首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An amperometric biosensor for hypoxanthine was constructed by forming a layer of crosslinked xanthine oxidase on a platinum electrode, followed by electropolymerization of a submonolayer film of resorcinol and para-diaminobenzene. The fabricated electrodes were evaluated for speed of response, sensitivity, and reusability. Optimal performance was obtained with enzyme-based electrodes sparsely covered with film which was formed by electropolymerization in less than 6 min. The resulting electrodes exhibited linear response to hypoxanthine in the. range 5-300 muM with a response time of 2 min. Application of the biosensor in monitoring hypoxanthine content of fish extracts yielded results which agreed well with spectrophotometric assays using soluble xanthine oxidase. The biosensor was stable for 60 days when stored at 4 degrees C in phosphate buffer and it could be used continuously for 6 h with over 50 assays.  相似文献   

2.
Xanthine oxidase is able to mobilize iron from ferritin. This mobilization can be blocked by 70% by superoxide dismutase, indicating that part of its action is mediated by superoxide (O2-). Uric acid induced the release of ferritin iron at concentrations normally found in serum. The O2(-)-independent mobilization of ferritin iron by xanthine oxidase cannot be attributed to uric acid, because uricase did not influence the O2(-)-independent part and acetaldehyde, a substrate for xanthine oxidase, also revealed an O2(-)-independent part, although no uric acid was produced. Presumably the amount of uric acid produced by xanthine oxidase and xanthine is insufficient to release a measurable amount of iron from ferritin. The liberation of iron from ferritin by xanthine oxidase has important consequences in ischaemia and inflammation. In these circumstances xanthine oxidase, formed from xanthine dehydrogenase, will stimulate the formation of a non-protein-bound iron pool, and the O2(-)-produced by xanthine oxidase, or granulocytes, will be converted by 'free' iron into much more highly toxic oxygen species such as hydroxyl radicals (OH.), exacerbating the tissue damage.  相似文献   

3.
The corneas of albino rabbits were irradiated (5 min exposure once a day) with UVB rays (312 nm) for 4 days (shorter procedure) or 8 days (longer procedure). The eyes were examined microbiologically and only the corneas of sterile eyes or eyes with non-pathogenic microbes were employed. Histochemically, the activities of reactive oxygen species (ROS)-generating oxidases (xanthine oxidase, D-amino acid oxidase and alpha-hydroxy acid oxidase) were examined in cryostat sections of the whole corneas. Biochemically, the activity of xanthine oxidoreductase/xanthine oxidase was investigated in the scraped corneal epithelium. UVB rays significantly changed enzyme activities in the corneas. In comparison to the normal cornea, where of ROS-generating oxidases only xanthine oxidase showed significant activity in the corneal epithelium and endothelium, D-amino acid oxidase was very low and alpha-hydroxy acid oxidase could not be detected at all, in the cornea repeatedly irradiated with UVB rays, increased activities of xanthine oxidase and D-amino acid oxidase were observed in all corneal layers. Only after the longer procedure the xanthine oxidase and D-amino acid oxidase activities were decreased in the thinned epithelium in parallel with its morphological disturbances. Further results show that the xanthine oxidase/xanthine oxidoreductase ratio increased in the epithelium together with the repeated irradiation with UVB rays. This might suggest that xanthine dehydrogenase is converted to xanthine oxidase. However, in comparison to the normal corneal epithelium, the total amount of xanthine oxidoredutase was decreased in the irradiated epithelium. It is presumed that xanthine oxidoreductase might be released extracellularly (into tears) or the enzyme molecules were denatured due to UVB rays (particulary after the longer procedure). Comparative histochemical and biochemical findings suggest that reactive oxygen species-generating oxidases (xanthine oxidase, D-amino acid oxidase) contribute to the corneal damage evoked by UVB rays.  相似文献   

