首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Selection on Arctic charr generated by competition from brown trout   总被引:4,自引:0,他引:4  
We experimentally explored population‐ and individual‐level effects on Arctic charr (Salvelinus alpinus) resulting from resource competition with its common European competitor, the brown trout (Salmo trutta). At the population level, we compared performance of the two species in their natural sympatric state with that of Arctic charr in allopatry. At the individual level, we established selection gradients for morphological traits of Arctic charr in allopatric and in sympatric conditions. We found evidence for interspecific competition likely by interference at the population level when comparing differences in average performance between treatments. The growth and feeding rates did not differ significantly between allopatric and sympatric Arctic charr despite lower charr densities (substitutive design) in sympatric enclosures indicating that inter‐ and intraspecific competition are of similar strength. The two species showed distinct niche segregation in sympatry, and brown trout grew faster than Arctic charr. Arctic charr did not expand their niche in allopatry, indicating that the two species compete to a limited degree for the same resources and that interference may suppress the growth of charr in sympatric enclosures. At the individual level, however, we found directional selection in sympatric enclosures against individual Arctic charr with large head and long fins and against individuals feeding on zoobenthos rather than zooplankton indicating competition for common resources (possibly exploitative) between trout and these charr individuals. In allopatric enclosures these relations were not significant. Diets were correlated to the morphology supporting selection against the benthic‐feeding type, i.e. individuals with morphology and feeding behaviour most similar to their competitor, the benthic feeding brown trout. Thus, this study lends support to the hypothesis that Arctic charr have evolved in competition with brown trout, and through ecological character displacement adapted to their present niche.  相似文献   

3.
A female Atlantic salmon × brown trout hybrid was backcrossed to a male brown trout. Electrophoretic analysis of diagnostic enzymes showed that the progeny were triploid. However, a few individuals were partially diploid.  相似文献   

4.
We examined variation in growth and habitat use of individually PIT‐tagged brown trout Salmo trutta in three stream enclosures, each divided into a fine substrate, deep pool habitat and a coarse substrate, shallow habitat. Habitat use and movements of individual fish were monitored continually by placing PIT detectors between habitats. All fish were measured and weighed biweekly over a three month period. There was no significant relationship between habitat use and initial body size, nor was there a consistent relationship between habitat use and densities of benthic macroinvertebrates or abundance of drifting invertebrates in the two habitats. Most habitat changes occurred at night, with activity peaks just prior to sunrise and after sunset. Trout used pools more at night than during the day. Within any given day, diurnal and nocturnal habitat use of individual fish varied little, with variation greater at night than during the day. Partial habitat segregation by sex was observed; only males used pools extensively during daytime, whereas males and females used riffles.
Growth rate was positively related to use of pools during daytime but not at night. Growth rate was also affected by enclosure, with growth rates being highest in the most downstream enclosure, which had the deepest pool (mean of 42 cm) and lowest in the most upstream enclosure, which had the shallowest pool (mean of 28 cm). A complete exchange of trout between the most upstream and downstream enclosure indicated that the enclosure effect was due to physical differences and not to individual fish differences between enclosures. The effect appears to have been caused by differences in depth as daytime use of pools was correlated with the area of the pool ≥35 cm deep, and production of trout biomass per enclosure was directly related to mean pool depth. Our results suggest that there is a relationship between habitat use and growth of individuals that is independent of body size, but that this relationship is influenced by sex of the fish and by the physical characteristics of the environment. Further, the data indicate that short‐term behavioral decisions on habitat use by brown trout have a potential effect on longer‐term individual fitness through growth rates.  相似文献   

5.
Reproduction in vertebrates is an energy-demanding process that is mediated by endogenous hormones and potentially results in oxidative stress. The primary aim of this study was to quantify the relationship between oxidative stress parameters (antioxidant capacity and levels of reactive oxygen metabolites) and circulating testosterone and cortisol in a common and widespread teleost fish, the brown trout (Salmo trutta, L.). Results show that trout with higher testosterone levels prior to spawning have higher levels of oxidative damage at the time that they spawn (although by the time of spawning testosterone levels had dropped, leading to a negative relationship between testosterone and oxidative damage at that time). Cortisol levels were not directly related to oxidative damage or antioxidant capacity, but concentrations of this hormone were positively related to levels of fungal infection, which was itself associated both with lower antioxidant capacity and lower levels of oxidative damage. These results highlight the complexity of interactions between different components of the endocrine system and metabolism and suggest that caution be used in interpreting relationships between a single hormone and indicators of oxidative balance or other fitness proxies.  相似文献   

