首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophage colony-stimulating factor (MCSF) and osteoprotegerin ligand (OPGL), both produced by osteoblasts/stromal cells, are essential factors for osteoclastogenesis. Whether local MCSF levels regulate the amount of osteoclast formation is unclear. Two culture systems, ST-2 and Chinese hamster ovary-membrane-bound MCSF (CHO-mMCSF)-Tet-OFF cells, were used to study the role of mMCSF in osteoclast formation. Cells from bone marrow (BMM) or spleen were cultured with soluble OPGL on glutaraldehyde-fixed cell layers; osteoclasts formed after 7 days. Osteoclast number was proportional to the amount of soluble OPGL added. In contrast, varying mMCSF levels in the ST-2 or CHO-mMCSF-Tet-OFF cell layers, respectively by variable plating or by addition of doxycycline, did not affect BMM osteoclastogenesis: 20-450 U of mMCSF per well generated similar osteoclast numbers. In contrast, spleen cells were resistant to mMCSF: osteoclastogenesis required > or = 250 U per well and further increased as mMCSF rose higher. Our results demonstrate that osteoclast formation in the local bone environment is dominated by OPGL. Increasing mMCSF above basal levels does not further enhance osteoclast formation from BMMs, indicating that mMCSF does not play a dominant regulatory role in the bone marrow.  相似文献   

2.
The role of NFkappaB and it's upstream kinases in regulating adhesion molecule expression in the smooth muscle of the vasculature remains controversial. We therefore examined the effect of blocking the NFkappaB pathway on TNFalpha-stimulated ICAM-1 and VCAM-1 expression in primary cultures of human aortic smooth muscle cells using an adenoviral wild-type IkappaB alpha construct (Ad.IkappaB alpha) and dominant-negative IKKalpha (Ad.IKKalpha+/-) and IKKbeta (Ad.IKKbeta+/-) constructs. Ad.IkappaB alpha treatment was found to block NFkappaB DNA-binding, and thereby completely prevent TNFalpha-stimulated ICAM-1 and VCAM-1 expression without influencing IKK activity. Ad.IKKbeta+/- treatment completely inhibited TNFalpha-stimulated IKK kinase activity, IkappaB alpha degradation and NFkappaB DNA-binding in addition to completely blocking TNFalpha-stimulated ICAM-1 and VCAM-1 expression. Ad.IKKalpha+/- treatment however had no detectable effect on NFkappaB DNA-binding or ICAM-1 and VCAM-1 expression. Our results demonstrate that TNFalpha-stimulated ICAM-1 and VCAM-1 expression in human aortic smooth muscle cells is NFkappaB-dependent, that IKKbeta is a suitable target for drug therapy and Ad.IKKbeta+/- an effective inhibitor of TNFalpha-stimulated ICAM-1 and VCAM-1 expression.  相似文献   

3.
4.
Tumor necrosis factor alpha (TNFalpha)-stimulated nuclear factor (NF) kappaB activation plays a key role in the pathogenesis of inflammatory bowel disease (IBD). Phosphorylation of NFkappaB inhibitory protein (IkappaB) leading to its degradation and NFkappaB activation, is regulated by the multimeric IkappaB kinase complex, including IKKalpha and IKKbeta. We recently reported that 5-aminosalicylic acid (5-ASA) inhibits TNFalpha-regulated IkappaB degradation and NFkappaB activation. To determine the mechanism of 5-ASA inhibition of IkappaB degradation, we studied young adult mouse colon (YAMC) cells by immunodetection and in vitro kinase assays. We show 5-ASA inhibits TNFalpha-stimulated phosphorylation of IkappaBalpha in intact YAMC cells. Phosphorylation of a glutathione S-transferase-IkappaBalpha fusion protein by cellular extracts or immunoprecipitated IKKalpha isolated from cells treated with TNFalpha is inhibited by 5-ASA. Recombinant IKKalpha and IKKbeta autophosphorylation and their phosphorylation of glutathione S-transferase-IkappaBalpha are inhibited by 5-ASA. However, IKKalpha serine phosphorylation by its upstream kinase in either intact cells or cellular extracts is not blocked by 5-ASA. Surprisingly, immunodepletion of cellular extracts suggests IKKalpha is predominantly responsible for IkappaBalpha phosphorylation in intestinal epithelial cells. In summary, 5-ASA inhibits TNFalpha-stimulated IKKalpha kinase activity toward IkappaBalpha in intestinal epithelial cells. These findings suggest a novel role for 5-ASA in the management of IBD by disrupting TNFalpha activation of NFkappaB.  相似文献   