4.
Xanthine oxidoreductase (xanthine dehydrogenase + xanthine oxidase) is a complex enzyme that catalyzes the oxidation of hypoxanthine to xanthine, subsequently producing uric acid. The enzyme complex exists in separate but interconvertible forms, xanthine dehydrogenase and xanthine oxidase, which generate reactive oxygen species (ROS), a well known causative factor in ischemia/reperfusion injury and also in some other pathological states and diseases. Because the enzymes had not been localized in human corneas until now, the aim of this study was to detect xanthine oxidoreductase and xanthine oxidase in the corneas of normal post-mortem human eyes using histochemical and immunohistochemical methods. Xanthine oxidoreductase activity was demonstrated by the tetrazolium salt reduction method and xanthine oxidase activity was detected by methods based on cerium ion capture of hydrogen peroxide. For immunohistochemical studies. we used rabbit antibovine xanthine oxidase antibody, rabbit antihuman xanthine oxidase antibody and monoclonal mouse antihuman xanthine oxidase/xanthine dehydrogenase/aldehyde oxidase antibody. The results show that the enzymes are present in the corneal epithelium and endothelium. The activity of xanthine oxidoreductase is higher than that of xanthine oxidase, as clearly seen in the epithelium. Further studies are necessary to elucidate the role of these enzymes in the diseased human cornea. Based on the findings obtained in this study (xanthine oxidoreductase/xanthine oxidase activities are present in normal human corneas), we hypothesize that during various pathological states, xanthine oxidase-generated ROS might be involved in oxidative eye injury.  相似文献   

5.
Endothelial cell ICAM-1 upregulation in response to TNF-alpha is mediated in part by reactive oxygen species (ROS) generated by the endothelial membrane-associated NADPH oxidase and occurs maximally after 4 h as the synthesis of new protein is required. However, thrombin-stimulated P-selectin upregulation is bimodal, the first peak occurring within minutes. We hypothesize that this early peak, which results from the release of preformed P-selectin from within Weibel-Palade bodies, is mediated in part by ROS generated from the endothelial membrane-associated xanthine oxidase. We found that this rapid expression of P-selectin on the surface of endothelial cells was accompanied by qualitatively parallel increases in ROS generation. Both P-selectin expression and ROS generation were inhibited, dose dependently, by the exogenous administration of disparate cell-permeable antioxidants and also by the inhibition of either of the known membrane-associated ROS-generating enzymes NADPH oxidase or xanthine oxidase. This rapid, posttranslational cell signaling response, mediated by ROS generated not only by the classical NADPH oxidase but also by xanthine oxidase, may well represent an important physiological trigger of the microvascular inflammatory response.  相似文献   

6.
C G Eriksson  P Eneroth 《Steroids》1990,55(8):366-372
The generation of 6-oxygenated (6 beta-hydroxy, 6 beta-hydroperoxy, and 6-oxo) progesterone derivatives during the hydrolysis of progesterone-3-ethanolimine has been shown to be increased in the presence of xanthine/xanthine oxidase. The combination of xanthine/xanthine oxidase with other enzymes and/or reagents that catalyze transformation (or formation) of oxygen radicals suggested that the most likely oxygen species participating in the 6-oxygenation was the protonated acid of the superoxide anion, i.e., the hydroperoxy radical. The suggestion was further supported by experiments with oxygen scavengers. However, the data presented do not rule out a radical propagation reaction since the steroid compound used may be more reactive than the scavengers tested. A stimulation of 6-oxygenation of progesterone-3-ethanolimine by NADPH-supplemented rat liver microsomes was found. This reaction was inhibited by the only oxygen scavenger (reduced glutathione) found to be effective in the xanthine/xanthine oxidase experiments. The similarities between the two oxygenation systems may implicate a mechanism for 6 beta-hydroperoxidation of 3-oxo-4-ene steroids in rat liver microsomes.  相似文献   

