首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anatomy of the masticatory apparatus, the direction in which masticatory muscles act during mastication, and jaw muscle forces as estimated by muscle dry weight are compared between two murid rodents, the Japanese field mouse (Apodemus speciosus; subfamily Murinae) and the gray red-backed vole (Clethrionomys rufocanus; subfamily Arvicolinae). The occlusal forces exerted by the deep masseter and the anterior temporalis are large in C. rufocanus. Furthermore, in this species, the angle between the sagittal plane and the occlusal plane of the cheek teeth is larger than in A. speciosus. Therefore, a relatively large occlusal force can be generated in C. rufocanus. The estimated line of action of the anterior temporalis differs markedly between these two species. The functional significance of this difference is discussed relative to the adaptive dental characteristics for food processing, the forces required to masticate different types of food, and the forces that control mandibular forward movement. J Morphol 231:131–141, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
The functional significance of masticatory muscle direction was estimated using a mechanical model in two murid rodents: the Japanese field mouse (Apodemus speciosus) and the gray red-backed vole (Clethrionomys rufocanus). Theoretical analyses of the data suggest that a balancing mechanism among the muscle forces occurs during incisal power stroke. The activation of the large deep masseter in both murids results in marked tensile separation of two hemimandibles at the flexible mandibular symphysis. Activation of the internal pterygoid decreases this large tensile force at the symphysis more efficiently than other muscles. The lines of action of the deep masseter and internal pterygoid are aligned to produce such a balancing function in both species studied here. The resultant force generated by the deep masseter on both sides is opposite in direction to the reaction force at the lower incisor tip. Therefore, the large deep masseter forms an effective mandibular support mechanism when the reaction forces during biting push the mandible downward. Because of the area of insertion and the line of action, the posterior temporalis appears to have an important role in stabilizing the position of the mandibular condyle in the glenoid fossa during incisal biting. J. Morphol. 236:49–56, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Epizootiological surveys on hantavirus infections in rodents were carried out in various areas of Japan, including the four major islands of Hokkaido, Honshu, Shikoku, and Kyushu from 2000 to 2003. A total of 1,221 rodents and insectivores were captured. Seropositive animals were found in Apodemus (A.) speciosus (5/482, 1.0%), Rattus (R.) norvegicus (4/364, 1.1%), R. rattus (3/45, 6.7%), and Clethrionomys (C.) rufocanus (7/197, 3.6%). The partial S segment was amplified from one seropositive R. rattus captured at Hakodate. The nucleotide sequence showed 96% identity with the Seoul virus (SEOV) prototype strain SR-11. In addition, we conducted an epidemiological survey on human hantavirus infection in a high-risk population, the personnel of the Japan Ground Self-defense Force on Hokkaido. One out of 207 human blood samples was positive for anti-hantavirus antibody by IFA, ELISA, and WB analysis. The result of the serotype specific ELISA indicates that this individual acquired SEOV infection. This study indicates that A. speciosus, R. norvegicus, R. rattus, and C. rufocanus carry hantaviruses as the reservoir animals in Japan. Infected R. rattus and R. norvegicus in port areas could be the sources of human SEOV infection and a threat to travelers and individuals working in seaports.  相似文献   

4.
黄泥河林区鼠类群落演替的研究   总被引:10,自引:0,他引:10  
杨春文  陈荣海 《兽类学报》1993,13(3):205-210
本文研究了吉林省黄泥河林区5个次生植被类型的鼠类群落结构和生物量的变化。原始针阔混交林采伐后,大林姬鼠数量减少,棕背(鼠平)数量增加,黑线姬鼠侵入。形成次生阔叶林和人工落叶松林后,鼠类群落仍为原始针阔混交林中的大林姬鼠+棕背(鼠平)群落类型。人工红松林的形成使棕背(鼠平)数最明显减少,成为大林姬鼠群落。森林开垦成农田,相应形成黑线姬鼠+大林姬鼠群落。草甸发展成草甸森林,鼠类群落由东方田鼠+棕背(鼠平)演变成棕背(鼠平)群落。并分析了环境因素对鼠类演替的影响。  相似文献   