6.
1. Density‐dependent growth has been widely reported in freshwater fishes, but the ontogenetic evolution of competition and its subsequent effects on growth through a life span remains unclear. 2. Patterns of competition can be described by integrating population abundance data with habitat‐modelling results. Weighted usable area (WUA; m2 WUA ha?1) curves are obtained for each flow value and are then coupled with demographic data to obtain the occupancy rates (trout m?2 WUA, the density of a given age class related to its suitable habitat) of the WUA for every age class, year and site. 3. We examined a long‐term data series searching for temporal variation in the influence of habitat occupancy rate on the growth of brown trout Salmo trutta. We tested whether (i) mean cohort mass (mean mass of the cohort during the first 3 years of life) is affected by the occupancy rate experienced across a life span; and (ii) the occupancy rate experienced at different ages influenced mean body size. 4. We observed a consistent negative power relationship between average cohort mass and mean occupancy rate through a life span, indicating that stronger cohorts were related to a reduced growth, with likely consequences for individual fitness. 5. The effects of occupancy rate on size‐at‐age were mainly detected in the size attained at the second year of life, but they were because of the competition at different times. Thus, the level of competition varied through ontogeny, in some of the rivers affecting growth since the first year of life, whereas in most of the rivers the main effects on body size resulted from the competition during the second year of life. 6. Occupancy rate appears more appropriate than density for assessing the occurrence of habitat competition in freshwater fishes, since it encompasses the differences in quantity and quality of suitable habitat for each age class. 7. Our study highlights the importance of density‐dependent growth as a key process in the dynamics of brown trout populations, its temporal variation depending on the temporal changes of density and the variation of competition associated with the habitat capacity for each life stage.  相似文献   

7.
8.
Whether male competition and female choice act in concert, independently,or in opposition is a critical issue for understanding sexualselection. In complex social systems, the outcomes of pairwiseinteractions may not be accurate indicators of how sexual selectionemerges. We investigated how female choice and male competitioninteract in the bluefin killifish, Lucania goodei, in a 3-stagedexperiment where 1) females could choose between 2 males, 2)those males could interact in the presence of that female, and3) females and males could freely interact and spawn. In thepairwise stages (1 and 2), females displayed pronounced preferencesbetween males and male competition produced a distinctly dominantindividual. None of the morphological traits, including color,measured in males were associated with either female preferenceor male dominance. When all 3 fish interacted (stage 3), maleactivity level was the sole predictor of spawning success. Maleswith elevated activity levels were more aggressive toward malesand females, exhibited intensified courtship, and obtained morespawns. Female preference did not predict the number of spawnswith a male, but it did predict her latency to spawn; femalesspawned more quickly with preferred males. Thus, male competitionand female choice interact to determine reproductive success,but there is evidence for conflict and a cost to females ofassociating with dominant males. Reproductive success in thisspecies is not easily predicted from simple measures of morphologyor female preference and is influenced by complex social interactions,both between males, and between males and females.  相似文献   

9.
10.
European earwigs are sexually dimorphic in forceps shape and length. Male forceps are thought to be weapons in male contests for access to females, but recent findings suggest that females choose males on the basis of their forceps length. I investigated sexual selection on forceps length and body size and the occurrence of male-male competition. When I controlled for forceps length experimentally and statistically, relatively heavy males had greater copulation success than relatively light males. When I controlled for body size, males with relatively longer forceps had no tendency for greater copulation success than males with shorter forceps. Relatively heavy males more often took over copulations from smaller males than vice versa. Male contests were important for the outcome of mate competition, as males commonly interrupted and took over copulations. My results therefore suggest that intrasexual selection is significant in competition for copulations in male earwigs, and acts on body size. This contrasts with previous findings, which have shown intersexual selection on forceps length to be important. However, both modes of sexual selection may be acting through a two-stage process, where male-male competition first determines which males have access to females, and then through female choice among available males. Morphological measurements supported the conclusion that forceps length and body size are male secondary sexual characters, as these characters had large variance and skewed distributions in males, but were normally distributed in females. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