7.
Glucose oxidase, horseradish peroxidase, xanthine oxidase, and carbonic anhydrase have been adsorbed to colloidal gold sols with good retention of enzymatic activity. Adsorption of xanthine oxidase on colloidal gold did not result in a change in enzymatic activity as determined by active site titration with the stoichiometric inhibitor pterin aldehyde and by measurement of the apparent Michaelis constant (K'(M)). Gold sols with adsorbed glucose oxidase, horseradish peroxidase, and xanthine oxidase have also been electrodeposited onto conducting matrices (platinum gauze and/or glassy carbon) to make enzyme electrodes. These electrodes retained enzymatic activity and, more importantly, gave an electrochemical response to the enzyme substrate in the presence of an appropriate electron transfer mediator. Our results demonstrate the utility of colloidal gold as a biocompatible enzyme imobilization matrix suitable for the fabrication of enzyme electrodes. (c) 1992 John Wiley & Sons, Inc.  相似文献   

8.
《Mutation Research Letters》1993,301(4):243-248
The effect of histidine on damage induced by oxygen radicals was studied in peripheral blood lymphocytes treated with free oxygen radical-inducing agents: hydrogen peroxide, xanthine oxidase plus hypoxanthine, bleumycin and γ-rays. l-Histidine, at a concentration of 1 mM, was found to potentiate both cell killing and inhibition of PHA-stimulated cell division brought about by hydrogen peroxide or xanthine oxidase plus hypoxanthine. In contrast, l-histidine did not affect γ-ray- or bleomycin-induced cell killing and inhibition of PHA-stimulated cell division. We suggest that l-histidine potentiation of cell damage is mainly mediated by interaction of the amino acid with hydrogen peroxide and/or iron rather than with other reactive oxygen species. In addition, these results also indicate that hydrogen peroxide produced by γ-radiation- or bleomycin-treated cells plays no role in the toxic effects elicited by these agents.  相似文献   

9.
《Free radical research》2013,47(1-5):69-78
The massive leakage of intracellular enzymes which occurs during reoxygenation of heart tissue after hypoxic or ischemic episodes has been suggested to result from the formation of oxygen radicals. One purported source of such radicals is the xanthine oxidase-mediated metabolism of hypoxanthine and xanthine. Xanthine oxidase (O form) has been suggested to be formed in vivo by limited proteolysis of xanthine dehydrogenase (D form) during the hypoxic period (Granger el ai. Gastroenterology 81, 22 (1981)). We measured the activities of xanthine oxidase in both fresh and isolated-perfused (Langendorff) rat heart tissue. Approximately 32% of the total xanthine oxidase was in the O form in fresh and isolated-perfused rat heart. This value was unchanged following 60min of hypoxia and 30 minutes of reoxygenation. The infusion of 250/JM allopurinol throughout the perfusion completely inhibited xanthine oxidase activity but had no effect on the massive release of lactate dehydrogenase (LDH) into the coronary effluent upon reoxygenation of heart tissue subjected to 30 or 60min of hypoxia. Protection from 30min of hypoxia was also not obtained when rats were pretreated for 48 h with allopurinol at a dose of 30mg/kg/day and perfused with allopurinol containing medium. Superoxide dismutase (50 units/ml), catalase (200 units/ml), or the antioxidant cyanidanol (100μM) also had no effect on LDH release upon reoxygenation after 60 min of hypoxia. Xanthine oxidase activity was detected in a preparation enriched in cardiac endothelial cells while no allupurinol-inhibitable activity could be measured in purified isolated cardiomyocytes. It is concluded that xanthine dehydrogenase is not converted to xanthine oxidase in hypoxic tissue of the isolated perfused rat heart, and that the release of intracellular enzymes upon reoxygenation in this experimental model is mediated by factors other than reactive oxygen generated by xanthine oxidase.  相似文献   