5.
The structure and function of the masticatory apparatus of raccoons resemble those found in carnivores. In this study, the architecture of the skull, dentition, and masticatory apparatus is described, and a model is proposed that suggests a mechanism used by raccoons to reduce different foods. The model suggests that jaw movements are similar to those of cats, the posterior regions of the superficial and deep parts of the temporalis and the anterior region of the medial pterygoid generate horizontal jaw movements, and the anterior portions of the superficial and deep temporalis as well as portions of the masseteric complex generate vertical closing movement. The distributions of slow, fast fatigable, and fast fatigue-resistant fibers for the temporalis and masseteric complex are related to the possible actions of these muscles during mastication, as are the regional cross-sectional areas of the masticatory muscles.  相似文献   

6.
The herbivorous adaptations of the jaw adductor muscles in Neotoma mexicana were clarified by a comparative study with an unspecialized relative, Peromyscus maniculatus. In P. maniculatus, the anterior part of the deep masseter arises entirely from the lateral side of an aponeurosis, i.e., superior zygomatic plate aponeurosis, whereas N. mexicana has an additional aponeurosis for this part of the muscle, and the fibers attach on both sides of the superior zygomatic plate aponeurosis. Although the structure of the temporalis muscle is nearly identical in the two genera, a clear aponeurosis of origin occurs only in N. mexicana. These characteristics allow fibrous tissues to be processed with a large occlusal force. The deep masseter, internal pterygoid, and external pterygoid muscles of N. mexicana incline more anterodorsally than those of P. maniculatus. The transverse force component of these muscles relative to whole muscle force is smaller in N. mexicana than in P. maniculatus, with the exception of the internal pterygoid. The anterior part of the temporalis muscle of N. mexicana is specialized to produce occlusal pressure. These findings suggest that in N. mexicana a large anterior force is required to move the heavy mandible, due to the hypsodont molars, against frictional force from food, and that the posterior pull of the temporalis, which adjusts the forward force by the other jaw adductor muscles to a suitable level, need not be large for the mandibular movement.  相似文献   

7.
We investigated patterns of jaw-muscle coordination during rhythmic mastication in three species of ungulates displaying the marked transverse jaw movements typical of many large mammalian herbivores. In order to quantify consistent motor patterns during chewing, electromyograms were recorded from the superficial masseter, deep masseter, posterior temporalis and medial pterygoid muscles of goats, alpacas and horses. Timing differences between muscle pairs were evaluated in the context of an evolutionary model of jaw-muscle function. In this model, the closing and food reduction phases of mastication are primarily controlled by two distinct muscle groups, triplet I (balancing-side superficial masseter and medial pterygoid and working-side posterior temporalis) and triplet II (working-side superficial masseter and medial pterygoid and balancing-side posterior temporalis), and the asynchronous activity of the working- and balancing-side deep masseters. The three species differ in the extent to which the jaw muscles are coordinated as triplet I and triplet II. Alpacas, and to a lesser extent, goats, exhibit the triplet pattern whereas horses do not. In contrast, all three species show marked asynchrony of the working-side and balancing-side deep masseters, with jaw closing initiated by the working-side muscle and the balancing-side muscle firing much later during closing. However, goats differ from alpacas and horses in the timing of the balancing-side deep masseter relative to the triplet II muscles. This study highlights interspecific differences in the coordination of jaw muscles to influence transverse jaw movements and the production of bite force in herbivorous ungulates.  相似文献   

8.
前已报道白鱀豚(Lipotes vexillifer)的皮肤肌、肩和鳍肢肌肉、胸壁肌肉、腹壁肌肉,颈、背和尾部肌肉(周开亚等,1981)。本篇包括咀嚼肌、舌和舌骨部肌肉、喉部肌肉及鼻咽和咽部肌肉。 一、咀嚼肌(图1、2) 咬肌m.masseter很薄,起自颧突后部的腹缘,颧突下方颞肌的筋膜及颧弓的腹缘。纤维尾腹向,止于下颌骨后部下半的外侧。后端有少量纤维绕过下颌骨腹缘,止于下颌内脂肪体,紧贴下颌骨的部分咬肌纤维已脂化形成下颌外脂肪体。咬肌仍有提起下颌的作用,但力量很弱。  相似文献   