11.
We studied reproductive traits in nine anadromous brown trout, Salmo trutta L., populations in seven Norwegian rivers. Within populations we found a positive significant correlation between fish length and fecundity in all populations, and between fish length and egg diameter in five populations. There were significant differences in these relationships between populations from different rivers, and between populations from different locations within rivers. When adjusted for variation in fish length, mean fecundity and mean egg diameter showed a negative significant correlation among populations. The ratio of gonadal weight to somatic weight (gonadosomatic index) varied significantly among populations but was not associated with variation in fish length. Comparatively few large eggs were found in brown trout populations co-existing with several other fish species.  相似文献   

12.
Prey orientation in piscivorous brown trout   总被引:1,自引:0,他引:1  
Piscivorous brown trout Salmo trutta change their feeding behaviour depending on prey species, prey size and number of prey eaten. In trout which had eaten fish recently, most had one fish in their stomach, but up to 16 prey fish were found. Individuals of the small-sized minnow Phoxinus phoxinus were swallowed chiefly tail first, whereas individuals of the larger Arctic charr Salvelinus alpinus were taken both head and tail first. The largest charr were swallowed head first. In stomachs containing more than one fish prey, prey orientation was likely to be mixed. For all three types of prey orientation (i.e. tail first, head first and mixed), significant and positive correlations existed between prey length and predator length. The maximum prey size eaten tail first or in mixed orientation was about 70–85% of the size of prey eaten head first, indicating morphological advantages in eating the prey head first.  相似文献   

13.
14.
We propose a new mechanism for diversification of male nuptial-colour patterns in the rapidly speciating cichlid fishes of Lake Victoria. Sympatric closely related species often display nuptial colours at opposite ends of the spectrum with males either blue or yellow to red. Colour polymorphisms within single populations are common too. We propose that competition between males for breeding sites promotes such colour diversification, and thereby speciation. We hypothesize that male aggression is primarily directed towards males of the common colour, and that rare colour morphs enjoy a negatively frequency-dependent fitness advantage. We test our hypothesis with a large dataset on the distributions and nuptial colorations of 52 species on 47 habitat islands in Lake Victoria, and with a smaller dataset on the within-spawning-site distributions of males with different coloration. We report that territories of males of the same colour are negatively associated on the spawning site, and that the distribution of closely related species over habitat islands is determined by nuptial coloration in the fashion predicted by our hypothesis. Whereas among unrelated species those with similar nuptial colour are positively associated, among closely related species those with similar colour are negatively associated and those with different colour are positively associated. This implies that negatively frequency-dependent selection on nuptial coloration among closely related species is a sufficiently strong force to override other effects on species distributions. We suggest that male-male competition is an important and previously neglected agent of diversification among haplochromine cichlid fishes.  相似文献   

15.
Competition during the juvenile phase is a key process for regulating density in organisms with high fecundity. Juvenile density-dependent bottlenecks may become even more pronounced if several cohorts compete, but this has received relatively limited attention in previous literature. We performed a manipulation experiment in seven coastal streams to investigate the presence of inter-cohort competition, using habitat selection, body-size and density of newly emerged (age-0) brown trout (Salmo trutta) as response variables. The trout population (age ≥ 1 fish) was estimated using electro-fishing prior to the emergence of fry (April-May) and was either removed (manipulated sections) or maintained (control sections). Age-0 habitat selection was examined in June while density and body-size was evaluated in October (end of the growth season). We found that age-0 trout selected habitats that were located further from riffles (nursery habitats) in the absence of age ≥ 1 trout, suggesting a niche overlap between cohorts in the habitat dimension and, hence, that both inter-cohort competitive interactions and ontogenetic preference may influence habitat utilisation in the wild. Furthermore, we also found age-0 body-size to be significantly larger in manipulated sections and negatively related to its own density. We argue that competition from older cohorts influence the availability of age-0 feeding territories at the critical phase of emergence with secondary negative effects on age-0 growth. These results not only have implications for understanding the mechanisms of density dependence but can also provide valuable knowledge to the management of salmonid populations and their habitats in the wild.  相似文献   