5.
6.
7.
Lacerda L  Smith RM  Opie L  Lecour S 《Life sciences》2006,79(23):2194-2201
We previously reported that tumour necrosis factor alpha (TNFalpha) can mimic classic ischemic preconditioning (IPC) in both cells and heart. However, the signalling pathways involved remain incompletely understood. One potential protective pathway could be TNFalpha-induced reactive oxygen species (ROS). We hypothesized that TNFalpha cytoprotection occurs through the generation of ROS which originate within the mitochondria. C(2)C(12) myotubes were preconditioned with either a short period of hypoxia (IPC) or a low concentration of TNFalpha (0.5 ng/ml) prior to a simulated ischemic insult. ROS generation was evaluated on cells stained with dichlorofluorescin diacetate (DCFH-DA) by flow cytometry. The source of TNFalpha-induced ROS was examined with Mitotracker Red CM-H(2)XRos. The bioenergetics of the mitochondria were evaluated by investigation of the respiratory parameters and the inner mitochondrial membrane potential. Pretreatment with TNFalpha improved cell viability compared with the simulated ischemic control (TNFalpha: 75 +/- 1% versus 34 +/- 1% for the control: p<0.001). The ROS scavenger, N-2-mercaptopropionyl-glycine (MPG), reduced the viability of TNFalpha-stimulated cells to 15 +/- 1% (p<0.001 versus TNFalpha). Similar results were obtained with IPC. TNFalpha stimulation increased ROS production mainly in the mitochondria, and this increase was abolished in the presence of MPG. Addition of TNFalpha to the cells increased State 2 respiration and modestly depolarised the membrane potential prior to the ischemic insult. In conclusion, TNFalpha-induced ROS generation can occur within the mitochondria, resulting in temporal mitochondrial perturbations which may initiate the cytoprotective effect of TNFalpha.  相似文献   

8.
9.
10.
11.
12.
Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase that promotes cell migration, survival, and gene expression. Here we show that FAK signaling is important for tumor necrosis factor-alpha (TNFalpha)-induced interleukin 6 (IL-6) mRNA and protein expression in breast (4T1), lung (A549), prostate (PC-3), and neural (NB-8) tumor cells by FAK short hairpin RNA knockdown and by comparisons of FAK-null (FAK(-/-)) and FAK(+/+) mouse embryo fibroblasts. FAK promoted TNFalpha-stimulated MAPK activation needed for maximal IL-6 production. FAK was not required for TNFalpha-mediated nuclear factor-kappaB or c-Jun N-terminal kinase activation. TNFalpha-stimulated FAK catalytic activation and IL-6 production were inhibited by FAK N-terminal but not FAK C-terminal domain overexpression. Analysis of FAK(-/-) fibroblasts stably reconstituted with wild type or various FAK point mutants showed that FAK catalytic activity, Tyr-397 phosphorylation, and the Pro-712/713 proline-rich region of FAK were required for TNFalpha-stimulated MAPK activation and IL-6 production. Constitutively activated MAPK kinase-1 (MEK1) expression in FAK(-/-) and A549 FAK short hairpin RNA-expressing cells rescued TNFalpha-stimulated IL-6 production. Inhibition of Src protein-tyrosine kinase activity or mutation of Src phosphorylation sites on FAK (Tyr-861 or Tyr-925) did not affect TNFalpha-stimulated IL-6 expression. Moreover, analyses of Src(-/-), Yes(-/-), and Fyn(-/-) fibroblasts showed that Src expression was inhibitory to TNFalpha-stimulated IL-6 production. These studies provide evidence for a novel Src-independent FAK to MAPK signaling pathway regulating IL-6 expression with potential importance to inflammation and tumor progression.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Osteoclasts are essential cells for bone erosion in inflammatory arthritis and are derived from cells in the myeloid lineage. Recently, we reported that tumor necrosis factor-alpha (TNFalpha) increases the blood osteoclast precursor (OCP) numbers in arthritic patients and animals, which are reduced by anti-TNF therapy, implying that circulating OCPs may have an important role in the pathogenesis of erosive arthritis. The aim of this study is to investigate the mechanism by which TNFalpha induces this increase in OCP frequency. We found that TNFalpha stimulated cell division and conversion of CD11b+/Gr-1-/lo/c-Fms- to CD11b+/Gr-1-/lo/c-Fms+ cells, which was not blocked by neutralizing macrophage colony-stimulating factor (M-CSF) antibody. Ex vivo analysis of monocytes demonstrated the following: (i) blood CD11b+/Gr-1-/lo but not CD11b-/Gr-1- cells give rise to osteoclasts when they were cultured with receptor activator NF-kappaB ligand and M-CSF; and (ii) TNF-transgenic mice have a significant increase in blood CD11b+/Gr-1-/lo cells and bone marrow proliferating CD11b+/Gr-1-/lo cells. Administration of TNFalpha to wild type mice induced bone marrow CD11b+/Gr-1-/lo cell proliferation, which was associated with an increase in CD11b+/Gr-1-/lo OCPs in the circulation. Thus, TNFalpha directly stimulates bone marrow OCP genesis by enhancing c-Fms expression. This results in progenitor cell proliferation and differentiation in response to M-CSF, leading to an enlargement of the marrow OCP pool. Increased marrow OCPs subsequently egress to the circulation, forming a basis for elevated OCP frequency. Therefore, the first step of TNF-induced osteoclastogenesis is at the level of OCP genesis in the bone marrow, which represents another layer of regulation to control erosive disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号