9.
In autumn of 1994 and spring of 1995, we examined Borrelia infection among Microtinae voles, Clethrionomys rufocanus bedfordiae, in Hokkaido, Japan. In BSK culturing of the earlobe tissues of 45 C. rufocanus bedfordiae captured, twelve rodents were positive for Borrelia. Eight isolates were used for the polymerase chain reaction (PCR) and the restriction fragment length polymorphism (RFLP) analysis. According to the results, these isolates were classified into B. garinii or B. afzelii. It is considered that a common vole, C. rufocanus bedfordiae, plays a significant role in the transmission and maintenance of B. garinii and B. afzelii, similar to the role of Apodemus speciosus mice.  相似文献   

10.
The masticatory motor patterns of three tammar wallabies and two red kangaroos were determined by analyzing the pattern of electromyographic (EMG) activity of the jaw adductors and correlating it with lower jaw movements, as recorded by digital video and videoradiography. Transverse jaw movements were limited by the width of the upper incisal arcade. Molars engaged in food breakdown during two distinct occlusal phases characterized by abrupt changes in the direction of working-side hemimandible movement. Separate orthal (Phase I) and transverse (Phase II) trajectories were observed. The working-side lower jaw initially was drawn laterally by the balancing-side medial pterygoid and then orthally by overlapping activity in the balancing- and working-side temporalis and the balancing-side superficial masseter and medial pterygoid. Transverse movement occurred principally via the working-side medial pterygoid and superficial masseter. This pattern contrasted to that of placental herbivores, which are known to break down food when they move the working-side lower jaw transversely along a relatively longer linear path without changing direction during the power stroke. The placental trajectory results from overlapping activity in the working- and balancing-side adductor muscles, suggesting that macropods and placental herbivores have modified the primitive masticatory motor pattern in different ways.  相似文献   

11.
The masticatory motor patterns of three tammar wallabies and two red kangaroos were determined by analyzing the pattern of electromyographic (EMG) activity of the jaw adductors and correlating it with lower jaw movements, as recorded by digital video and videoradiography. Transverse jaw movements were limited by the width of the upper incisal arcade. Molars engaged in food breakdown during two distinct occlusal phases characterized by abrupt changes in the direction of working-side hemimandible movement. Separate orthal (Phase I) and transverse (Phase II) trajectories were observed. The working-side lower jaw initially was drawn laterally by the balancing-side medial pterygoid and then orthally by overlapping activity in the balancing- and working-side temporalis and the balancing-side superficial masseter and medial pterygoid. Transverse movement occurred principally via the working-side medial pterygoid and superficial masseter. This pattern contrasted to that of placental herbivores, which are known to break down food when they move the working-side lower jaw transversely along a relatively longer linear path without changing direction during the power stroke. The placental trajectory results from overlapping activity in the working- and balancing-side adductor muscles, suggesting that macropods and placental herbivores have modified the primitive masticatory motor pattern in different ways.  相似文献   

12.
Among Old World monkeys, subfamily variation in maxillomandibular form is commonly attributed to divergent dietary and social behaviors. However, our knowledge of any musculoskeletal adaptations for gape in cercopithecines, and folivory in colobines, is incomplete. Such data are requisite to a more informed perspective on the evolutionary morphology of these taxa. Structural analyses of gape and biomechanical efficiency were applied to a representative sample of adult cercopithecids. Factors pertaining to the biomechanical scaling of cranial structures were evaluated with least-squares bivariate regression techniques. To assess subfamily differences in masticatory efficiency, analyses of covariance were made between relevant factors. Cercopithecines achieve increased gape and relative canine size mainly with strong positive allometry of the facial skull, combined with a larger gonial angle. Colobines possess a relatively long masseter lever arm and short facial skull, as well as an enlargened masseter-medial pterygoid complex. Subfamily differences in temporalis lever arm scaling are negligible. Biomechanical comparisons within and between subfamilies suggest that the mechanical advantage of the temporalis is relatively greater than that of the masseter, while the mechanical advantage of both muscles increases with face length. Evidence is presented to stress the need for adequate consideration of the dependent variable in allometric investigations of skull form.  相似文献   