10.
Reactive oxygen species (at least relatively high doses) cause contraction of pulmonary arterial smooth muscle. The objective of the present study was to elucidate the possible cellular mechanisms involved in reactive oxygen-mediated contraction. Isolated arterial rings from Sprague-Dawley rats were placed in tissue baths containing Earle's balanced salt solution. The maximum active force production (Po) in response to 80 mM KCl was obtained. All other responses were normalized as percentages of Po for comparative purposes. Exposure to reactive oxygen (generated from either the xanthine oxidase reaction (XO) or the glucose oxidase reaction) resulted in pulmonary arterial muscle developing mean active tension of 17.1 +/- 3.0% Po. This contraction was independent of extracellular calcium, since it was not affected by verapamil (a calcium channel blocker) or by placement of the arterial muscle in calcium-free media. Phentolamine (an alpha 1-receptor blocker) and propranolol (a beta-receptor blocker) did not diminish the response to XO. Ryanodine (a SR calcium release inhibitor), while reducing the response to norepinephrine, did not affect the response to XO. However, H-7 (an inhibitor of protein kinase C) decreased the XO-mediated contraction by 49%. These results indicate that while Ca2+ may not be involved as a second messenger, protein kinase C activity appears to play a role in the transduction pathway of reactive oxygen species mediated contraction of pulmonary arterial smooth muscle.  相似文献   

11.
Microvessel segments were isolated from rat brain and used for studies of hypoxanthine transport and metabolism. Compared to an homogenate of cerebral cortex, the isolated microvessels were 3.7-fold enriched in xanthine oxidase. Incubation of the isolated microvessels with labeled hypoxanthine resulted in its rapid uptake followed by the slower accumulation of hypoxanthine metabolites including xanthine and uric acid. The intracellular accumulation of these metabolites was inhibited by the xanthine oxidase inhibitor allopurinol. Hypoxanthine transport into isolated capillaries was inhibited by adenine but not by representative pyrimidines or nucleosides. Similar results were obtained when blood to brain transport of hypoxanthine in vivo was measured using the intracarotid bolus injection technique. Thus, hypoxanthine is transported into brain capillaries by a transport system shared with adenine. Once inside the cell, hypoxanthine can be metabolized to xanthine and uric acid by xanthine oxidase. Since this reaction leads to the release of oxygen radicals, it is suggested that brain capillaries may be susceptible to free radical mediated damage. This would be most likely to occur in conditions where the brain hypoxanthine concentration is increased as following ischemia.  相似文献   

12.
The aldehyde specificity of xanthine oxidase (xanthine:oxygen oxidoreductase, EC 1.2.3.2) has been reinvestigated. The biogenic aldehydes and succinate semialdehyde are reasonable substrates for xanthine oxidase. Pyrophosphate, which binds to xanthine oxidase, does not seem to affect significantly the enzyme's catalytic activity. The steady-state parameters for the oxidation of several substrates by xanthine oxidase and oxygen have been determined. Formaldehyde differs from xanthine and other aldehydes in phi 2, the parameter describing the reaction with oxygen. Substrate inhibition has been studied at high concentrations of xanthine with oxygen as the electron acceptor. The inhibition is hyperbolic and uncompetitive with respect to oxygen. This is possibly due to rate-limiting product release from molybdenum(IV) being slower than from molybdenum(VI).  相似文献   

13.
The inhibition of xanthine oxidase by its reaction product, uric acid, was studied by steady state kinetic analysis. Uric acid behaved as an uncompetitive inhibitor of xanthine oxidase with respect to the reducing substrate, xanthine. Under 50 microM xanthine and 210 microM oxygen, the apparent K(i) for uric acid was 70 microM. Uric acid-mediated xanthine oxidase inhibition also caused an increase in the percentage of univalent reoxidation of the enzyme (superoxide radical production). Steady-state rate equations derived by the King-Altman method support the formation of an abortive-inhibitory enzyme-uric acid complex (dead-end product inhibition). Alternatively, inhibition could also depend on the reversibility of the classical ping-pong mechanism present in xanthine oxidase-catalyzed reactions.  相似文献   

14.
Inhibition of xanthine oxidase by flavonoids   总被引:10,自引:0,他引:10  
Various dietary flavonoids were evaluated in vitro for their inhibitory effect on xanthine oxidase, which has been implicated in oxidative injury to tissue by ischemia-reperfusion. Xanthine oxidase activity was determined by directly measuring uric acid formation by HPLC. The structure-activity relationship revealed that the planar flavones and flavonols with a 7-hydroxyl group such as chrysin, luteolin, kaempferol, quercetin, myricetin, and isorhamnetin inhibited xanthine oxidase activity at low concentrations (IC50 values from 0.40 to 5.02 microM) in a mixed-type mode, while the nonplanar flavonoids, isoflavones and anthocyanidins were less inhibitory. These results suggest that certain flavonoids might suppress in vivo the formation of active oxygen species and urate by xanthine oxidase.  相似文献   