16.
Habitat shifts in rainbow trout: competitive influences of brown trout   总被引:2,自引:0,他引:2  
Summary We compared habitat use by rainbow trout sympatric (three streams) and allopatric (two streams) with brown trout to determine whether competition occurred between these two species in the southern Appalachian Mountains. We measured water depth, water velocity, substrate, distance to overhead vegetation, sunlight, and surface turbulence both where we collected trout and for the streams in general. This enabled us to separate the effects of habitat availability from possible competitive effects. The results provided strong evidence for asymmetrical interspecific competition. Habitat use varied significantly between allopatric and sympatric rainbow trout in 68% of the comparisons made. Portions of some differences refelected differences in habitats available in the several streams. However, for all habitat variables measured except sunlight, rainbow trout used their preferred habitats less in sympatry with brown trout than in allopatry if brown trout also preferred the same habitats. Multivariate analysis indicated that water velocity and its correlates (substrate particle size and surface turbulence) were the most critical habitat variables in the interaction between the species, cover in the form of shade and close overhead vegetation was second most important, and water depth was least important.  相似文献   

17.
Focal and ad libitum samples of high and middle ranked males in a group of free ranging Japanese macques were taken in order to examine rank related differences in male mating strategies. Males tended to have like ranked females as consort partners, with high rank males showing more consort activity, over all, than middle rank males. High rank males tended to interfere in consorts and middle rank males tended to have their consorts disrupted. Consorts involving high rank females were most subject to interference. With one exception, proximity between partners in consorts involving high rank males was due to male actions while proximity in consorts involving middle ranked males was due to female actions. The two highest ranked males were never observed copulating. Their mating failure may have been due to avoidance by females who had known them since immaturity. High rank males were somewhat more likely than middle rank males to have consorted with females during the period of likely conception. There was some evidence that frequent consort partners joined the same subgroup during a group fission. Males appeared to use the advantage conferred by high rank mainly in competition for high rank females. Females showed some indications of preference for mates likely to retain or attain high rank in the future.  相似文献   

18.
Male-biased dimorphism in body size is usually attributed tosexual selection acting on males, through either male competitionor female choice. Brown antechinuses (Antechinus stuartii) aresexually dimorphic in size, and heavier males are known to siremore offspring in the wild. We investigated four possible mechanismsthat might explain this large-male reproductive advantage. Wetested if there is a female preference for large males, a femalepreference for dominant males, if larger males compete moreeffectively for mates, and if there is a survival advantagefor large males during the mating season. We established nestinggroups of males in captivity and conducted mate choice trialsin which males from nesting groups either could or could notinteract. We assessed male dominance rank and recorded survivaltimes after mating. Females did not prefer larger males directly.The results suggest that the other three mechanisms of sexualselection tested account for the large-male advantage: largemales competed more successfully for mates, so were sociallydominant; females rejected subordinates (males they saw losingtwice in contests to previous mates); and dominant males survivedfor longer after their first mating. Females judged male rankbased on direct observation of male competitive interactionsat the time of mating and apparently could not distinguish rankfrom male scent. Effects of size and dominance on male reproductivesuccess are not confounded by age because male antechinusesare semelparous.  相似文献   

19.
Two related experiments examined the relationship between plasma cortisol concentrations and the development of social hierarchies in fish. In the first, rainbow trout, Oncorhynchus mykiss, and brown trout, Salmo trutta, were observed for dominance interactions when confined within single-species pairs for 4, 48, or 168 h. Subordinate members of a pair exhibited significantly higher cortisol concentrations than dominant and single fish, but the pattern of cortisol elevation differed between the two species, being quicker to rise and increasing to a higher level in rainbow trout. Cortisol concentrations were correlated with behavioural measurements; the more subordinate the behaviour exhibited by a fish, the higher its cortisol concentration. Social stress was a chronic stressor, and no acclimation to social status occurred during the week. In the second experiment, measurements of plasma cortisol were made before pairing of rainbow trout and then after 48 h of confinement in pairs. Subordinate fish demonstrated significantly higher concentrations of plasma cortisol both before and after social stress. It therefore appears that in addition to cortisol being elevated during periods of social stress, an association may exist between initial cortisol levels and the likelihood of a fish becoming subordinate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号