13.
The female of the new species Haemogamasus bujakovi sp. n. is described from the Tungokochen region of the Chita district. Two females of the mite were taken from Apodemus speciosus and one from Clethrionomys rutilus.  相似文献   

14.
啮齿动物和鸟类对东灵山地区辽东栎种子丢失的影响   总被引:12,自引:4,他引:12  
20 0 0年 8月中旬至 10月上旬 ,在北京东灵山地区小龙门林场选取两块辽东栎分布近似而坡向不同的样地 ,并对样地内种子库与啮齿动物的种群数量变化进行了调查。结果表明 ,两块样地种子雨持续 4 0天左右 ,且种子下落趋势基本一致 ,高峰期都集中在 9月中旬 ,不同坡向的种子产量差异显著。在两样地随机各设置 2 4个种子方形收集器 (0 5m2 )和 2 0个地表样方 (1 0× 0 5m2 )调查种子产量。通过比较收集器内壳斗和种子数量 ,发现二者无显著差异 ,说明鸟类对林冠层种子丢失作用不明显 ;而收集器和地表样方种子数量差异显著 ,表明辽东栎种子库扩散主要由林中啮齿动物完成。标记重捕发现辽东栎林中啮齿动物群落包括大林姬鼠 ,社鼠 ,棕背鼠平和花鼠 ,其中大林姬鼠为优势种 ,占群落的 77.2 %。  相似文献   

15.
柴河林区小型啮齿动物群落格局变化   总被引:1,自引:0,他引:1  
为阐明柴河林区小型啮齿动物群落结构与格局的形成原因,掌握林区啮齿动物群落动态及发展趋势。于2012至2015年在柴河林区的新房子、大青沟和二道河子地区,对针阔混交林、阔叶林、草甸、沿河林和农田5种生境类型,采用铗日法对小型啮齿动物进行了调查。结果表明,棕背?(Clethrionomys rufocanus)和大林姬鼠(Apodemus peninsulae)为柴河林区小型啮齿动物的优势物种,针阔混交林为棕背?最适生境,阔叶林为大林姬鼠最适生境;黑线姬鼠(A. agrarius)和大仓鼠(Cricetulus triton)为农田优势物种,东方田鼠(Microtus fortis)仅在草甸中发现。随生境垂直分布区海拔高度的降低,总捕获率逐渐减低,其中棕背?的种群变化起主要作用;大林姬鼠的捕获率逐渐增加,其对农业经济的干扰适应性更强;褐家鼠(Rattus norvegicus)的分布规律受居民点分布比例影响;红背?(Clethrionomys rutilus)主要分布于海拔相对较高的针阔混交林。通过与孙儒泳等20世纪60年代在此地区的研究结果的比较,最后认为近几十年原始森林的破坏,伴生的次生林和人工林,致柴河林区的针阔混交林向阔叶林的过渡失去先前的典型特征。并发现小型啮齿动物的群落格局变化,虽呈现出自然条件的垂直变化和农业活动影响的规律,但同时存在生境变化的适应性改变,也表现出各地区的区域生境特征对取样点微生境啮齿动物分布的巨大影响。  相似文献   