15.
The mechanism of vitamin C-induced sister-chromatid exchanges in cultured mammalian cells was studied. Chinese hamster ovary cells, when exposed to an enzymatic oxygen radical-generating system (xanthine oxidase plus hypoxanthine), develop increased numbers of sister-chromatid exchanges. Inclusion of ascorbate (greater than or equal to 0.1 mM) in these incubations resulted in an augmentation of this effect. Superoxide dismutase (100 microliter/ml) and catalase (220 microliter/ml) caused a significant reduction in the number of sister-chromatid exchanges induced by xanthine oxidase, hypoxanthine and vitamin C. Their heat-inactivated counterparts had no effect. These results confirm that vitamin C (greater than or equal to 0.1 mM) potentiates the genetic toxicity of oxygen radicals and that this effect is mediated by toxic oxygen intermediates.  相似文献   

16.
We have examined the effects of folate compounds and the folate analog amethopterin (methotrexate) as inhibitors of mammalian xanthine oxidase and have found that they offer potent inhibition of the enzyme. We have compared the inhibitory potency of folic acid and its coenzyme derivative tetrahydrofolic acid to that of allopurinol, a known inhibitor of xanthine oxidase, and have demonstrated that folic acid and tetrahydrofolic acid are severalfold more potent than allopurinol as inhibitors of xanthine oxidase. Comparative inhibition constants calculated were 5.0 X 10(-7) M for folic acid. 1.25 X 10(-6) M for tetrahydrofolic acid, and 4.88 X 10(-6) M for allopurinol. Incubation of xanthine oxidase with folic acid at a concentration of 10(-6) M abolished 94% of the enzymic activity within 1 min of incubation with the enzyme. At the same concentration, allopurinol was almost ineffective as an inhibitor of xanthine oxidase. The substrate xanthine protected the enzyme against total inhibition by folic acid. Reversibility of the enzymic inhibition by folic acid was demonstrated. Folic acid-inactivated enzyme was totally regenerated either by filtration through Sephadex G-200 or by precipitation with ammonium sulfate. 2-Amino-4-hydroxypteridine was a poor substrate for the enzyme but a potent inhibitor for the oxidation of xanthine by the enzyme. The inhibition constant calculated was 1.50 X 10(-6) M. In the presence of an excess of xanthine oxidase, neither folic acid nor tetrahydrofolic acid and allopurinol exhibited any change in intensity of their absorbance or in the wavelength of their maximal absorbance that might have been suggestive of substrate utility. The folate analog amethopterin was also determined a potent inhibitor of mammalian xanthine oxidase. The inhibition constant calculated was 3.0 X 10(-5) M.  相似文献   

17.
This study was designed to study xanthine oxidase (XO) and xanthine dehydrogenase (XD) activity in the lung of rats exposed to prolonged restraining immobilization stress. Immobilization caused more than twofold increase of xanthine oxidase activity in the rat lung. The activity of xanthine oxidase decreased in lung homogenates incubated at -20 degrees C for 24 h. The same incubation of homogenates from control rats caused a non-significant increase of the activity. No measurable NAD(+)-dependent xanthine dehydrogenase activity could be established in the lungs of both control rats and rats subjected to immobilization. All rats revealed methylene blue-dependent xanthine dehydrogenase activity which was more than two-times higher in the immobilized animals. Incubation at -20 degrees C for 24 h increased the methylene blue-dependent xanthine dehydrogenase activity in homogenates from control rats and decreased the enzyme activity in homogenates from immobilized rats. A working hypothesis was proposed for the sequence of events explaining the results obtained: XO-catalyzed generation of activated oxygen species may take place in the initiation of lipid peroxidation in the lung of rats immobilized for prolonged periods of time.  相似文献   

