work, nor do I worry about how much time I spend away from it. If you, too, accomplish your goals and derive fulfillment from your work and your life, neither should you.  相似文献   

17.
18.
My career in research has flourished through hard work, supportive mentors, and outstanding mentees and collaborators. The Carman laboratory has contributed to the understanding of lipid metabolism through the isolation and characterization of key lipid biosynthetic enzymes as well as through the identification of the enzyme-encoding genes. Our findings from yeast have proven to be invaluable to understand regulatory mechanisms of human lipid metabolism. Several rewarding aspects of my career have been my service to the Journal of Biological Chemistry as an editorial board member and Associate Editor, the National Institutes of Health as a member of study sections, and national and international scientific meetings as an organizer. I advise early career scientists to not assume anything, acknowledge others’ accomplishments, and pay it forward.  相似文献   

19.
I am honored and humbled to receive the E. B. Wilson Medal and happy to share some reflections on my journey as a cell biologist. It took me a while to realize that my interest in biology would center on how cells are spatially and dynamically organized. From an initial fascination with cellular structures I came to appreciate that cells exhibit dynamism across all scales—from their molecules, to molecular complexes, to organelles. Uncovering the principles of this dynamism, including new ways to observe and quantify it, has been the guiding star of my work.

Jennifer Lippincott-Schwartz  相似文献   

20.
Sekiguchi M 《DNA Repair》2006,5(6):750-758
In the midst of the post-war turmoil in Japan, I fortunately followed a path to become a scientist. Sometime at an early stage of my career, I encountered the problem of the cellular response to DNA damage and had the chance to discover a DNA repair enzyme. This event greatly influenced the subsequent course of my research, and I extended my studies toward elucidating the molecular mechanisms of mutagenesis as well as of carcinogenesis. Through these studies I came to understand the importance of mechanisms for dealing with the actions of reactive oxygen species to the living systems. These recollections deal with these endeavors with emphasis on the early part of my scientific career.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号