16.
The actions of the masticatory muscles of a variety of mammalsin which feeding behavior and the configuration of the masticatoryapparatus differ have been reported. The most common approachused in these studies involves (1) obtaining a good anatomicalperception of the musculature, (2) deriving a theoretical modelof the actions of these muscles during jaw movement, and (3)testing this model by recording muscle activity and jaw movementssimultaneously. A catalogue of the activity patterns in eleven species of mammalsduring food reduction reveals certain trends in the actionsof the masticatory muscles. Horizontal jaw movements are generatedprimarily by differential activities of the deep temporalis,superficial masseter, and medial pterygoid. Vertical movementsand the maintenance of tooth to food contact apparently areproduced by action of the superficial temporalis, deep masseter,and zygomaticomandibularis. Thus, horizontal movements are seeminglygenerated by muscles having fibers arranged in marked anteroposteriordirection, whereas vertical movements are generated by muscleshaving more or less vertically arranged fibers. The asymmetry of jaw movement and the muscular activity generatingit suggest that mastication involves an interactionbetween anunbalanced and flexible functional unit (muscles) and a balancedand stable structural unit (skull and teeth). Thus, any unbalancingof the structural unit results in a further unbalancing of themasticatory process.  相似文献   

17.
Although differences in food-hoarding tactics both reflect a behavioral response to cache pilferage among rodent species and may help explain their coexistence, differentiation in cache pilfering abilities among sympatric rodents with different hoarding strategies is seldom addressed. We carried out semi-natural enclosure experiments to investigate seed hoarding tactics among three sympatric rodent species (Tamias sibiricus, Apodemus peninsulae and Clethrionomys rufocanus) and the relationship of their pilfering abilities at the inter- and intraspecific levels. Our results showed that T. sibiricus exhibited a relatively stronger pilfering ability than A. peninsulae and C. rufocanus, as indicated by its higher recovery rate of artificial caches. Meanwhile A. peninsulae showed a medium pilfering ability and C. rufocanus displayed the lowest ability. We also noted that both cache size and cache depth significantly affected cache recovery in all three species. T. sibiricus scatter-hoarded more seeds than it larder-hoarded, A. peninsulae larder-hoarded more than scatter-hoarded, and C. rufocanus acted as a pure larder-hoarder. In T. sibiricus, individuals with lower pilfering abilities tended to scatter hoard seeds, indicating an intraspecific variation in hoarding propensity. Collectively, these results indicated that sympatric rodent species seem to deploy different food hoarding tactics that allow their coexistence in the temperate forests, suggesting a strong connection between hoarding strategy and pilfering ability.  相似文献   

18.
Physiological cross-section of the human jaw muscles   总被引:2,自引:0,他引:2  
The cross-sectional areas of the masseter, temporalis, medial pterygoid and lateral pterygoid muscles were determined by means of computer tomography in 16 male subjects with healthy dentitions. The physiological cross-section (PCS) of these muscles was predicted from the previously determined relationship between PCS and scan cross-sections. In our subjects, mean total PCS of the jaw muscles was twice as high as in cadavers with few natural teeth. The average distribution of total PCS over the four muscles was the same in the two groups. There was considerable individual variation. Strong correlations in cross-sectional area were only found between the masseter and medial pterygoid muscles. Variation in PCS of these two muscles determines 80% of the variation in combined cross-sectional area.  相似文献   

19.
Wear facets on molars of the Eocene primate Adapis magnus are described. Striations on these wear facets indicate three separate directions of mandibular movement during mastication. One direction corresponds to a first stage of mastication involving orthal retraction of the mandible. The remaining two directions correspond to buccal and lingual phases of a second stage of mastication involving a transverse movement of the mandible. The mechanics of jaw adduction are analysed for both the orthal retraction and transverse stages of mastication. During the orthal retraction stage the greatest component of bite force is provided by the temporalis muscles acting directly against the food with the mandible functioning as a link rather than as a lever. A geometrical argument suggests that during the transverse stage of mastication bite force is provided by the temporalis muscles of both sides, the ipsilateral medial and lateral pterygoid muscles, and the contralateral masseter muscle.  相似文献   

20.
Ungulates generally have large masseter and pterygoid muscles and a necessarily large angular process provides attachment surface on the mandible. The temporalis muscle tends to be small. It has been suggested that this is an adaptation for enhanced control of the lower jaw and reduction of forces at the jaw joint. I suggest an additional reason: because of the geometry of the jaw, the length of that segment of the lower jaw that spans the distance from the jaw joint to the most posterior tooth is significantly reduced when the masseler and pterygoid are the dominant muscles; this region is necessarily much longer when the temporalis is large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号