18.
The mechanism of action of xanthine oxidase has been investigated using single-turnover experiments in an effort to determine the primary source of the oxygen atom incorporated into product in the course of catalysis. It is found from mass spectroscopic analysis of the uric acid generated in these experiments that when 16O-labeled enzyme in [18O]H2O is reacted with substoichiometric amounts of xanthine (under conditions where no enzyme molecule is likely to react with more than one substrate molecule), the uric acid isolated from the reaction mixture contains 16O at position 8 of the purine ring. Conversely, when 18O-labeled enzyme in [16O]H2O is exposed to substoichiometric xanthine, 18O is incorporated into the product uric acid. These results strongly support a variety of chemical studies with model molybdenum complexes suggesting that the oxygen atom of the Mo = O group known to be present at the active site of xanthine oxidase is transferred to product in the course of catalysis. The mechanistic implications of the present work are discussed.  相似文献   

19.
Clinical and experimental data indicate that activated oxygen species interfere with vascular endothelial cell function. Here, the impact of extracellular oxidant injury on the fibrinolytic response of cultured human umbilical vein endothelial (HUVE) cells was investigated at the protein and mRNA levels. Xanthine (50 microM) and xanthine oxidase (100 milliunits), which produces the superoxide anion radical (O2-) and hydrogen peroxide (H2O2), was used to sublethally injure HUVE cells. Following a 15-min exposure, washed cells were incubated for up to 24 h in serum-free culture medium. Tissue-type plasminogen activator (t-PA) antigen, plasminogen activator inhibitor-1 (PAI-1) antigen, and PAI-1 activity were determined in 1.25 ml of conditioned medium and t-PA and PAI-1 mRNA in the cell extracts of 2 x 10(6) HUVE cells. Control cells secreted 3.9 +/- 1.3 ng/ml (mean +/- S.D., n = 12) within 24 h. Treatment with xanthine/xanthine oxidase for 15 min induced a 2.8 +/- 0.4-fold increase (n = 12, p less than 0.05) of t-PA antigen secretion after 24 h. The t-PA antigen was recovered predominantly in complex with PAI-1. The oxidant injury caused a 3.0 +/- 0.8-fold increase (n = 9, p less than 0.05) in t-PA mRNA within 2 h. Total protein synthesis was unaltered by xanthine/xanthine oxidase. The oxidant scavengers superoxide dismutase and catalase, in combination, abolished the effect of xanthine/xanthine oxidase on t-PA secretion and t-PA mRNA synthesis. Xanthine/xanthine oxidase treatment of HUVE cells did not affect the PAI-1 secretion in conditioned medium nor the PAI-1 mRNA levels in cell extracts. Thus extracellular oxidant injury induces t-PA but not PAI-1 synthesis in HUVE cells.  相似文献   

20.
Inhibition of xanthine oxidase by folic acid was reexamined after complete removal of the contaminant which was responsible for time-dependent inactivation (Lewis, A. S., Murphy, L., Mcalla, C., Fleary, M., and Purcell, S. (1984) J. Biol. Chem. 259, 12-15; Spector, T., and Ferone, R. (1984) J. Biol. Chem. 259, 10784-10786). From turnover experiments using stopped flow equipment with a limited amount of xanthine and excess oxygen, and from kinetic analyses with an oxygen electrode, folic acid was found to be an inhibitor of xanthine oxidase. The inhibition was competitive with xanthine with a Ki value of 4.2 X 10(-5) M. From the behavior of the enzyme in affinity chromatography using a Sepharose 4B/folate column, folic acid was also confirmed to be a competitive inhibitor of xanthine oxidase. When enzyme which had been pretreated with oxipurinol was applied to the affinity column, two fractions of xanthine oxidase were separated. The first fraction was found to contain the fully active form (double-active dimers) from the analyses of spectral changes on addition of xanthine, oxipurinol titration, and ESR slow signal, whereas the second fraction was assumed to contain mixed dimers and double-inactive dimers. The ratio of the content of the first fraction to that of the second fraction supports the hypothesis that there are three enzyme species and that there is no interaction either in catalytic activity or in sulfuration or desulfuration reactions between the two subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号